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Abstract

A pedagogical application-oriented introduction to the cal-
culus of exterior differential forms on differential manifolds is
presented. Stokes’ theorem, the Lie derivative, linear con-
nections and their curvature, torsion and non-metricity are
discussed. Numerous examples using differential calculus are
given and some detailed comparisons are made with their tradi-
tional vector counterparts. In particular, vector calculus on R3

is cast in terms of exterior calculus and the traditional Stokes’
and divergence theorems replaced by the more powerful exte-
rior expression of Stokes’ theorem. Examples from classical
continuum mechanics and spacetime physics are discussed and
worked through using the language of exterior forms. The nu-
merous advantages of this calculus, over more traditional ma-
chinery, are stressed throughout the article.
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Introduction

Differential geometry is a powerful mathematical tool and pervades
many branches of physics. Physical theories are often naturally and
concisely expressed in terms of differential geometric concepts. The



A primer on exterior differential calculus 89

aim of this article is to give an application-oriented pedagogical intro-
duction to some of the ideas in differential geometry, specifically the
notion of exterior differential forms, and to explicitly demonstrate the
power of the formalism. It is shown how the calculus of differential
forms gives rise to a concise alternative to traditional vector and tensor
calculus and the corresponding treatments of field theories. Numerous
examples are discussed and include applications in classical continuum
mechanics and relativistic spacetime physics.
Traditional Gibbs vectors and matrices will be distinguished from dif-
ferential geometric vector fields by using a bold face font. For example
v is a conventional vector field, whilst V is a differential geometric vec-
tor field. A function on an open subset U ⊂ Rm into Rn is said to be
smooth if its partial derivatives to all orders exist and are continuous.

1 Differential manifolds

Loosely speaking, differential manifolds are generalizations of the con-
cept of Euclidean spaces. Any point in a differential manifold has
an open neighbourhood that can be smoothly mapped onto an open
subset of a Euclidean space. Unlike Euclidean spaces, arbitrary dif-
ferential manifolds require more than one open set to cover them.
Let M be a set. A pair (U , φ), where U ⊆ M and φ : U → Rn

is a one-to-one map onto an open set φ(U) ⊆ Rn, is called a chart
on M. Two charts (U , φ) and (V , ψ) are called compatible if either
U ∩ V = ∅ or else U ∩ V 6= ∅, φ(U ∩ V) and ψ(U ∩ V) are open in
Rn and φ ◦ ψ−1 : ψ(U ∩ V) → φ(U ∩ V) is smooth with a smooth
inverse (see figure 1). An atlas is a family of charts, any two of which
are compatible and whose domains cover M. Two atlases are called
equivalent if their union is an atlas, and a set M with an equivalence
class of such atlases is called a differential manifold (or, simply a man-
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ifold1). The dimension of a manifold is the dimension of the range
of all of the chart maps in some (and, hence, any equivalent) atlas.
Let M be a manifold with dimension m and N be a manifold with
dimension n. A function f on M into N is said to be smooth if for
every p ∈ U there is a chart (U , φ) for M and a chart (V , ψ) for N at
f(p) with f(U) ⊆ V such that the partial derivatives of

ψ ◦ f ◦ φ−1 : φ(U) ⊆ Rm −→ ψ(V) ⊆ Rn

exist and are continuous to all orders, i.e. ψ ◦ f ◦ φ−1 is smooth.

2 Tensor fields on manifolds

2.1 Derivations

Let F(M) be the set of smooth functions on an n-dimensional mani-
fold M into R. A derivation on the algebra of F(M) is a map X such
that

X : F(M) → F(M),

X(λf + µh) = λV f + µV h,

X(fh) = Xfh + fXh,

where λ, µ ∈ R, f, h ∈ F(M) and where the shorthand Xf ≡ X(f)
has been used. The expression of Xf ∈ F(M) with respect to the
chart (U , φ), xa = φa(p), a = 1, . . . , n, p ∈ U on M is2

Xf = ξa ∂(f ◦ φ−1)

∂xa
◦ φ (1)

1The standard usage of the term manifold is reserved for objects that have less
structure than differential manifolds. However, in this article we use manifold as
an abbreviation for differential manifold.

2The Einstein summation convention is adhered to throughout this document,
i.e. repeated labels are summed over their ranges.
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Figure 1: Loosely speaking, a differential manifold M is a collection
of points whose open neighbourhoods can be smoothly mapped onto
open subsets of a Euclidean space. All of the maps shown in this figure
are smooth with smooth inverses. The dimension of M is n.
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where {ξa}, ξa : U → Rn, are known as the components of X with
respect to (U , φ). Similarly, with respect to another chart (V , ψ),
x′a = ψa(p), p ∈ V

Xf = ξ′a
∂(f ◦ ψ−1)

∂x′a
◦ ψ (2)

on U∩V . The components {ξa} and {ξ′a} of X are related by applying
the chain rule to (2). It can be shown that

Xf = ξ′aΦUV
b
a

∂(f ◦ φ−1)

∂xb
◦ φ. (3)

where the transition function ΦUV is

ΦUV : U ∩ V → Rn, (4)

ΦUV
a
b =

∂(φ ◦ ψ−1)a

∂x′b
◦ ψ (5)

where for p ∈ U ∩ V with xa = φa(p), x′a = ψa(p),

xa = (φ ◦ ψ−1)a(x′1, . . . x′n).

Comparing (3) and (1) we note that

ξa = ΦUV
a
bξ
′b

or, equivalently,

ξ′a = ΦVU
a
bξ

b. (6)

since

ΦUV
a
bΦVU

b
c = δa

c .



A primer on exterior differential calculus 93

2.2 Vector fields

Each point p ∈ M is equipped with an n-dimensional vector space
TpM, called the tangent space at p. Elements of TpM are called tan-
gent vectors at p. The tangent spaces are collected together to form a
2n-dimensional manifold TM,

TM =
⋃

p∈M
TpM,

known as the tangent bundle of M, which is an example of a fibre
bundle [9]. Crudely speaking, a section of a fibre bundle, such as
TM, is an assignment of a point (in this case a tangent vector at p)
in each fibre (in this case TpM) to its base point in the base manifold
(in this case p ∈M) that varies smoothly over the base manifold (see
figure 2). Elements of the space of sections of TM, denoted ΓTM,
are called vector fields. Expressed with respect to the chart (U , φ),
xa = φa(p), p ∈ U a vector field X ∈ ΓTM is written

X = ξa ∂

∂xa
(7)

where ξa : U → Rn are the components of X with respect to (U , φ).
At each point p ∈ U the set {∂/∂xa} is a vector basis for TpM. This
notation reflects the fact that the derivations on the algebra of F(M)
and the vector fields on M are in one-to-one correspondence. With
respect to (V , ψ), x′a = ψa(p), p ∈ V

X = ξ′a
∂

∂x′a
(8)

and so applying (6) to (7) and (8) we obtain

∂

∂x′a
= ΦUV

b
a

∂

∂xb
. (9)

on U ∩ V .
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Figure 2: This figure illustrates the idea of a fibre bundle (specifically,
the tangent bundle TS1 on the circle S1). The tangent space TpS

1

(a fibre of TS1) at p ∈ S1 is shown by the dotted line. The union of
TpS

1 for all p yields the fibre bundle TS1 and the arrows show how the
edges should be identified, i.e. TS1 = S1 × R. The curve is a section
of TS1 i.e. a vector field on S1. Not all tangent bundles are product
bundles. For example TS2 6= S2 × R2 because all vector fields on S2

must vanish somewhere.
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2.3 Differential 1-forms

A 1-form αp at p is a linear map from TpM to R, i.e. αp is an element
of the dual space T ∗

pM. The space T ∗M

T ∗M =
⋃

p∈M
T ∗

pM

is known as the cotangent bundle of M. Differential 1-forms are ele-
ments of the space of sections of T ∗M, denoted ΓT ∗M, and they are
linear maps on vector fields into F(M). Thus,

α(X) ∈ F(M), (10)

α(fX) ≡ fα(X), (11)

α(X + Y ) ≡ α(X) + α(Y ), (12)

(α + β)(X) ≡ α(X) + β(X), (13)

where f ∈ F(M), X ∈ ΓTM, Y ∈ ΓTM, α ∈ ΓT ∗M and β ∈
ΓT ∗M. We can consider vector fields as linear maps on differential
1-forms by defining

X(α) ≡ α(X)

thus identifying T ∗∗M with TM. The expressions for α with respect
to the charts (U , φ) and (V , ψ) used earlier are

α = αadxa

= α′adx′a.
(14)

where {dx′a} and {dxa} are bases for ΓT ∗M valid on V and U respec-
tively. The bases {∂/∂xa} and {dxa} are dual,

dxa(∂/∂xb) ≡ δa
b ,
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as are {∂/∂x′a} and {dx′a},
dx′a(∂/∂x′b) ≡ δa

b (15)

where δa
b = 1 if a = b and δa

b = 0 if a 6= b (δa
b is the Kronecker delta).

The contraction α(X) is chart-independent so using (15) and (6)

α(X) = α′aξ
′bdx′a(

∂

∂x′b
)

= α′aξ
′a

= α′aΦVU
a
bξ

b.

= αaξ
a

(16)

where the last line is expressed with respect to (U , φ) and so

α′a = ΦUV
b
aαb. (17)

Thus, using (14), the differential 1-form bases are related by

dx′a = ΦVU
a
bdxb. (18)

on U ∩ V .

2.4 Tensor fields of arbitrary degree

Elements of the vector spaces ΓTM and ΓT ∗M are used to construct
multilinear mappings into F(M). The space Ts

rpM at p ∈M consists
of all multilinear mappings on the product of the rth-order product of
TpM and the sth-order product of T ∗

pM. Since T ∗
pM is the space of

linear maps on TpM and T ∗∗
p M = TpM is the space of linear maps

on T ∗
pM we see that

Ts
rpM = (T ∗

pM× T ∗
pM× . . . T ∗

pM)︸ ︷︷ ︸
r times

× (TpM× TpM× . . . TpM)︸ ︷︷ ︸
s times

.
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A smooth type (r, s) tensor field T is an element of the space of sections
of the type (r, s) tensor bundle

Ts
rM =

⋃
p∈M

Ts
rpM,

i.e. T ∈ ΓTs
rM. The integer r is called the covariant degree of

T whilst s is its contravariant degree. Special examples of tensor
bundles are the tangent bundle TM = T1

0M and the cotangent bundle
T ∗M = T0

1M.
The tensor product ⊗ has the properties

(α⊗ T )(X,Y1, . . . Yr, α1, . . . , αs) ≡ α(X)T (Y1, . . . Yr, α1, . . . , αs),

(α⊗ β)(X, Y ) ≡ α(X)β(Y )

with

X(α) ≡ α(X)

where X, Y, Y1, . . . , Yr ∈ ΓTM and α, α1, . . . , αs, β ∈ ΓT ∗M. The
linearity properties of the tensor product are induced from (11), (12)
and (13). For example

(α⊗ β)(fX, Y ) = fα(X)β(Y )

= (α⊗ β)(X, fY )

= (fα⊗ β)(X, Y )

= (α⊗ fβ)(X, Y )

where f ∈ F(M). With respect to the chart (U , φ) the tensor T is

T = T b1...bs
a1...ar

dxa1 ⊗ dxa2 ⊗ . . .⊗ dxar ⊗ ∂

∂xb1
⊗ ∂

∂xb2
⊗ . . .⊗ ∂

∂xbs
.
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2.4.1 Metric tensor field

A metric tensor onM is a type (2, 0) symmetric non-degenerate tensor
field g ∈ ΓT0

2M. An orthonormal co-frame {ea} is a set of n = dimM
linearly independent sections of T ∗M with respect to which the metric
has the form

g = ηabe
a ⊗ eb.

where ηab = ±1 if a = b and ηab = 0 if a 6= b. If ηab = +1 when
a = b then M is said to be Riemannian. Otherwise M is called
semi-Riemannian or, alternatively, pseudo-Riemannian. A Lorentzian
manifold M is semi-Riemannian with ηab = diag(−1, 1, . . . , 1).3 The
metric tensor possesses an inverse g−1 which is the type (0, 2) tensor
field

g−1 = ηabXa ⊗Xb

where {Xa} is dual to {ea}, i.e.

ea(Xb) = δa
b ,

and where

ηabηbc = δa
c .

