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Abstract

In this paper, concerned to the study of continuous deforma-
tions of material media using some tools of modern differential
geometry, a moving frame of Frenet type along the orbits of an
one-parameter group acting on a so-called ”trace-manifold”, M ,
associated to the deformations, is constructed. The manifold M is
defined as an infinite union of non-disjoint compact manifolds, gen-
erated by the consecutive positions in the Euclidean affine 3-space
of a body-manifold under deformations in a closed time interval.
We put in evidence a skew-symmetric band tensor of second order,
ω, which describes the deformation in a small neighborhood of any
point along the orbits. The non-null components ωi,i+1, (i =1,2),
of ω are assimilated as like curvatures at each point of an orbit in
the planes generated by the pairs of vectors (ẽi, ẽi+1) of a moving
frame in M associated to the orbit in a similar way as the Frenet’s
frame is. Also a formula for the energy of the orbits is given and
its relationship with some stiffness matrices is established.

1 Introduction

The relationship between differential geometry and material structures
is from a time well known. It was meanwhile underlined by consistently
using of the notion of body-manifold, i.e. a material object considered
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as an oriented, connected and compact 3-dimensional submanifold of the
Euclidean affine space E3. A material medium (body) B is placed in
the Euclidean affine 3-space E3 by some regular embeddings, that is by
injective differentiable mappings of rank 3 at every particle of B. A
mapping p : B → E3 with the properties asked above is said to be a
placement. Let P(B) be the set of all placements of B in E3. A class
Ck(B)(⊆ P(B)) of placements is said to be admissible if for any p, p′ ∈
Ck(B) the images p(B)

.
= M and p′(B)

.
= M′ are both Ck- submanifolds

of E3 and p′ ◦ p−1 is a diffeomorphism of class Ck, (k ≥ 1), of p(B) onto
p′(B). The images of the body particles by admissible placements are
called admissible positions.

Further, for the geometry of continuous material media, we have in
view only placements of P(B) in accordance with the following hypothesis
([13]):

H1. All placements of a material medium in an Euclidean affine space
are admissible.

So, for p ∈ Ck(B), if λ ∈ B is a particle, p(λ)
.
= P will denote its

admissible position, and their union M = {p(λ) | λ ∈ B} can be endowed
with a differentiable (even Riemannian) manifold structure.

Endowed with a real 3-dimensional differentiable manifold structure,
an image M by the elements of Ck(B) is called a body-manifold (see[1]
for supplementary conditions).

The considered above embedding is regular, that is B and its image
M(⊂ E3) are homeomorphic, because the body-manifolds in our accep-
tance (see [1]) are compact manifolds. However, if B is a non-compact
differentiable manifold there exists an open neighborhood U of every
point of B such that the restriction p | U is a regular embedding ([9]).

In order to describe a body-manifold deformation we consider the
placement p to be ”of reference” and choose another placement p̃ of B in
E3 as a new element of Ck(B). Let us denote by M and M̃ the images of
B by p and p̃, respectively.

By a deformation of M we mean a continuous differentiable mapping
M 7−→ M̃. Thus, the image of a body-manifold by a deformation is ob-
tained by the composed mapping δ = p̃ ◦ p−1. Taking into account the
fact that both p and p̃ are bijective mappings, as regular embeddings, it
results that δ : p(B) → p̃(B) is bijective; this mapping is usually called
displacement of the body-manifold points in E3. The displacement δ is
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not necessarily an isometry of E3, but, in virtue of the enumerated above
properties, it is a transformation of the domain of E3 occupied by M into
another domain occupied by M̃ by composing some of the following ele-
mentary transformations (see [10]): translations, rotations, and stretches;
each of them defines an elementary state of local deformation of the con-
tinuum. However, by superposition can also be considered rigid-body
motions, compressions, twisting, etc.

Starting with the next section we will have in view only deformations
with respect to a time interval, that is the development in time of a
body-manifold deformation.

2 One-parameter group of transformations

associated to a deformation

Let us consider an one-parameter family of displacements ∆I = {δt :=
pt ◦ p−1 | t ∈ I}, (p0 = p) where t ∈ I(⊂ R) is a time variable on an
open interval I containing 0(∈ R) and {pt}t∈I is a family of admissible
placements of B, such that pt(λ) designates the position of the image of
λ ∈ B in E3 at the moment t. We say that the family of displacements
∆I = {δt | t ∈I} defines a proper deformation φ of M if for at least one
t ∈ I and for at least one pair of points (P, P′) ∈M×M we have d(P, P′) 6=
d(δt(P), δt(P

′)), where d is the distance function in E3. Otherwise, φ is a
motion of M in E3. So, with the help of the family ∆I one can describes
any deformation φ : M → M̃ (see [2]). Here φ must be understood not
as much as a description of the body state after deformation but as a
mapping describing it continuously during the deformation process.