The frame {Xa} (as well as the co-frame {ea}) is said to be orthonor-
mal.
The metric establishes an isomorphism between TM and T ∗M. Given
any X ∈ ΓTM we can construct the differential 1-form g(X,−) ≡
g(X,Xa)e

a. Conversely, given any differential 1-form α we have the

3For example, ηab = diag(−1, 1, 1, 1) if M is a spacetime.
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vector field g−1(α,−) ≡ g−1(α, ea)Xa. For convenience we use the
notation

X̃ ≡ g(X,−), (19)

α̃ ≡ g−1(α,−). (20)

Thus ˜̃X = X and ˜̃α = α.

2.5 Differential forms of arbitrary degree

The totally antisymmetric type (r, 0) tensor fields on M are sections
of the rth exterior bundle ΛrM⊂ T0

rM and are known as differential
forms of degree r or differential r-forms. The bundle of differential
0-forms Λ0M is defined so that ΓΛ0M = F(M) i.e. differential 0-
forms are scalar functions on M. Note that if M is an n-dimensional
manifold then a differential r-form, with respect to an arbitrary chart,
has n!/(r!(n − r)!) components. In other words, the vector space
of differential r-forms on an n-dimensional manifold has dimension
n!/(r!(n−r)!). Let α be a differential r-form and β be a differential s-
form. The exterior product of α and β, denoted α∧β, is the differential
(r + s)-form given by

α ∧ β ≡ Alt(α⊗ β)

where Alt(T ) is the totally antisymmetric part of the type (r, 0) tensor
T . For example, if α and β are both differential 1-forms

α ∧ β =
1

2
(α⊗ β − β ⊗ α).

It can be shown that for α ∈ ΓΛrM and β ∈ ΓΛsM

α ∧ β = (−1)rsβ ∧ α
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and that the exterior product is associative

α ∧ (β ∧ γ) = (α ∧ β) ∧ γ

≡ α ∧ β ∧ γ.

where γ ∈ ΓΛtM. Conventionally, the exterior product symbol is
dropped when applied to a differential 0-form f and a differential r-
form α, i.e. fα ≡ f ∧ α = α ∧ f .
All differential r-forms are special examples of sections of the exterior
bundle ΛM. A general section of ΛM consists of linear combina-
tions of differential forms of different degrees. Such differential forms
are termed inhomogenous, whilst differential r-forms are called ho-
mogenous. The vector space of inhomogenous differential forms on an
n-dimensional manifold has dimension 2n.

2.6 Example

Let V be a vector field and α be a differential 1-form on the 2-
dimensional manifold M = R2. Let (x, y) = φ(p) be the components
of a Cartesian chart (U , φ) at p ∈ U = R2. This means that the metric
tensor has the form

g = dx⊗ dx + dy ⊗ dy

over U . If (r, θ) = ψ(p) are the components of the polar chart (V , ψ)
at p ∈ V = R2 − {0} given by

(x, y) = (r cos θ, r sin θ)

and since

(x, y) = φ(p)

= φ ◦ ψ−1 ◦ ψ(p)

= φ ◦ ψ−1(r, θ)
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we see that

φ ◦ ψ−1(r, θ) = (r cos θ, r sin θ).

Thus, using (17) and (5) we find that

dx = cos θdr − r sin θdθ,

dy = sin θdr + r cos θdθ

and so

g = dr ⊗ dr + r2dθ ⊗ dθ.

Note that {∂/∂r, (1/r)∂/∂θ} and {dr, rdθ} are a dual orthonormal
frame and co-frame valid over V .
An inhomogenous form Φ on M expressed with respect to (U , φ) has
the structure

Φ = a(x, y) + b(x, y)dx + c(x, y)dy + f(x, y)dx ∧ dy.

3 The tools of exterior calculus

Let α be a differential 1-form, β be a differential p-form, γ be an
arbitrary degree differential form, f be a scalar field and X be a vector
field on an n-dimensional manifold M. The exterior derivative d on
differential forms is defined by the properties

df(X) = Xf, (21)

d(β ∧ γ) = dβ ∧ γ + (−1)pβ ∧ dγ, (22)

ddγ = 0. (23)

With respect to the chart (U , φ)

X = ξa ∂

∂xa
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and so, referring to (1)

Xf = ξa ∂

∂xa
(f ◦ φ−1) ◦ φ.

However,

df(X) = ξadf(
∂

∂xa
)

and so, since X is arbitrary, the exterior derivative on 0-forms has the
local form

df =

[
∂

∂xa
(f ◦ φ−1) ◦ φ

]
dxa.

The interior operator ιX with respect to the vector field X is defined
by

ιXα = α(X), (24)

ιX(β ∧ γ) = ιXβ ∧ γ + (−1)pβ ∧ ιXγ, (25)

ιXιXγ = 0. (26)

Both d and ιX are extended to inhomogenous differential forms by
linearity. Specifically, if

α =
n∑

q=0

αq

where αq ∈ ΓΛqM then

dα =
n∑

q=0

dαq,

ιXα =
n∑

q=0

ιXαq.
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The dimension of the vector space of differential p-forms is n!/(p!(n−
p)!). Thus, the vector spaces of differential p-forms and (n− p)-forms
have the same dimension. The Hodge map ? is a linear isomorphism
between the vector spaces of differential p- and (n−p)-forms satisfying

?(γ ∧ X̃) = ιX ? γ, (27)

?(fγ) = f ? γ (28)

and is completely defined by specifying an orientation, or volume form,
denoted ?1 ∈ ΓΛnM. The orientation is specified through the metric
tensor g on M and has the form

?1 = ±e1 ∧ e2 ∧ · · · ∧ en

where {ea} is any orthonormal co-frame (see subsection 2.4.1). The
choice of sign is a matter of taste, and on R3 can be identified with
the choice of left- or right-handedness of orthonormal frames. Using
(28) and (27) a repeated application of the Hodge map on a p-form β
can be shown to yield

? ? β = det(η)(−1)p(n−p)β (29)

where η is the matrix of components ηab = g(Xa, Xb) of the metric g
with respect to an orthonormal frame {Xa} and β ∈ ΓΛpM. Thus,

the inverse Hodge map
−1
? is

−1
? β = det(η)(−1)p(n−p) ? β.

A useful identity involving the interior operator and Hodge map is
that

X̃ ∧ ?β = −(−1)p ? ιXβ (30)
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where, again, β ∈ ΓΛpM. Therefore, the metric contraction of two
differential 1-forms α and β on M can be expressed in the form

g−1(α, β) =
−1
?

(
α ∧ ?β

)
.

Indeed, the Hodge map is used to define an inner product on homoge-
nous differential forms on Riemannian manifolds and an indefinite
inner product on semi-Riemannian manifolds :

α · β ≡ −1
?

(
α ∧ ?β

)

where α and β are homogenous differential forms with the same degree.
A differential form α that satisfies

dα = 0

is said to be closed. If a differential form β can be written

β = dγ (31)

where γ is another differential form then β is called exact. A beautiful,
and very powerful, lemma due to Poincaré is that any closed differ-
ential form can be written locally as an exact differential form. More
precisely, if dα = 0 on M then for any p ∈ M there exists an open
neighbourhood of p on which α = dβ. That this cannot, in general,
be done globally is a consequence of the topology of M.

3.1 Example

Let α be a 1-form on a 2-dimensional differential manifold (M, g).
With respect to a chart (U , φ) α has the form

α = a(x, y)dx + b(x, y)dy
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Note that

dα = da ∧ dx + ad(dx) + db ∧ dy + bd(dy),

= da ∧ dx + db ∧ dy

using (22) and (23). Since {dx, dy} is dual to {∂/∂x, ∂/∂y} we note
that

da = da(∂/∂x)dx + da(∂/∂y)dy

and so, by (21)

da =
∂a

∂x
dx +

∂a

∂y
dy.

Using the symmetry properties of the exterior product

dx ∧ dx = dy ∧ dy = 0

dy ∧ dx = −dx ∧ dy

and we conclude that

dα =
( ∂b

∂x
− ∂a

∂y

)
dx ∧ dy.

With respect to (U , φ) the volume form ?1 will be

?1 = hdx ∧ dy

where h is the component of ?1 with respect to (U , φ). The Hodge
dual of α is

?α = ια̃ ? 1

= ια̃(hdx ∧ dy)

= hια̃dx ∧ dy − hdx ∧ ια̃dy

= hg−1(α, dx)dy − hg−1(α, dy)dx

using (20), (27), (25) and (24).
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4 Integration of forms over chains

4.1 The pull-back of differential forms

A smooth map f : M → N induces the pull-back map f ∗ : ΛN →
ΛM that takes differential forms on N to differential forms on M.
Let (U , φ) be a chart on M with components xa = φa(p) at p ∈ M
and let (V , ψ) be a chart on N with components yµ = ψµ(q) at q ∈ N .
The pull-back f ∗h of the 0-form h ∈ ΓΛ0N = F(M) with respect to
f is

f ∗h ≡ h ◦ f.

The pull-back f ∗α of α ∈ ΓΛ1N , where

α = αµdyµ

with respect to (V , ψ), is the differential 1-form on M given by

f ∗α = αµ ◦ f
∂

∂xa
(ψµ ◦ f ◦ φ−1) ◦ φdxa

when expressed with respect to (U , φ). The pull-back operation is
extended to higher degree differential forms as a tensor homomorphism

f ∗
(
α ∧ β

)
= f ∗α ∧ f ∗β (32)

where β is a differential form. It can be shown that the exterior
derivative and pull-back operations commute

f ∗dα = df ∗α. (33)
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4.2 Cubes and chains

Let (U , φ), [0, 1]r ⊂ U , be the natural chart on Rr, i.e. σj = φj(p), and
0 ≤ σj ≤ 1,j ∈ Z. An r-cube4 on a differential manifold M is the pair
(cr, Ωr) where cr : [0, 1]r →M is a smooth map and

Ωr = ±dσj1 ∧ dσj2 ∧ . . . dσjr , j1, j2, . . . jr ∈ Z, (34)

is a differential r-form (an orientation) on Rr. We will examine the
choice of sign shortly.
A finite sum of r-cubes {(cr

J , Ωr
J)} with real coefficients {bJ}, J ∈ Z,

is called an r-chain.
Each r-cube gives rise to 2r (r − 1)-cubes known as faces. Each face,
denoted cr−1

j,ε , is obtained by restricting cr to the points p ∈ [0, 1]r such

that σj = φj(p) = ε, where ε = 0, 1. The orientation Ωr−1
j,ε of each face

is obtained from Ωr by

Ωr−1
j,ε ≡ (−1)ε+1ι∂/∂σjΩr. (35)

Note that faces inherit their orientation from that of a higher-dimensional
cube, which we call their parent cube. Once a parent cube is defined
all of the orientations of its faces are fixed by (35). Thus, the sign in
(34) must either be fixed as part of the definition of Ωr if (cr, Ωr) is a
parent cube, or inherited from its parent cube through (35).
The r-cube (cr, Ωr) has a boundary (r − 1)-chain ∂(cr, Ωr),

∂(cr, Ωr) =
r∑

j=1

∑
ε=0,1

(cr−1
j,ε , Ωr−1

j,ε ),

where the (r−1)-cube in each term of the summand is a face of (cr, Ωr).
The boundary ∂Cr of the r-chain Cr

Cr =
∑

J

bJ(cr
J , Ωr

J) (36)

4Technically, this is an oriented r-cube.
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is

∂Cr ≡
∑

J

bJ∂(cr
J , Ωr

J).

4.2.1 Example

Let (c2, Ω2) be a 2-cube on a 2-dimensional manifold M. We can
always find a chart (U , φ) on M with respect to which the components
of c2 are the identity map. The chart (U , φ) is said to be adapted to
c2. Thus, with x = φ1(p) and y = φ2(p) at p ∈ U , the map c2 has
components

(x, y) = c2(σ1, σ2) = (σ1, σ2).

The orientation associated with c2 is

Ω2 = dσ1 ∧ dσ2.

The faces of the parent cube (c2, Ω2) are

(x, y) = c1
1,0(0, σ

2) = (0, σ2),

(x, y) = c1
1,1(1, σ

2) = (1, σ2),

(x, y) = c1
2,0(σ

1, 0) = (σ1, 0),

(x, y) = c1
2,0(σ

1, 1) = (σ1, 1)

with orientations

Ω1
1,0 = −dσ2

Ω1
1,1 = dσ2

Ω1
2,0 = dσ1

Ω1
2,1 = −dσ1.
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Thus, the 1-chain ∂(c2, Ω2) is

∂(c2, Ω2) =(c1
1,0,−dσ2) + (c1

1,1, dσ2)

+ (c1
2,0, dσ1) + (c1

2,1,−dσ1).

4.3 Integration and Stokes’ theorem

Any differential r-form ω on Rr can be written

ω = fΩr

where f is a smooth function on Rr and

Ωr = ±dσj1 ∧ dσj2 ∧ . . . dσjr .

The integral of ω over [0, 1]r is defined to be

∫

[0,1]r
ω =

∫

[0,1]r
f(σj1 , σj2 , . . . σjr)Ωr

≡
1∫

0

1∫

0

. . .

1∫

0

f(σj1 , σj2 , . . . σjr)dσj1dσj2 . . . dσjr

(37)

regardless of the choice of sign in Ωr. The integral of a differential
r-form α on any manifold M over the r-cube (cr, Ωr) is defined via
the pull-back map cr∗. The r-form cr∗α on Rr is, with respect to the
chart (U , φ), σ = φj(p) at p ∈ Rr,

cr∗α = hΩr

where h is a smooth function on Rr. We define
∫

cr

α ≡
∫

[0,1]r
cr∗α
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and so using (37)

∫

[0,1]r
cr∗α =

∫

[0,1]r
h(σj1 , σj2 , . . . σjr)Ωr

=

∫

[0,1]r
h(σj1 , σj2 , . . . σjr)dσj1dσj2 . . . dσjr .

The integral of α over

Cr =
∑

J

bJ(cr
J , Ωr

J)

is
∫

Cr

α ≡
∑

J

bJ

∫

cr
J

α.

This formalism leads to the remarkably beautiful result known as the
Newton-Leibniz-Gauss-Green-Ostrogradskii-Stokes-Poincaré theorem,
or Stokes’ theorem for short,

∫

Cr

dα =

∫

∂Cr

α. (38)

Thus, using (22) we have an analogue of the “integration by parts”
formula,

∫

Cr

dα ∧ β =

∫

∂Cr

α ∧ β − (−1)p

∫

Cr

α ∧ dβ

where α is a differential p-form. For notational simplicity, although it
is an abuse of the notation, if an r-chain consists of only one r-cube
then we shall use the same label for the r-cube map as used for the
r-chain.
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4.4 Example

Let (U , φ) be a spherical polar chart on M = R3, i.e. one in which
the metric has the form

g = dr ⊗ dr + r2(dθ ⊗ dθ + sin2 θdϕ⊗ dϕ).

Thus,

e1 = dr

e2 = rdθ

e3 = r sin θdϕ

is an orthonormal co-frame. Let us choose the orientation

?1 = e1 ∧ e2 ∧ e3

= r2 sin θdr ∧ dθ ∧ dϕ.

Let Σ be a 2-chain on R3 consisting of only one 2-cube with

r = 1

θ = Σ1(p) = πσ1,

ϕ = Σ2(p) = 2πσ2

and orientation Ω2 = dσ1 ∧ dσ2. The pull-back with respect to Σ of
each element of the cobasis {dr, dθ, dφ} is

Σ∗dr = dΣ∗r = d1 = 0,

Σ∗dθ = dΣ∗θ = πdσ1,

Σ∗dφ = dΣ∗φ = 2πdσ2

using (33). The vector field ∂/∂r is normal to the image set DΣ of Σ,
i.e.

Σ∗(g(∂/∂r,−)
)

= Σ∗dr

= 0
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A volume form on DΣ induced from ?1 is

#1 = ι∂/∂r ? 1

and so the area of DΣ is

∫

Σ

#1 =

∫

[0,1]2
Σ∗#1

=

∫

[0,1]2
Σ∗(sin θdθ ∧ dϕ)

= 2π2

∫

[0,1]2
sin(πσ1)dσ1 ∧ dσ2

= 2π2

∫

[0,1]2
sin(πσ1)Ω2

= 2π2

1∫

0

1∫

0

sin(πσ1)dσ1dσ2

= 4π.

Note that the “outward” pointing normal (i.e. that which points away
from the coordinate singularity at r = 0) was used to construct #1.
An alternative (although less conventional) choice is to use the “in-
ward” pointing normal −∂/∂r.

5 Standard vector calculus in terms of

exterior calculus

Let us focus on the special case M = R3 endowed with the standard
Euclidean metric. This means there exists a global chart (R3, φ), where
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{xa = φa(p)}, p ∈ R3, with respect to which the metric tensor g has
the form

g = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3.

Such charts on R3 are called Cartesian. We choose the orientation

?1 = dx1 ∧ dx2 ∧ dx3

and note that, using (29),

?2α = α (39)

for any degree differential form α on R3. Thus

−1
? α = ?α. (40)

To see this observe that {∂/∂x, ∂/∂y, ∂/∂z} is an orthonormal frame
and that, in the notation of (29), det η = 1. Furthermore, the values
of p(3− p) for each p ∈ {0, 1, 2, 3} are all even.
Let {i, j,k} be the unit orthonormal vector basis, in the conventional
sense, corresponding to {∂/∂x, ∂/∂y, ∂/∂z}. This means that given
a conventional vector field u we construct a vector field U on R3

considered as a manifold by the following replacements :

i → ∂/∂x,

j → ∂/∂y,

k → ∂/∂z.

Thus, if

u = a(x, y, z)i + b(x, y, z)j + c(x, y, z)k

then U , with respect to the chart (R3, φ), has the form

U = a(x, y, z)
∂

∂x
+ b(x, y, z)

∂

∂y
+ c(x, y, z)

∂

∂z
.

We will indicate this correspondence as equality, i.e.

U = u.
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5.1 Dot and cross products

Let u and v be conventional vector fields on R3 and their correspond-
ing vector fields on R3, considered as a manifold, be U = u and V = v.
Then, the conventional dot product u · v is

u · v = g(U, V )

whilst the conventional cross product u× v is

u× v = g−1(?(Ũ ∧ Ṽ ),−).

The cyclic symmetry of the triple vector product

u · (v ×w) = v · (w × u) = w · (u× v)

follows as a consequence of the properties of the exterior product

u · (v ×w) = g−1(?(Ũ ∧ Ṽ ∧ W̃ ),−)

= g−1(?(Ṽ ∧ W̃ ∧ Ũ),−)

= g−1(?(W̃ ∧ Ũ ∧ Ṽ ),−)

where W = w.

5.2 Grad, curl and div

The operations grad,curl and div are

grad(f) = d̃f , (41)

curl(u) = ?̃dŨ , (42)

div(u) =
−1
? d ? Ũ (43)
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in exterior form, where f is a smooth function on R3. All of the well-
known identities involving these three operations can be obtained in a
straightforward manner using the material in section 3. For example

?̃d2f = 0

= curl(grad(f)),

using (23) and

div(u× v) =
−1
? d ?

(
?(Ũ ∧ Ṽ )

)

=
−1
? d(Ũ ∧ Ṽ )

=
−1
?

(
dŨ ∧ Ṽ − Ũ ∧ dṼ

)

= ιV ? dŨ − ιU ? dṼ

= g(?̃dŨ , V )− g(?̃dṼ , U)

= v · curl(u)− u · curl(v)

using (43), (39), (22), (40), (27), (24) and (42).

5.3 Integral relations

Let Ω : [0, 1]3 → R3 and Σ : [0, 1]2 → R3 be an oriented 3-chain and
2-chain respectively. Let their image sets be labelled DΩ and DΣ. Let
the outward pointing normal of the image set DC2 of a 2-chain C2 be
labelled nC2 as a conventional vector field and NC2 as a vector field
on R3 as a manifold. Let dµ3, dµ2

C2 be integration measures such that

∫

DΩ

fdµ3 =

∫

Ω

f ? 1, (44)

∫

DC2

fdµ2
C2 =

∫

C2

f ? ÑC2 (45)
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where f is any smooth function. The traditional Stokes’ theorem
∫

DΣ

curl(v) · nΣdµ2
Σ =

∫

D∂Σ

v · dr (46)

and divergence theorem
∫

DΩ

div(v)dµ3 =

∫

D∂Ω

v · n∂Ωdµ2
∂Ω, (47)

are consequences of (38) with Cr = Σ and Cr = Ω respectively.
Let us first focus on (47). We note that

∫

DΩ

div(u)dµ3 =

∫

Ω

(
−1
? d ? Ũ) ? 1

=

∫

Ω

?(
−1
? d ? Ũ)

=

∫

Ω

d ? Ũ

=

∫

∂Ω

?Ũ .