Thus, the image by φ of any point P ∈ M is obtained as an infinite
union of the consecutive positions of P by δt for all t ∈ I. This will be ex-
plained below more precisely by introducing of a group of transformations
acting on a differentiable manifold.

So, if Mt denotes the image by the placement pt of the body B at the
moment t, the union M= ∪t∈IMt can be endowed in a natural way with
a differentiable manifold structure.

This is obtained as follows:
Consider for each t ∈ I a differentiable atlas (Ut,α, ht,α)α∈A on the

submanifold Mt of M (with embedding given by inclusion), such that
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ht,α, (for all α ∈ A - a family of indices) map the open sets Ut,α ⊂ Mt

on some open sets Dt,α ⊂ R3 and ∪(t,α)∈I×AUt,α =M. Then, the union
of these atlases for all t ∈ I is a differentiable atlas on M, defining the
differentiable manifold structure on it. We say that M is a time deformed
trace-manifold.

In [2] and [3] were studied deformations when M and M̃ are looked as
submanifolds of M . Namely, M = M0 (at the moment t = 0) contains
all the reference positions p0(λ)

.
= P of the particles λ of B in E3.

Now we associate to M an one-parameter group of transformations
as follows.

Assume M corresponds in the previous definition to a symmetric
(with respect to 0) closed subinterval of I, [−ε, ε] ⊂I, and we restrict to
it the family of displacements considered above, as

∆ε = {δt = pt ◦ p−1}t∈[−ε,ε], (1)

where p, pt ∈ Ck(B) are the reference placement and a current placement
in E3 of a body B, respectively, while pt(B) = � for t ∈ I\[−ε, ε].

Now we can prove the following assertion:
If for t = 0, M0 = M = p(B), and for every s ∈ [−ε, ε] chosen such

that | s + t |≤ ε we define ”the consecutive displacement δs of δt ” acting
on the points of the submanifold pt(B) = Mt(⊂ E

3) by

δs = ps+t ◦ p−1
t (2)

then ∆ε forms an one-parameter group of transformations on the differ-
entiable manifold M= ∪t∈IMt with respect to the product of consecutive
displacements.

Indeed, first we observe that the consecutive displacement δs of any
displacement δt∈ ∆ε also belongs to ∆ε. In virtue of their definitions, δs

and δt are both differentiable mappings on Mt and M, respectively. Then
δs ◦ δt is a differentiable mapping on M and we have

(δs ◦ δt)(P) = δs(δt(P)) = δs(pt(p
−1(P))) = δs(pt(λ)) = δs(Pt) =

= (ps+t ◦ p−1
t )(Pt) = ps+t(λ) = Ps+t = δs+t(P),

for every P = p(λ), λ ∈ B. It yields δs ◦ δt = δs+t.
For t = ε the consecutive displacement of δs are all displacements

δs ∈ ∆ε which correspond to s ∈ [−ε, 0].
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δ0 is the identity transformation on each submanifold Mt because, if
t = 0 on M0 = M, δ0 = p0 ◦ p−1 = IdM and for t 6= 0, δ0 = p0+t ◦ p−1

t ,
on Mt we have δ0(Pt) = pt(p

−1
t (Pt) = pt(λ) = Pt, that implies δ0 = IdMt

.
This ends the proof. But, we also have to remark:

Remark 1 ∆ε is a subgroup of ∆R when I is extended to R. But only
the group ∆R is isomorphic with the group (R, +).

Remark 2 In the previous theorem to the real parameter t ∈ [−ε, ε] it
corresponds a time parameter t∗ ∈ [0, 2ε] , defined by

t∗ =

{

t, t ∈ [0, ε]
ε− t, t ∈ [−ε, 0]

. (3)

We also can show that:
If M = p(B) and M̃= p̃(B) are two body-manifolds obtained by em-

bedding of a body B in the Euclidean affine space with the help of two
placements p and p̃(∈ Ck(B)), respectively, there exists an one-parameter
group of transformation on the differentiable manifold M = ∪t∈IMt de-
scribing any deformation φ : M→ M̃ , where M and M̃(⊂M) are two
submanifolds obtained for some t ∈ I and {Mt} are the body images by
the placements of the family {pt}t∈I .