(48)

To go further we need to examine the integrand in (48). Any differ-
ential 1-form α on R3 can be written in the form

α = α(NC2)ÑC2 + β

ιNC2β = 0

and since

ιNC2β ? 1 = ÑC2 ∧ ?β

using (30) we note that

ÑC2 ∧ ?β = 0



A primer on exterior differential calculus 117

implying that

?β = ÑC2 ∧ γ

where γ is a differential 1-form. Since

C2∗ÑC2 = C2∗[ÑC2(Xα)eα] = 0

where {Xα, NC2}, α = 1, 2, is a frame adapted to C2 with dual co-
frame {eα, ÑC2}, it follows that using (32)

C2∗ ? β = 0.

Therefore,

C2∗ ? α = C2∗
[
α(NC2) ? ÑC2

]
. (49)

Continuing with (48) we find that

∫

DΩ

div(u)dµ3 =

∫

∂Ω

?Ũ

=

∫

∂Ω

g(U,N∂Ω) ? ÑC2

=

∫

D∂Ω

u · ndµ2
∂Ω

(50)

which is the conventional divergence theorem. Equation (49) is used
in the penultimate step.
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Similarly, focussing on (46) we obtain the conventional Stokes’ theorem

∫

DΣ

curl(v) · nΣdµ2
Σ =

∫

Σ

(
ιNΣ

−1
? dṼ

)
? ÑΣ

=

∫

Σ

?
(
ÑΣιNΣ

−1
? dṼ

)

=

∫

Σ

?
(−1

? dṼ
)

=

∫

Σ

dṼ

=

∫

∂Σ

Ṽ

=

∫

[0,1]

(∂Σ)∗Ṽ

=

∫ 1

0

Va ◦ ∂Σ(σ)
d∂Σa

dσ
(σ)dσ

=

∫ 1

0

v(σ) · dr

dσ
(σ)dσ

=

∫

D∂Σ

v · dr

(51)

where Va = Ṽ (∂/∂xa) and r(σ) is the position vector that locates the
point labelled by σ on D∂Σ, i.e.

r(σ) = ∂Σa(σ)
∂

∂xa
.

5.4 Applications involving Stokes’ theorem on R3

Note the plethora of metric and Hodge operations that occur when
comparing conventional vectorial equations with their equivalent dif-
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ferential form equations. The reason is that we have insisted on re-
placing conventional vector field, for example u, with their differential
geometric vector field counterparts, for example U . However, this
is often not the best strategy to adopt. The formalism is at its most
powerful when it is recognized that many vectorial quantities are more
efficiently represented by differential forms. For example, if V is the
velocity of a fluid flow on R3 then it is natural to work with the vor-
ticity 2-form ω

ω = dṼ

rather than the vector field W

W = ?̃dṼ .

The vorticity Γ[Σ] across a 2-chain Σ is simply

Γ[Σ] ≡
∫

Σ

ω

=

∫

Σ

dṼ

=

∫

∂Σ

Ṽ

which shows that the vorticity is just the circulation around the 1-
chain ∂Σ.
Another nice example is to consider the electric field of an isolated
static point charge. Traditionally, one thinks in terms of an electric
field vector E and an electric potential Φ where E = −grad(Φ). Here,
it is more natural to think in terms of an electric differential 1-form
E = −dΦ (where E = Ẽ) on the 3-dimensional differential manifold
(M, g), M = R3 − {p} where p is the location of the point source.
That E is divergence-free means that

d ? E = 0 (52)
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Figure 3: A schematic diagram of the chains used in this section. The
image set of the 3-chain Ω is the shaded region. The boundary 2-chain
of Ω is ∂Ω = Σ1 + Σ2. The point p is not in M so there exist closed
2-chains that are not contractible to p.

and Laplace’s equation is obtained when we substitute E with −dΦ,

d ? dΦ = 0.

Let Ω be a 3-chain on M whose boundary 2-chain ∂Ω is ∂Ω = Σ1 +Σ2

where {Σ1, Σ2} are closed 2-cubes (see figure 3). Then
∫

Ω

d ? E =

∫

∂Ω

?E

=

∫

Σ1

?E +

∫

Σ2

?E

and so∫

Σ1

?E = −
∫

Σ2

?E.
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Since the normals to the images of the 2-chains Σ1 and Σ2 are oppo-
sitely oriented we conclude that

P [Σ] ≡
∫

Σ

?E,

is the same for all Σ topologically equivalent to Σ1. The Poincaré
lemma tells us that that ?E = dα on an open subset U ⊂M where α
is a differential 1-form on U . However ?E is not exact, i.e. cannot be
written dα where α is a differential form on all of M and so P [Σ] is
in general non-zero.
The number P [Σ] is known as the de Rham period of ?E over Σ and,
physically, it is the electric charge of the point p. In a spherical polar
chart (U , ψ) with p located at r = 0 the metric tensor has the form

g = dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θ.dϕ⊗ dϕ,

A solution to Laplace’s equation on M is

Φ(r, θ, ϕ) =
c

r

where c is a constant scalar. To see this, choose the orientation

?1 = +e1 ∧ e2 ∧ e3

where {e1, e2, e3} is the orthonormal co-frame

e1 = dr,

e2 = rdθ,

e3 = r sin θdϕ.
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Thus,

?dΦ = ?d
c

r
,

= − ?
c

r2
dr,

= − c

r2
? e1,

= − c

r2
e2 ∧ e3,

= −c sin θdθ ∧ dϕ

and so, as promised, d ? dΦ = 0 on M. The de Rham period of ?dΦ
over the 2-chain (Σ, dσ1∧dσ2) with components {r = r0, θ = πσ1, ϕ =
2πσ2} is

∫

Σ

?dΦ =

∫

Σ

−c sin θdθ ∧ dϕ

= −4πc.

Introducing the charge q ≡ −4πc of the source we see that

Φ(r, θ, ϕ) = − q

4πr

which is the electric potential of an electric monopole of charge q at
p.

6 Differential operators on tensor bun-

dles

So far the only differential operator that we have discussed is the
exterior derivative d on the bundle of differential forms. It is also very
useful to be able to differentiate arbitrary type tensors, which is the
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focus of this section. We will discuss two types of differential operators
on tensors bundles : the Lie derivative and linear connections. So
far we have only considered vector fields in terms of derivations on
F(M). Before we can discuss the Lie derivative we need to introduce
the notion of the flow of a vector field.

6.1 The push-forward map

Recall that a smooth map f : M→N between two manifolds M and
N induces the pull-back map f ∗ : ΛN → ΛM (see section 4.1). If f is
one-to-one then it also induces the push-forward map f∗ : TM→ TN
between the tangent bundles of M and N . Let X ∈ ΓTM be a
vector field on M and define the push-forward of X with respect to
f , denoted by f∗X, via

f ∗[α(f∗X)] = (f ∗α)(X)

where α ∈ ΓΛ1N is any differential 1-form on N . In particular if we
choose α = dh we find

f ∗[dh(f∗X)] = (f ∗dh)(X)

= d(f ∗h)(X)

= X(f ∗h)

but, on the other hand,

f ∗[dh(f∗X)] = f ∗[(f∗X)(h)]

and so we obtain the action of f∗X on any h ∈ F(N ) :

f ∗[(f∗X)(h)] = X(f ∗h).
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6.2 One-parameter families of diffeomorphisms

Let M be a differential manifold, V ⊂ M be an open subset of M
and I ⊂ R be an open interval about 0 ∈ R. Let ϕ be a map such
that

ϕ :I × V →M
(t, p) → q = ϕ(t, p) ≡ ϕt(p)

where, for each t ∈ I, ϕt is a local diffeomorphism (a smooth map with
smooth inverse) of V to another open subset of M. We demand that
for any pair t1, t2 ∈ I such that (t1 + t2) ∈ I

ϕt2 ◦ ϕt1 = ϕt1+t2

and

ϕ0(p) = p ∀ p ∈M.

Note that in particular ϕ−1
t = ϕ−t. The collection of maps {ϕt} is

known as a one-parameter family of local diffeomorphisms and induces
a curve (a 1-chain) Cp for each p ∈M

Cp : I →M
t → ϕt(p).

The push-forward Cp∗∂t (where ∂t ≡ ∂/∂t) when evaluated at t = 0
yields a tangent vector Xp ∈ TpM at p

Xp = Cp∗∂t|t=0.

Since ϕt is smooth the set {Xp} leads to the vector field X ∈ ΓTM
given by

X|p ≡ Xp
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and so a one-parameter family of local diffeomorphisms on M induces
a vector field on M. Conversely, given a vector field X ∈ ΓTM one
can generate a one-parameter family {ψt} of local diffeomorphisms of
M by solving for a set of integral curves {Cp} of X (also known as the
flow of X)

Cp : I →M
t → q = Cp(t)

Cp∗∂t = X

Cp(0) = p

and then defining

ψt(p) ≡ Cp(t).

With respect to a local chart (U , φ), with coordinates {xa}, the above
becomes

C∗p [dxa(Cp∗∂t)] = dCa
p/dt

= C∗p [dxa(X)]

= ξa ◦ Cp

where {ξa} and {Ca
p} are the components of X and Cp with respect

to (U , φ). Equations Cp∗∂t = X and Cp(0) = p translated into a
differential equation for ψ read

dψa

dt
(t, p) = (ξa ◦ ψ)(t, p)

subject to the initial condition

ψa(0, p) = xa
0

where xa
0 = φa(p) is the coordinate representation of p ∈ M with

respect (U , φ).
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6.2.1 Example

Let X ∈ ΓTM, dimM = 2, be the vector field

X = y
∂

∂x
− x

∂

∂y

with respect to a chart (U , φ) with coordinates {x, y}. An integral
curve C : [0, 1] →M of X is a solution to

C∗∂t = X

or, in componential form where {x = C1(t), y = C2(t)},
dC1

dt
= C2(t),

dC2

dt
= −C1(t)

which with the initial condition

C1(0) = a,

C2(0) = b,

has the solution

C1(t) = a cos(t) + b sin(t),

C2(t) = −a sin(t) + b cos(t).

Thus X induces a one-parameter family of local diffeomorphisms {ψt}
whose coordinate expressions are

ψ1
t (x, y) = x cos(t) + y sin(t),

ψ2
t (x, y) = −x sin(t) + y cos(t).
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6.3 The Lie derivative

The notion of one-parameter families of local diffeomorphisms of M
leads very naturally to a type-preserving derivation on tensor fields
known as the Lie derivative. Let {ϕt} be a one-parameter family
of local diffeomorphisms of M with p = ϕ0(p) and define the one-
parameter family of maps {ϕ̂t} by

ϕ̂tα = ϕ∗t α,

ϕ̂tX = ϕ−t∗X,

ϕ̂t(S ⊗ T ) = ϕ̂tS ⊗ ϕ̂tT

where α is a differential form, X is a vector field and S and T are
arbitrary type tensors on M. The Lie derivative LXT of a tensor T
at p ∈M with respect to the vector field X induced from {ϕt} is

LXT (p) ≡ lim
t→0

1

t
(ϕ̂tT − ϕ̂0T )(p). (53)

For example, for f ∈ ΓΛ0M (i.e. f ∈ F(M))

LXf(p) = lim
t→0

1

t
(ϕ∗t f − ϕ∗0f)(p)

= lim
t→0

1

t
{f [ϕt(p)]− f(p)}

= (Cp∗∂t)(f)|t=0

= Xf(p)

i.e.

LXf = Xf. (54)

It can also be shown that

(LXY )f(p) = X(Y f)(p)− Y (Xf)(p) (55)
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or

LXY = [X,Y ] (56)

where Y is a vector field and the commutator [X,Y ] ≡ XY − Y X is
known as the Lie bracket of X and Y . Let {xa} be the coordinates of a
chart (U , φ) onM with associated local coordinate basis {∂a = ∂/∂xa}
for ΓTM. Then

[X, Y ]f = X(Y f)− Y (Xf)

= ξa∂a(ζ
b∂bf)− ζa∂a(ξ

b∂bf)

= (ξa∂aζ
b − ζa∂aξ

b)∂bf

where X = ξa∂a and Y = ζa∂a and the last line is obtained because
∂a∂bf = ∂b∂af . Therefore, a coordinate expression for the Lie bracket
on U is

[X, Y ] = (ξa∂aζ
b − ζa∂aξ

b)∂b.

It can be shown that, when applied to differential forms, the Lie deriva-
tive has the representation

LXα = dιXα + ιXdα (57)

where α is a differential form on M. Equation (57) is known as Car-
tan’s identity. More generally, LX is a type-preserving

T ∈ ΓTp
qM⇒ LXT ∈ ΓTp

qM
derivation on tensor fields

LX(S ⊗ T ) = LXS ⊗ T + S ⊗ LXT, (58)

where S and T are arbitrary type tensors on M, that commutes with
contractions

LX [α(Y )] = (LXα)(Y )− α(LXY ), (59)
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where α is a differential 1-form and Y is a vector field onM, commutes
with the exterior derivative d

LXd = dLX

on differential forms on M and satisfies

[LX ,LY ] ≡ LXLY − LYLX

= L[X,Y ].

It turns out that (54), (56), (58) and (59) are enough to specify LX

uniquely : the Lie derivative is the unique type-preserving derivation
on tensor fields that commutes with contractions and satisfies (56).
Finally, the Lie derivative also commutes with push-forwards

ψ∗(LXY ) = Lψ∗Xψ∗Y

and pull-backs

ψ∗(Lψ∗Xα) = LXψ∗α

where ψ : M → N is a smooth one-to-one map between differential
manifolds M and N , X, Y ∈ ΓTM and α ∈ ΓΛN .

6.3.1 Example

Let {x, y} be the coordinates of a chart (U , φ) on a 2-dimensional
differential manifold M. Then

Lcos(y)∂x [sin(x)dy] = Lcos(y)∂x [sin(x)]dy + sin(x)Lcos(y)∂xdy

= cos(y)∂x[sin(x)]dy + sin(x)d(Lcos(y)∂xy)

= cos(y) cos(x)dy + sin(x)d[cos(y)∂xy]

= cos(y) cos(x)dy
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and

Lcos(y)∂x [sin(x)∂y] = Lcos(y)∂x [sin(x)]∂y + sin(x)Lcos(y)∂x∂y

= cos(y)∂x[sin(x)]∂y − sin(x)L∂y [cos(y)∂x]

= cos(y) cos(x)∂y − sin(x)L∂y [cos(y)]∂x − sin(x) cos(y)L∂y∂x

= cos(y) cos(x)∂y − sin(x)∂y[cos(y)]∂x

= cos(y) cos(x)∂y + sin(x) sin(y)∂x.

6.4 Linear connections on tensor bundles

So far we have introduced two important differential operators : the
exterior derivative d that acts on differential forms and the Lie deriva-
tive that acts on any tensor field. However, we do not as yet have
anything that resembles a “directional derivative” of tensors along
vector fields. For example, one often constructs the conventional vec-
tor field (u · ∇)v on R3 out of two conventional vector fields u and v
where

v = ai + bj + ck,

(u · ∇)v ≡ [u · grad(a)]i + [u · grad(b)]j + [u · grad(a)]k.

Let us define the operator D where D(u,v) ≡ (u ·∇)v and D(u, f) ≡
u · grad(f) where f is a scalar on R3. Note that D(fu,v) = fD(u,v)
i.e. D is linear in its first argument. Furthermore it obeys the Leibniz
rule on its second argument i.e. D(u, fv) = D(u, f)v+fD(u,v). We
already have a differential operator, the Lie derivative, that maps two
vector fields on M to another vector field on M. However, although
it obeys the Leibnitz rule

LX(fY ) = (LXf)Y + fLXY

it is not linear in its first argument since

LfXY = −LY (fX)

= −(LY f)X + fLXY.
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So, in order to discuss “directional derivatives” of tensor fields on
differential manifolds we need to introduce some new machinery.
A linear connection ∇ on a differential manifold M is a map

∇ : ΓTM× ΓTM→ ΓTM
(X, Y ) → ∇XY

such that

∇X(fY ) = (∇Xf)Y + f∇XY,

∇Xf = Xf,

∇fXY = f∇XY

where f ∈ F(M) and is extended to arbitrary type tensor fields by
demanding that it commutes with contractions

∇X [α(Y )] = (∇Xα)(Y ) + α(∇XY ),

where α ∈ ΓΛ1M, and is a tensor derivation

∇X(S ⊗ T ) = ∇XS ⊗ T + S ⊗∇XT

where S and T are tensors on M. Unlike the Lie derivative a linear
connection is, by definition, linear in its first argument. Furthermore,
the above properties are not enough to specify ∇ uniquely. There are
many maps that satisfy the defining properties of a linear connection.

6.4.1 Example

Let (U , φ) be a chart with coordinates {x, y} on a 2-dimensional dif-
ferential manifold M. A linear connection is fixed by giving its action
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on {∂x, ∂y}, say

∇∂x∂x = x∂y,

∇∂x∂y = 0,

∇∂y∂x = y2∂x,

∇∂y∂y = sin(xy)∂y,

and inducing its action on all other vector fields and arbitrary type
tensors by the fundamental properties of all linear connections. For
example, on the co-frame {dx, dy} dual to {∂x, ∂y}

(∇∂xdy)(∂x) = ∂x[dy(∂x)]− dy(∇∂x∂x) = −x

(∇∂xdy)(∂y) = ∂x[dy(∂y)]− dy(∇∂x∂y) = 0

so

∇∂xdy = −xdx.

Furthermore

∇∂x [cos(x)dy] = ∂x[cos(x)]dy + cos(x)∇∂xdy

= − sin(x)dy − cos(x)xdx.

6.4.2 Connection 1-forms

Every linear connection ∇ on an n-dimensional differential manifold
M has a set of n2 differential 1-forms {ωa

b}, known as connection
1-forms, associated with each basis {Xa} for ΓTM. They are given
by

∇XaXb = ωc
b(Xa)Xc. (60)

The fundamental properties of ∇ induce its action on the co-frame
{ea} dual to {Xa} :

(∇Xae
b)(Xc) = ∇Xa [e

b(Xc)]− eb(∇XaXc)

= −eb(∇XaXc)
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and so

∇Xae
b = −ωb

c(Xa)e
c. (61)

Connection 1-forms induced by different bases are related by

ω′ab = Λb
cωe

c

−1

Λe
a +

−1

Λc
adΛb

c (62)

where

X ′
a = Λa

bXb,

Xa =
−1

Λa
bX ′

b,

∇X′
a
X ′

b = ω′cb(X
′
a)X

′
c.

6.4.3 Torsion

Any linear connection and the Lie derivative can be combined to form
two important tensor fields called torsion and curvature. The torsion
operator T : ΓTM× ΓTM→ ΓTM induced by a linear connection
∇ on M is

TX,Y ≡ ∇XY −∇Y X − [X,Y ], (63)

where X,Y ∈ ΓTM. Since T can be shown to be linear in all argu-
ments,

TX+Y,Z = TX,Z + TY,Z ,

TX,Y +Z = TX,Y + TX,Z ,

TfX,Y = TX,fY = fTX,Y ,

where f ∈ F(M) and Z ∈ ΓTM, there must exist a type (2, 1) tensor
field T on M, called the torsion of ∇, given by

α(TX,Y ) = T (X, Y, α)
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where α ∈ ΓΛ1M. Given any frame {Xa} and dual co-frame {ea} on
M one can construct a set of n = dimM torsion 2-forms {T a} where

T = 2T a ⊗Xa (64)

and which, in terms of the connection 1-forms {ωa
b} associated with

{Xa} and its dual {ea}, can be shown to be

T a = dea + ωa
b ∧ eb. (65)

Equation (65) is known as Cartan’s first structure equation. It can be
shown that d and ∇ are related by

dα = ea ∧∇Xaα + T a ∧ ιXaα (66)

where α ∈ ΓΛM. A straightforward proof of (66) involves induc-
tion and begins by using (65) and (61) to verify (66) on 0-forms and
1-forms. That (66) holds on arbitrary degree differential forms then
follows by assuming that it holds on (p−1)-forms and using the prop-
erties of d and ∇ to show that it holds on p-forms.
A linear connection with vanishing torsion, i.e. T = 0, is said to be
torsion-free.

6.4.4 Curvature

Another object induced by a linear connection∇ onM is the curvature
operator R : ΓTM× ΓTM× ΓTM→ ΓTM

RX,Y Z ≡ ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z (67)

where X, Y, Z ∈ ΓTM. Like the torsion operator it can be shown to
be linear in all arguments. Therefore there exists a type (3, 1) tensor
field R called the curvature tensor of ∇ :

R(X,Y, Z, α) = α(RX,Y Z).
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Associated with any frame {Xa} and dual co-frame {ea} are n2 cur-
vature 2-forms {Ra

b} given by

R = 2Ra
b ⊗ ea ⊗Xb (68)

which are related to the connection 1-forms {ωa
b} by Cartan’s second

structure equation

Ra
b = dωa

b + ωa
c ∧ ωc

b. (69)

If M is equipped with a metric then one can construct the curvature
scalar R ∈ F(M)

R ≡ ιXbιXaR
a
b

where

Xa = ẽa. (70)

6.4.5 The Bianchi identities

The power and elegance of exterior differential calculus over general
tensor calculus is very clearly demonstrated when deriving the Bianchi
identities. These are canonical relationships that must be satisfied
by the curvature and torsion of any linear connection and are conse-
quences of (65) and (69). Taking the exterior derivative of (65) and
using d2 = 0 yields

dT a = d2ea + dωa
b ∧ eb − ωa

b ∧ deb

= dωa
b ∧ eb − ωa

b ∧ (T b − ωb
c ∧ ec)

= −ωa
b ∧ T b + (dωa

b + ωa
c ∧ ωc

b) ∧ eb.

Thus, using (69) we obtain Bianchi’s first identity

dT a + ωa
b ∧ T b = Ra

b ∧ eb. (71)
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Taking the exterior derivative of (69) leads to

dRa
b = d2ωa

b + dωa
c ∧ ωc

b − ωa
c ∧ dωc

b

= (Ra
c − ωa

d ∧ ωd
c) ∧ ωc

b − ωa
c ∧ (Rc

b − ωc
d ∧ ωd

b)

or

dRa
b + ωa

c ∧Rc
b − ωc

b ∧Ra
c = 0 (72)

which is Bianchi’s second identity. We could have derived these iden-
tities from the fundamental definitions of torsion and curvature, equa-
tions (63) and (67), by acting with∇ on them and judiciously antisym-
metrizing with respect to the various vector arguments. However, the
computations are considerably more complicated and nowhere near as
transparent as those just given.