Indeed, let φ(t) be the corresponding deformation of M at the moment
t in a time interval. Then, φ(t)(M) = Mt(⊂M ) is the deformed body-
manifold at the moment t.

We have to show: φ(t) = δt for δt ∈ ∆ε.
The orbit of the point P(∈M) by the group is defined by the formula

OrbP := {δt(P)|t ∈ [−ε, ε]} (4)

and it is obtained with the help of immersion

CP: [−ε, ε]→M , such that CP(t) : = δt(P), (δt ∈ ∆ε).

It is an orbit segment of OrbP by the group ∆R.
We can associate to ∆ε a differentiable vector field X on M , defined

as usual by (see, for example, [9])

XPf =
df(δt(P))

dt
|t=0
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for every differentiable function f : OrbP→ R.
The field X defined by the group ∆ε is complete, and it is the only

one field on M defined by ∆ε with such a property. The integral curves
of X in M are the orbits of the points of M by the elements of ∆ε, that
is X(CP(t)) = dCP(t)/dt, with CP(0) = P. So, the point P(∈ M) has
not another orbit in M than {CP(t) | t ∈ [−ε, ε]}. Because φ and δt are
both diffeomorphisms, this implies P̃ = φ(P) must belong to OrbP for all
t ∈ I.

Let t = ε be the corresponding value of the final position P̃ of P
with respect to the deformation φ as a point of {CP(t) | t ∈ I}. Thus,
P̃ = δε(P), that shows φ(ε) = δε.

To finish the proof it is enough to repeat the previous argument for
an arbitrary intermediate position Pt(∈ Mt) of P with respect to the
deformation φ(t) for t ∈ [−ε′, ε′], with ε′ < ε. We will obtain again Pt ∈
OrbP and φ(ε′) = δε′ for t = ε′. This ends the proof.

Remark 1 In order to describe only just finite deformations M → M̃

we restricted the group action to a symmetric interval [−ε, ε] ⊂ R, such
that its right half interval [0, ε] corresponds to a continuous differentiable
deformation, while [−ε, 0] corresponds to the relaxation of body from the
final state to the initial one when the external loads that produced the
deformation are eliminated.

The point P ∈ M, defining the reference position in E3 of a particle
λ ∈ B, is called the starting point (origin) of its orbit in M by the group
∆ε, denoted OrbP, in virtue of the relation CP(0) = P. Then P̃ = φ(P)
will be the end point of this orbit, according to the relation P̃ = δε(P) (in
the previous theorem), which implies CP(ε) = P̃.

So, we also can prove that:
The manifold M = ∪t∈IMt is a disjoint union of orbit segments of the

one-parameter group of displacements ∆ε obtained from ∆I by restriction
to the closed subinterval [−ε, ε] ⊆I, that is

M = ∪P∈MOrbP (5)

Indeed, it is known the fact that if Q is a point of the orbit of P by the
group ∆R, i.e. if Q ∈ OrbP, then OrbQ = OrbP.
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On the other hand, the meaning of the relation (2) in the first theorem
is that for t ∈ I�[−ε, ε] the body B is not deformed anymore. So, Mt is
not empty only for t ∈ [−ε, ε].

Thus, according to the previous consideration, each point Q of the
undeformed body-manifold M(⊂ E3) may be considered as the starting
point of an orbit in M by the group ∆ε. To underline this assertion we
observe that:

(i). If Q ∈ OrbP, then there exists a positive number t ∈ [0, ε] such
that CP(t) = Q and we successively have

CQ(0) = δ0(Q) = δ0(CP(t)) = δ0(δt(P)) = δt(P) = CP(t) = Q,

which shows Q is the starting point of an orbit segment, OrbP ⊂ M .
Analogously, the end point of OrbP is Q̃.

OrbP and OrbQ have common points excepting the arcs
←→
PQ and

←→
P̃Q̃

of CP and CQ, respectively.
(ii). If Q /∈ OrbP, then OrbQ ∩ OrbP = ∅ , and there is an orbit of

Q, CQ, with Q as a starting point for OrbQ, that is CQ(0) = Q. This
follows by replacing P in the statements with any other point, Q, of M ,
as reference position of a body particle.

Similarly will be treated the case when P ∈ OrbQ; then we refer again
to (i). This ends the proof.