6.4.6 Non-metricity

Let M be a differential manifold with metric tensor g and linear con-
nection ∇. The non-metricity Q of ∇ is the type (3, 0) tensor field

Q(X,Y, Z) ≡ (∇Xg)(Y, Z) (73)

where X, Y, Z ∈ ΓTM and if Q = 0 the linear connection is said to be
metric-compatible. It can be shown that the triple (g, T,Q) determines
∇ i.e. a linear connection is completely specified in terms of the metric,
torsion and non-metricity tensor fields. If ∇ is metric-compatible then
∇Xa [g(Xb, Xc)] = 0 if {Xa} is a frame where {gab = g(Xa, Xb)} are
constant, for example if {Xa} is orthonormal (see section 2.4.1). Then

g(∇XaXb, Xc) + g(Xb,∇XaXc) = ωd
b(Xa)gdc + ωd

c(Xa)gbd

= ωcb(Xa) + ωbc(Xa),

where ωab = gacω
c
b, and so

ωab = −ωba (74)

if ∇ is metric-compatible and {g(Xa, Xb)} are constant.
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6.4.7 Covariant exterior derivatives

A cursory examination of Cartan’s first structure equation (65) and the
Bianchi identities (71) and (72) suggests the introduction of an exterior
differential operator on the space of certain index-carrying differential
forms such as Ra

b and T a. Technically we want an exterior differential
operator on forms that take values in the bundle of linear frames. Let
ΩM(A) denote the set of index-carrying differential forms obtained by
contracting the tensor A, on M, with all frames {Xa} and their duals
in all possible combinations (including no contractions) that yields a
differential form. For example the set ΩM(α), α ∈ ΓΛ2M, contains
α itself, the indexed 1-forms {αa = ιXaα} and the indexed scalars
{αab = ιXb

ιXaα}. It also contains {α′a = ιX′
a
α} and {α′ab = ιX′

b
ιX′

a
α}

where {X ′
a} is a different frame to {Xa}. The curvature Ra

b and
torsion T a 2-forms are elements of ΩM(R) and ΩM(T ) respectively
(see equations (64) and (68)). Furthermore, any co-frame 1-form ea is
an element of ΩM(id) where id = ea ⊗Xa. However, ωa

b ⊗ eb ⊗Xa 6=
ω′ab ⊗ e′b ⊗ X ′

a in general (see (62)) and so a type (2, 1) tensor S
such that ωa

b = S(Xb, e
a,−) and ω′ab = S(X ′

b, e
′a,−) for all {Xa} 6=

{X ′
a} does not exist. Put another way, the connection 1-forms do not

transform homogenously under a change of frame.

The covariant exterior derivative D is a map between the spaces
ΩM(·). It follows a similar pattern to the coordinate-based covariant
derivative, often denoted by ; in the literature,

DAa...b
c...d ≡dAa...b

c...d + ωa
e ∧ Ae...b

c...d + · · ·+ ωb
e ∧ Aa...e

c...d

− ωe
c ∧ Aa...b

e...d − · · · − ωe
d ∧ Aa...b

c...e,
(75)

where Aa...b
c...d ∈ ΩM(A) and Ba...b

c...d ∈ ΩM(B) are frame-valued
differential forms whose indices are induced by {Xa} and {ωa

b} are the
connection 1-forms with respect to {Xa}. The . . . indicates omitted
indices and terms that follow the same pattern as those shown. For
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example

Dea = dea + ωa
b ∧ eb = T a,

DRa
b = dRa

b + ωa
c ∧Rc

b − ωc
b ∧Ra

c = 0,

DT a = dT a + ωa
b ∧ T b = Ra

b ∧ eb.

By inspecting (75) it can be shown that

D(Aa...b
c...d∧Be...f

g...h) = DAa...b
c...d∧Be...f

g...h+(−1)pAa...b
c...d∧DBe...f

g...h

where Aa...b
c...d ∈ ΩM(A) is a p-form and Ba...b

c...d ∈ ΩM(B).
If M possesses a metric g and ∇ is metric-compatible then

Dgab = 0

and indices can be “lowered” and “raised” through D with respect to
the metric components gab = g(Xa, Xb) and gab = g−1(ea, eb), e.g.

DRab = D(gacR
c
b) = gacDRc

b

6.4.8 Covariant derivatives, parallel transport and autopar-
allels

Let ∇ be a linear connection on an n-dimensional differential manifold
M. Let C be a curve in M parametrized by τ i.e.

C : [0, 1] →M
τ → p = C(τ)

and denote Ċ ≡ C∗∂τ . The covariant derivative of a vector field
X ∈ ΓTM along C is the vector field ∇ĊX and if

∇ĊX = 0 (76)
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then X is said to be parallel along C. With respect to a chart (U , φ)
with coordinates {xa} equation (76) has the form

∇ĊX = ∇Ċ(ξa∂a)

= (Ċξa)∂a + ξa∇Ċ∂a

= (Ċξa)∂a + ξaωb
a(Ċ)∂b

= [Ċξa + ξbωa
b(Ċ)]∂a

= 0

where {ξa = dxa(X)} are the components of X with respect to (U, φ)
and {ωa

b} are the connection 1-forms of ∇ associated with {∂a =
∂/∂xa}. As an ordinary differential equation

C∗[Ċξa + ξbωa
b(Ċ)] = C∗[(C∗∂τ )ξ

a + ξbωa
b(C∗∂τ )]

=
d(ξa ◦ C)

dτ
+ (ξb ◦ C)(C∗ωa

b)(∂τ )

=
d(ξa ◦ C)

dτ
+ (ξb ◦ C)(Γa

bc ◦ C)
dCc

dτ
= 0

where {Γa
bc = ωa

b(∂c)}. One can turn the argument around and solve
the well-posed initial value problem

dκa

dτ
+ (Γa

bc ◦ C)
dCc

dτ
κb = 0,

κa(0) = κa
0, (77)

where (κ1
0, . . . , κ

n
0 ) ∈ Rn, to obtain a vector field Y attached to C (i.e.

defined only on the image of C rather than the whole of M)

Y = (κa ◦
−1

C )∂a (78)

that is parallel along C. Clearly, (77) means that a choice of linear
connection establishes a map between the tangent spaces of M, i.e. it
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connects vectors at different points in M. An autoparallel of ∇ is a
curve C that is a solution to

∇ĊĊ = 0 (79)

i.e. an autoparallel of a linear connection is a curve whose tangent is
parallel along it. As a differential equation (79) reads

d2Ca

dτ 2
+ (Γa

bc ◦ C)
dCb

dτ

dCc

dτ
= 0.

6.4.9 The Levi-Civita connection

We now have a class of potential candidates for the conventional di-
rectional derivative (u · ∇)v on R3. Which linear connection should
we choose? As mentioned before, a linear connection is completely
specified in terms of metric, torsion and non-metricity tensors. We
have already commented that R3 as a differential manifold possesses
a natural global chart (R3, φ) with coordinates {x, y, z} and that, for
the purposes of vector analysis, we endow it with the metric

g = dx⊗ dx + dy ⊗ dy + dz ⊗ dz.

Thus, only the non-metricity and torsion remain to be specified. The
unique torsion-free metric-compatible linear connection on a differen-
tial manifold with a metric is known as the Levi-Civita connection.
It is this special connection that coincides with the conventional di-
rectional derivative on R3. Thus, the Levi-Civita connection on a
differential manifold (M, g) satisfies

∇X [g(Y, Z)] = g(∇XY, Z) + g(Y,∇XZ),

∇XY −∇Y X − [X,Y ] = 0

for any X, Y, Z ∈ ΓTM. Autoparallels of the Levi-Civita connection
are called geodesics.
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The vector field ∇XX, X ∈ ΓTM, has a nice expression in terms of
exterior calculus. Let AX be the differential operator

AX ≡ ∇X − LX

and note that AXf = 0 for f ∈ F(M). Hence

AX [X̃(Y )] = 0

= (AXX̃)(Y ) + X̃(AXY )

= (AXX̃)(Y ) + X̃(∇Y X)

= (∇XX̃)(Y )− (LXX̃)(Y ) +
1

2
∇Y [g(X, X)]

where the torsion-free and metric-compatible properties of ∇ have
been used and so, observing (57),

∇XX̃ = LXX̃ − 1

2
d[g(X, X)]

= ιXdX̃ +
1

2
d[g(X, X)].

(80)

In applications it is often useful to have an expression for the Levi-
Civita connection 1-forms {ωa

b} in terms of a co-frame {ea} with dual
frame {Xa} such that g(Xa, Xb) is constant. Referring to (65) we see
that

dea + ωa
b ∧ eb = 0 (81)

since ∇ is torsion-free. Acting with the interior operator on (81) yields

ιXadeb + ωbc(Xa)e
c − ωba = 0

where ea = X̃a and ωab = gacω
c
b which, combined with (74), can be

used to show that

ωab =
1

2

(
ιXb

dea − ιXadeb + ecιXaιXb
dec

)
. (82)
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With respect to the orthonormal co-frame

e1 = dx,

e2 = dy,

e3 = dz,

on R3 the Levi-Civita connection 1-forms vanish, since dd = 0, as do
the curvature 2-forms. Manifolds with Levi-Civita connections whose
curvature vanishes are said to be flat.
Old-fashioned coordinate-based methods of calculating curvature tend
to employ the Christoffel symbols, which are the components Γa

bc

of the Levi-Civita connection 1-forms based on a coordinate frame
{∂a}. In general it is computationally advantageous to use Levi-
Civita connection 1-forms based on an orthonormal frame. Since
ωab = −ωba with respect to an orthonormal frame {Xa} at most
n(n−1)/2 (n = dimM) calculations must be made to obtain {ωab}. In
general n2(n+1)/2 calculations must be made to obtain the Christoffel
symbols.

6.4.10 Example : differential geometry on the 2-sphere

Let us consider the differential manifold (S2, g). The metric on S2 can
be written locally

g = dθ ⊗ dθ + sin2(θ)dϕ⊗ dϕ

where 0 < θ < π and 0 < ϕ < 2π are the ranges of the coordinates
of a chart (U , φ) where U is S2 excluding a longitudinal line that joins
the two poles i.e. the limit points θ → 0 and θ → π. An orthonormal
co-frame on U ⊂ S2 is

e1 = dθ,

e2 = sin(θ)dϕ
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and has the dual orthonormal frame

X1 =
∂

∂θ
,

X2 =
1

sin(θ)

∂

∂ϕ
.

Thus

de1 = d2θ = 0,

de2 = d[sin(θ)] ∧ dϕ + sin(θ)d2ϕ = cos(θ)dθ ∧ dϕ = tan(θ)e1 ∧ e2

and so the Levi-Civita connection 1-form ω12 with respect to {X1, X2}
is

ω12 =
1

2

(
ιX2de1 − ιX1de2 + eaιX1ιX2dea

)

= − tan(θ)e2

= − cos(θ)dϕ

where e1 = e1 and e2 = e2 has been used which follows because
g(Xa, Xb) = δab. The other three Levi-Civita connection 1-forms are

ω21 = −ω12 = cos(θ)dϕ

ω11 = ω22 = 0.