3 The vector field of displacements

With the help of the immersion CP : [−ε, ε] → M , defined by CP(t) =
δt(P)

.
= Pt, for all δt ∈ ∆ε, we obtain the orbits of the points P ∈Mt=0,

as OrbP = CP([−ε, ε]). Let c be one of these curves in M , which corre-
sponds to a restriction of CP to the positive semi-interval [0, ε] and de-
scribes deformation (in the ”direct sense”); the remaining negative semi-
interval describes relaxation, in the elastic cases.

An analytical parametric representation of c (in its direct sense) can
be obtained if we choose a local coordinate system in a neighborhood
U(⊂ M) of P, as {ui ◦ h}, (i = 1, 2, 3), where (U, h) is a local chart on
M, and ui are the local coordinate functions. The mapping h, that maps
the open sets Ut,α, of M onto homeomorphic images Dt,α, in R3 for all
(t, α) ∈ I×A, is nothing else than passing to the coordinates of points of
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M by means of the position vectors in R3 with respect to an orthonormal
frame of this space. Thus, let us introduce the coordinates of the starting
point P and of a current point Pt of the orbit c by h(CP(0)) = h(P)

.
= x

and h(CP(t)) = h(Pt)
.
= x̄. Assume x = (x1, x2, x3) and x̄ = (x̄1, x̄2, x̄3)

with respect to the considered above frame.
Now we denote by vi= x̄i− xi, (i = 1, 2, 3), the components of the

related vector vP =
−→
PPt which describes the displacement of the point

of P(∈ M) in E3 at the moment t; it is called displacement vector of
deformation.

Thus, the (parametric) equations of c are:

ui(x̄) = x̄i(t), (i = 1, 2, 3), (6)

of which functions in the right-hand side of the equalities are

x̄i(t) = xi + vi(x1, x2, x3, t), (i = 1, 2, 3), (7)

with the initial conditions and that defines the second end point

t = 0 : vi(x, 0) = 0 and t = ε : vi(x, ε) = ṽi (8)

Because x = (x1, x2, x3) gives here the coordinates of the point P(∈

M ⊂E3), the related vector vP =
−−→
PPt, of components vi, permits us to

consider the associated mapping

v : Ω× [0, ε]→ R3, defined by v(x, t) := (v1, v2, v3),

which is said to be the displacement vector field ; here Ω = ∪α∈AD0,α, (t ∈
[0, ε]), is a bounded domain of R3 with boundary ∂Ω.

Finally, we observe that the deformation φ can also be looked upon,
equivalently, as a diffeomorphism between two bounded domains of R3,
Ω and Ωt, (t ∈ [0, ε]), that is φ ∈ C1(Ω, R3). So, this deformation is just
described by the equations (7) of the orbits of ∆ε in M . But, for a more
accurate approach of the ”local deformation study” there are necessary,
in addition, many other physical and geometrical elements. One of them,
known as a main element of any deformation, is the deformation gradient.
It is introduced as a continuous mapping

F := ∇φ ∈ C0(Ω, M3×3(R)), defined by F(x) := Fx,
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where

Fx =





1 + v1
,1 v1

,2 v1
,3

v2
,1 1 + v2

,2 v2
,3

v3
,1 v3

,2 1 + v3
,3



 , (vi
,j =

∂vi

∂xj
), (9)

is the matrix of the deformation gradient, with all entries computed at
the point x. The geometric meaning of the deformation gradient can be
observed in the next section.

4 Moving frames associated to one - pa-

rameter groups

We associate to ∆ε a moving frame consisting in a collection of three
differentiable vector fields on M , {X̄1, X̄2, X̄3}, such that the vector fields
are defined along to c as follows.

X̄1 is the field of which integral curves in M are the orbits of the
points of M by elements of ∆ε:

X̄1(CP(t)) =
dCP(t)

dt
, CP(0) = P. (10)

Thus, with respect to a local coordinate system we expressed it under
the form

X̄1 = Fx ·X1 (11)

where X1 and X̄1 denote the column-matrices of derivatives dxi/dt and
dx̄i/dt, respectively, while the matrix Fx is the deformation gradient ma-
trix at the position x of the point P; this is the matrix of the tangent
mapping φ∗: TP(M)→ Tδt(P)(Mt), i.e. [φ∗] = Fx, associated to φ.

Now we consider the assignment (along OrbP) δt(P) � f1 = βX̄1,
with β = 1/||Ċ(t)||- the so-called ”speed factor”.