The curvature 2-forms are

R12 = dω12 + ω11 ∧ ω1
2 + ω12 ∧ ω2

2,

= dω12,

= sin(θ)dθ ∧ dϕ,

= e1 ∧ e2
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and

R21 = −R12 = −e1 ∧ e2,

R11 = R22 = 0

so the curvature scalar is

R = 2ιX1ιX2R21

= 2.

Note that the final result is frame-independent and is valid over all of
S2 because the longitudinal line excluded from (U , φ) can be chosen
anywhere.

7 Newtonian continuum mechanics

Newtonian absolute time must be accommodated if we are to dis-
cuss Newtonian continuum mechanics on differential manifolds. One
method of accomplishing this is in terms of smooth tensor-valued maps
from an interval I ⊂ R into the space of tensor fields ΓTp

qM,

T : I → ΓTp
qM

t → Tt,

where t is the Newtonian absolute time. Denote the space of all such
maps by T

(q,p)
M and note the smoothness of T means that the derivative

∂tT of T ∈ T
(q,p)
M with respect to t

∂tTt ≡ lim
ε→0

1

ε
(Tt+ε − Tt)

is also an element of T
(q,p)
M as are all higher order derivatives of T with

respect to t. Operations defined on sections of the tensor bundle Tp
qM
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naturally induce operations on the elements of T
(q,p)
M . For example

(LXY )t = LXtYt

where X, Y ∈ TM ≡ T
(0,1)
M and so Xt, Yt ∈ ΓT1

0M = ΓTM. For
simplicity, although it is a slight abuse of language, we will refer to
the elements of T

(q,p)
M as type (q, p) tensor fields and elements of TM as

vector fields onM. Note that any bona fide tensor field S given onM,
i.e. S ∈ ΓTp

qM, corresponds to the element T ∈ T
(q,p)
M given by ∂tT =

0 and Tt = S. We will use the same symbol for corresponding elements
of ΓTp

qM and T
(q,p)
M . Similarly, let Λp

M be the space of smooth maps
from I into ΓΛpM and denote FM = Λ0

M. Again, we will call elements
of Λp

M differential p-forms on M and elements of FM scalar fields on
M and use the same symbol for elements in Λp

M corresponding to
ΓΛpM and those in FM corresponding to F(M). Note that ∂t and d
commute on differential forms in Λp

M i.e. ∂tdα = d∂tα for α ∈ Λp
M. In

the same way as with tensor-valued maps we introduce the space of
smooth p-chain-valued maps Cp

M. Thus, if c ∈ Cp
M then ct is, for each

t ∈ I, a p-chain on M.
In the Euler picture a continuous body can be modelled by a

manifold B ⊂ R3, dimB = 3, with the standard Euclidean metric
g ∈ ΓT0

2R3, a positive-definite scalar field ρ ∈ FB called the density, a
vector field V ∈ TB called the velocity and a Cauchy stress symmetric
tensor S ∈ T

(2,0)
B that describes its constitutive properties. A Cauchy

stress 2-form τX ∈ Λ2
M with respect to X ∈ TM is

τX = ?[S(−, X)]

where ?1 is an orientation for B. A vector field K ∈ ΓTR3 that satisfies

LKg = 0

is known as a Killing vector. Each K induces a 1-parameter family of
maps {ϕλ} called an isometry (a diffeomorphism from R3 to itself that
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preserves the metric). A complete set of isometries on R3 forms the
6-dimensional group of rigid rotations and translations of R3. With
respect to a global Cartesian chart with coordinates {x, y, z}

g = dx⊗ dx + dy ⊗ dy + dz ⊗ dz

a complete set of Killing vectors is

K1 = ∂x,

K2 = ∂y,

K3 = ∂z,

K4 = x∂y − y∂x,

K5 = y∂z − z∂y,

K6 = z∂x − x∂z

where {K1, K2, K3} generate translations and {K4, K5, K6} generate
rotations.

Cauchy’s balance laws for momentum and angular momentum can
be written as the single expression

d

dt

∫

Ω

ρṼ (K) ? 1 =

∫

∂Ω

τK +

∫

Ω

βK (83)

where Ω ∈ C3
B, K ∈ TR3 corresponds to a Killing vector K ∈ ΓTR3

and the body force 3-form βK ∈ Λ3
B is linear in its argument, i.e.

βfX = fβX and βX+Y = βX + βY , X, Y ∈ ΓTB, f ∈ F(B). For
example, if gravity is acting on B and g̃ ∈ ΓTB is the Newtonian
gravitational acceleration field then βX = ρg(K) ? 1. Each Killing
vector leads to a component of the conventional linear momentum or
angular momentum conservation laws. If Ω is chosen so that

V = [(∂tΩ
a
t ) ◦

−1

Ω t]
∂

∂xa
,
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where xa = Ωa
t (p) are the components of Ωt with respect to a chart

with coordinates {xa}, it can be shown that

d

dt

∫

Ω

α =

∫

Ω

(∂tα + LV α) (84)

where α ∈ Λ3
B. The chain Ω is said to be co-moving with the medium.

Conservation of mass is expressed as

d

dt

∫

Ω

ρ ? 1 = 0 (85)

which, using (84), becomes
∫

Ω

[∂tρ ? 1 + LV (ρ ? 1)] =

∫

Ω

[∂tρ ? 1 + dιV (ρ ? 1)]

=

∫

Ω

[∂tρ ? 1 + d(ρ ? Ṽ )]

= 0

where (57) and (27) have been used. Since this is true for any Ω ∈ C3
B

we obtain the local mass conservation law

∂tρ ? 1 + d(ρ ? Ṽ ) = 0. (86)

The left-hand side of equation (83) can be written

d

dt

∫

Ω

ρṼ (K) ? 1 =

∫

Ω

[∂tṼ (K) + LV Ṽ (K) + Ṽ (LV K)]ρ ? 1

where (84), (86) and ∂tK = 0 have been used. However,

Ṽ (LV K) = −Ṽ (LKV )

= −1

2
LK [g(V, V )]

= −1

2
K[g(V, V )]
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since K is Killing and using (80) we see that

−1

2
K[g(V, V )] = ∇V Ṽ (K)− LV Ṽ (K)

where ∇ is the Levi-Civita connection on R3. Hence

d

dt

∫

Ω

ρṼ (K) ? 1 =

∫

Ω

[∂tṼ (K) +∇V Ṽ (K)]ρ ? 1

and so using Stokes’ theorem (38) equation (83) becomes
∫

Ω

[∂tṼ (K) +∇V Ṽ (K)]ρ ? 1 =

∫

Ω

(dτK + βK)

which must hold for all Ω. Therefore we obtain the local version of
Cauchy’s balance laws

ρ[∂tṼ (K) +∇V Ṽ (K)] ? 1 = dτK + βK . (87)

7.1 Example : Hydrodynamics of perfect fluids

Let B be a Newtonian inviscid fluid. This means that the Cauchy
stress tensor is

S = −pg

where p ∈ FB is the pressure and the density ρ is a non-zero constant
(the fluid is incompressible). Without loss of generality we choose
ρ = 1. Thus, ∂tρ = 0 and dρ = 0 and so (86) becomes

d ? Ṽ = 0. (88)

The volume form ?1 depends only on the metric and so for each Killing
vector field K

LK ? 1 = 0

= d ? K̃
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where (27) and (57) have been used. Therefore

dτK = d[−p ? K̃]

= −dp ∧ ?K̃

= −dp(K) ? 1.

In the absence of external body forces βK = 0 and Cauchy’s balance
laws on B are

∂tṼ (K) +∇V Ṽ (K) = −dp(K)

which, since the translational Killing triad is a basis for ΓTR3, can be
written

∂tṼ +∇V Ṽ = −dp. (89)

Equations (88) and (89) are Euler’s equations. Probably the most use-
ful form of (89) is obtained by applying (80) to rewrite the connection
term

∇V Ṽ = LV Ṽ − 1

2
d[g(V, V )]

= ιV ω +
1

2
d[g(V, V )],

where ω = dṼ , to give

∂tṼ + ιV ω = −d
[
p +

1

2
g(V, V )

]
. (90)

Thus, for a steady (∂tV = 0) Newtonian inviscid fluid we have

ιV d
[
p +

1

2
g(V, V )

]
= 0
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since ιV ιV = 0 i.e. the scalar p + 1
2
g(V, V ) is constant along integral

curves of V . If the fluid is irrotational (dṼ = 0) then the Poincaré
lemma tells us that on some open subset U ⊂ B

Ṽ = dϕ (91)

where ϕ ∈ FU is a velocity potential. Substituting (91) into (90) yields
the unsteady Bernoulli equation

∂tϕ +
1

2
g(V, V ) = −p + c (92)

on U where c ∈ FU satisfies dc = 0.
Taking the exterior derivative of (90) yields

∂tω + dιV ω = 0

= ∂tω + LV ω

where d2 = 0 has been used. If Σ ∈ C2
B is a 2-chain that satisfies

V = [(∂tΣ
a
t ) ◦

−1

Σ t]
∂

∂xa

on the image of Σt, where xa = Σa
t (p), it can be shown that (c.f.

equation (84))

d

dt

∫

Σ

β =

∫

Σ

(∂tβ + LV β) (93)

where β ∈ Λ2
B and so

d

dt

∫

Σ

ω = 0

=
d

dt

∫

Σ

dṼ

=
d

dt

∫

∂Σ

Ṽ .
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The final equation indicates that the circulation Γ[C]

Γ[C] =

∫

C

Ṽ

around the closed 1-chain C = ∂Σ ∈ C1
B is conserved.

8 Differential forms on spacetime

LetM be a 4-dimensional spacetime equipped with a metric g and the
Levi-Civita connection ∇. With respect to any orthonormal co-frame
{e0, e1, e2, e3} on M,

g = −e0 ⊗ e0 + e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3.

A time-like vector field V ∈ ΓTM has the property g(V, V ) < 0, a
space-like vector field V has the property g(V, V ) > 0 and a null vector
field V is one such that g(V, V ) = 0. Free massive point particles are
modelled on time-like geodesics and light rays are modelled on null
geodesics on the spacetime manifold M. Using a time-like vector
Xp ∈ TpM at p ∈ M one can split the time-like subset of TpM into
two equivalence classes : a future directed class of time-like vectors
and a past directed class of time-like vectors. The equivalence class
[Vp] of future directed time-like vectors with representative Vp ∈ TpM
at p ∈M is

[Vp] = {Vp ∈ TpM; g(Vp, Xp) < 0}.

Whether or not it is possible to find a time-like vector field X ∈
ΓTM such that X|p = Xp for all p ∈ M depends on the topology of
M. If this can be accomplished M is said to be time-orientable. All
spacetimes considered in this article are assumed to be time-orientable.
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An observer on a spacetime M is a 1-chain C

C : [0, 1] →M
τ → p = C(τ)

whose tangent Ċ = C∗∂τ is future directed, time-like and normalized

g(Ċ, Ċ) = −1

i.e. C is parametrized by proper time τ .

8.1 Electromagnetism

Maxwell’s equations on M are the pair

d ? F = j,

dF = 0

where F ∈ ΓΛ2M is the Maxwell 2-form, j ∈ ΓΛ3M is an electric
current 3-form and ?1 ∈ ΓΛ4M is an orientation on M. A continuum
of electric charge with charge density ρe ∈ F(M) whose constituent
point particles follow integral curves of the future directed time-like
normalized vector field U ∈ ΓTM is represented by the current j =
ρe ? Ũ .
The closure of j

dj = 0 (94)

follows from the first Maxwell equation since d2 = 0. A space-like
3-chain Σ : [0, 1]3 → M is one whose normal VΣ, i.e. a vector field
such that

ṼΣ(Σ∗X) = 0



A primer on exterior differential calculus 153

for all X ∈ ΓT [0, 1]3, is a time-like vector field attached to the image
of Σ. The electric charge Q[Σ] of j across Σ is

Q[Σ] =

∫

Σ

j.

Let Ω be a 4-chain on M where ∂Ω = Σ1 − Σ2 + σ where Σ1 and Σ2

are two oppositely oriented non-intersecting space-like 3-chains and σ
is the rest of the boundary of Ω. Let {t, x1, x2, x3} be the coordinates
of a chart adapted to Σ1 and Σ2, i.e. where the images of Σ1 and Σ2

are the sets {p ∈ M; t(p) = t1} and {p ∈ M; t(p) = t2} respectively.
We require that j has compact support and vanishes on the image of
σ. Thus, equation (94) leads to

∫

Ω

dj = 0

=

∫

∂Ω

j

=

∫

Σ1

j −
∫

Σ2

j +

∫

σ

j

=

∫

Σ1

j −
∫

Σ2

j

and so the charges on the surfaces t = t1 and t = t2 are equal,

Q[Σ1] = Q[Σ2],

i.e. charge is conserved.
Let V ∈ ΓTM be a future directed time-like normalized vector

field. The electric EV and magnetic BV field 1-forms with respect to
observers that are integral curves of V are

F = −Ṽ ∧ EV − ?(Ṽ ∧BV )
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or

EV = ιV F,

BV = −ιV ? F.

Indeed, ẼΓ̇ and B̃Γ̇ are the electric and magnetic field vectors witnessed
by an actual physical observer modelled on an integral curve Γ of V .
A point particle with mass m and charge q is modelled by an observer
C : [0, 1] →M in the spacetime manifold M where

∇ĊĊ = − q

m
ι̃ĊF = − q

m
ẼĊ

The right-hand side of the above expression is the Lorentz force on C.
Finally, the Poincaré lemma tells us that the second Maxwell equation
can be solved on an open subset U ⊂M to give

F = dA

where A ∈ ΓΛ1U is a Maxwell gauge field 1-form. Therefore, on U
Maxwell’s equations simplify to

d ? dA = j.

8.2 Einstein’s equations

Let {Xa} be an orthonormal frame for TM. The Ricci 1-forms Pa ∈
ΓΛ1M with respect to {Xa} are

Pa = ιXb
Rb

a

where {Ra
b} are the curvature 2-forms with respect to {Xa}. Since ∇

is torsion-free the first Bianchi identity (71) is

Ra
b ∧ eb = 0



A primer on exterior differential calculus 155

and so we find that

Pa ∧ ea = 0 (95)

using Rab = −Rba (which follows from (69) and (74)). The Ricci 1-
forms induce a type (2, 0) tensor field Ric ∈ ΓT0

2M called the Ricci
tensor

Ric = Pa ⊗ ea

that, using (95), can be shown to be symmetric i.e. Ric(X,Y ) =
Ric(Y, X) for all X,Y ∈ ΓTM. The Einstein 3-forms Ga ∈ ΓΛ3M
with respect to {Xa} are

Ga = Rbc ∧ ιXa ? (eb ∧ ec)

= Rbc ∧ ?(eb ∧ ec ∧ ea)

and induce a type (2, 0) symmetric tensor field Ein ∈ ΓT0
2M called

the Einstein tensor

Ein = −1

2
? Ga ⊗ ea

= Ric− 1

2
Rg

All electromagnetic and matter fields contribute to the stress-energy
3-forms τa ∈ ΓΛ3M which couple to the geometry via the Einstein
equations

Ga = 8πτa. (96)

The stress-energy 3-forms are related to a type (2, 0) symmetric tensor
field T ∈ ΓT0

2M called the stress-energy tensor

τa = ?[T (Xa,−)]

with respect to which (96) can be rewritten

Ein = 8πT .
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8.2.1 Conservation laws induced by stress-energy tensors

Choose the orientation

?1 = e0 ∧ e1 ∧ e2 ∧ e3

and note that, for example,

?(e1 ∧ e2 ∧ e3) = −e0

because {e0, e1, e2, e3} is orthonormal. Therefore

D ? (e1 ∧ e2 ∧ e3) = −De0

= −de0 + ω0
a ∧ ea

= 0

by (65) because ∇ is torsion-free. More generally

D ? (ea ∧ eb ∧ ec) = 0

so using (72)

DGa = DRbc ∧ ?(eb ∧ ec ∧ ea) + Rbc ∧D ? (eb ∧ ec ∧ ea) = 0.

Therefore, referring to (96), the covariant exterior derivative of τa must
vanish :

Dτa = 0. (97)

Recall that since ∇ is metric-compatible index “lowering” and “rais-
ing” with respect to ηab = g(Xa, Xb) and ηab = g−1(ea, eb) commutes
with D.
We already introduced the operator AX = ∇X−LX where X ∈ ΓTM.
Note that AXY = ∇Y X, Y ∈ ΓTM, since ∇ is torsion-free. If (M, g)
possesses a Killing vector field K ∈ ΓTM, i.e. K satisfies

LKg = 0,
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we find that

AK [g(X, Y )] = (AKg)(X,Y ) + g(AKX,Y ) + g(X, AKY )

= g(∇XK,Y ) + g(X,∇Y K)

= 0

since AK annihilates scalar fields and ∇ is metric-compatible. Written
in terms of the covariant exterior derivative this reads

ιXaDKb + ιXb
DKa = 0 (98)

where Ka = g(K, Xa). Thus, introducing τK = Kaτa = ?[T (K,−)]
we find

dτK = DKa ∧ τa + KaDτa

= DKa(Xb)eb ∧ τa

=
1

2
[DKa(Xb) + DKb(Xa)]eb ∧ τa

where the final line follows because T is symmetric. Using (98)

dτK = 0

and so τK , like the electric current 3-form discussed earlier, is a con-
served current.

8.2.2 Example : Dust

A relativistic continuum modelled by the stress-energy tensor,

T D = ρṼ ⊗ Ṽ

where ρ ∈ F(M) is the mass-energy density seen by integral observers
of the time-like normalized future directed vector field V , is called dust.
The stress forms are

τD
a = ρVa ? Ṽ
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and so

DτD
a = DVa ∧ ρ ? Ṽ + Vad(ρ ? Ṽ ).

Let τa = τD
a , i.e. τD

a is the only contribution to the total stress-energy
τa. Then DτD

a = 0 and since D(V aVa) = 2V aDVa = 0 we find

d(ρ ? Ṽ ) = 0,

DVa ∧ ?Ṽ = 0

where the latter can be written

ιV DV a = ea(∇V V ) = 0

or

∇V V = 0

i.e. integral curves of V are geodesics on M.

8.2.3 Common stress forms

The real-valued scalar field ϕ ∈ F(M) with mass m satisfies the
Klein-Gordon equation

−d ? dϕ + m2ϕ ? 1 = 0 (99)

and gives the contribution

τKG
a =

1

2
(ιXadϕ ∧ ?dϕ + dϕ ∧ ιXa ? dϕ)− 1

2
m2ϕ2 ? ea

to the total stress-energy.
The Maxwell field F ∈ ΓΛ2M satisfies

dF = 0, (100)

d ? F = 0 (101)
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in vacuo. Its contribution to the total stress-energy is

τEM
a =

1

2
(ιXaF ∧ ?F − F ∧ ιXa ? F ) .

It is left as an exercise for the reader to show DτKG
a = 0 and DτEM

a = 0
when τa = τKG

a and τa = τEM
a respectively, subject to (99), (100) and

(101). Hint : Introduce the degree-preserving differential operator
LX ≡ DιX +ιXD on frame-valued differential forms and use LXae

b = 0
to show LXaα = ∇Xaα where α ∈ ΓΛM.

Summary

The calculus of exterior differential forms is an extremely powerful
alternative to conventional vector and tensor calculus. One can view
exterior calculus as a “calculus of integrands” since differential forms
can be immediately integrated to yield a coordinate-free result. We
discussed Lie derivatives and linear connections and demonstrated the
power of exterior differential calculus on numerous occasions, most
notably by giving an elegant derivation of Bianchi’s identities. We
briefly discussed how to formulate Newtonian continuum mechanics
and General Relativity in a coordinate-free fashion using differential
forms and gave some examples.

The amount of literature on the subject of differential geometry is
huge and varies quite considerably in depth. We have attempted to
summarize the important concepts with applications in mind rather
than the underlying mathematical structure. For a comprehensive
mathematical account of the foundations of differential geometry see
[7] and for a serious introduction to fibre bundle theory see [9]. The
other references on differential geometry given in the bibliography are
less mathematically demanding. The traditional reference on the topic
of differential forms as an alternative to vectors on R3 is [6]. A similar
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reference to [6] is [10]. Comprehensive and accessible introductions to
differential geometry are given in [1] and [4]. Applications of exterior
calculus to topics in classical mechanics are given in [2]. A compre-
hensive account of the use of differential forms in spacetime physics is
given in [3] from which some of our examples stem. Another good ref-
erence containing physical applications is [8]. These notes have been
strongly influenced by [3], [5], [2] and [1]. The conventions used here
are mostly those in [3].

Exterior differential calculus has many more applications in both
physics and mathematics than can be summarized in a single docu-
ment. It is hoped that this article might stimulate its use in novel
continuum mechanical studies.
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Prvi kurs spoljašnjeg diferencijalnog računa

UDK 514.753, 514.82, 530.12, 537.6, 532.59

Ovaj uvod u spoljašnje diferencijalne forme na diferencijalnim mno-
gostrukostima je orijentisan, pre svega, na pedagoški pristup i primenu
na konkretne probleme. Teorema Stokes-a, Lie-ov izvod, linearne
koneksije sa njihovom krivinom, torzijom i nemetričnošću se diskutuju.
Dati su brojni primeri uradjeni ovom metodom i detaljna uporedjenja
sa odgovarajućim tradicionalnim vektorskim metodom čine značajan
deo ovog rada. Posebno vektorski račun na R3 je izražen pomoću
spoljašnjeg računa te se tako tradicionalne teoreme Stokes-a i diver-
gencije zamenjuju snažnijim spoljašnjim izrazom teoreme Stokes-a.
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Primeri iz klasične mehanike kontinuuma kao i fizike prostor-vremena
se diskutuju i izvode jezikom spoljašnjih diferencijalnih formi. Bro-
jne prednosti ovog računa u odnosu na tradicionalnu ”mašineriju” su
naglašene tokom čitavog izlaganja.