The remaining two vector fields X̄2 and X̄3 along c = OrbP are de-
fined by

X̄k = C
(k)
P (t)−

k−1
∑

j=1

〈C
(k)
P (t); fj〉fj, (k = 2, 3) (12)
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where fj = βjX̄j, (βj = 1/ < X̄j; X̄j >1/2), and all the vectors are
considered at δt(P). We also define f3 := β3X̄3, (βj = 1/||X̄3||), and, so,
we obtain a distinguished moving frame of Frenet type along OrbP.

This will serve to the study of the local behavior of the orbit c in a
neighborhood of a current point δt(P) and, so, will provide an information
about the body local deformation. Naturally, it will be not yet complete
because of the absence of the body material properties, such as elastic
constants, etc., which will appear below in 6. and in 7.

5 The components like curvatures of a de-

formation

We assume the components of the displacement vector v and their first or-
der derivatives with respect to t(∈ [0, ε]) are small and we neglect squares
and products of these quantities in comparison with their first powers.
With respect to such an approximation in the classical (infinitesimal)
theory of elasticity, the covariant strain tensor becomes ([8], p.149)

γij =
1

2
(vi|j + vj|i) (13)

But, generally, it is introduced by the relation

γij =
1

2
(g̃ij − gij), (14)

with the metric tensors defined by gij =< ei; ej > at the point P and by
g̃ij =< ẽi; ẽj > at δε(P) of the original and strained bodies, respectively,
where {ei} and {ẽi} form two bases at corresponding points in E3.

If we denote by x = (xi) and x̄ = (x̄i) the position vectors of the
origin and of a current point of an arbitrary orbit c of the group ∆ε,
respectively, the unit tangent vector at δt(P) ∈ c, given by the relation

f1 = e1 + β
dv

dt
, (β = 1/||Ċ(t)|| =

dt

ds
), (15)

is obtained by the differentiation with respect to arc length from the
displacement equation at a current point:

x̄ = x + v. (16)



On the trace-manifold generated by the deformations of a ... 21

Computing the partial derivatives with respect to xi, (i = 1, 2, 3), from
(16) we obtain the vectors

ẽi = ei + v,i, (17)

which defines a moving frame in M along to the orbit c. We observe
that (ei) is the standard basis at P, and, so gij = δij. Thus, the unit
vector e1 in (15) is one and the same with the first vector of this basis.
Now computing the tensor g̃ij, for the linear approximation of the strain
tensor, with (14), in the plane (i, j) at δt(P) we have

γij =
1

2
(< ei;v,j > + < ej;v,i >). (18)

Let us consider the skew-symmetric covariant tensor, associated to
the previous one, defined by

ωij =
1

2
(< ei;v,j > − < ej;v,i >) (19)

Now we define a tensor ω of which non-null components are only
ωi,i+1 = −ωi+1,i, (i = 1, 2), given by the formulas (19), and we will call it
tensor like curvature of the orbit OrbP projected on the planes generated
by the pairs of vectors ( ẽi,ẽi+1) of a moving frame in M associated to
the orbit .

This can be explained by the similitude of the scalar components of the
tensor ω with the coefficients (that define curvatures, [12]) in the Cartan’s
equations associated to the Frenet’s moving frame {C(t); f1, f2, f3} along
a curve C in E3:

Ċ(t) =
∑

i
αi(t)fi(t)

ḟj(t) =
∑

i
ωi

j(t)fi(t),

where the coefficients of the second equation are given by the scalar prod-
ucts ωi

j = ḟi · fj(= −ωj
i ) and satisfy the condition ωi

j = 0, when j > i + 1.
Also we have αi = 0, for i > 1. In order to compute the components (19)
of ω, we will start with the sums

γij + ωij =< ei;v,j > (20)
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and we will express the differential of the displacement vector in terms
of covariant derivatives. So, if we consider the differential dv = v,jdxj,
having in view the formula v,j =< ei;v,j > ei consistent with respect to
an orthonormal basis, we can write it under the form

dv =
3

∑

i,j=1

(γij + ωij)dxjei. (21)

On the other hand, we also have dv = vi|jdxjei. Here the components
of the differential are covariant derivatives of the components of v, that
is

vi|j = vi
,j + Γi

rjv
r (22)

where Γi
rj are the Christoffel symbols of second kind with respect to the

coordinate system (x1, x2, x3).
Thus, we have, from (21) and (22),

γij + ωij = vi|j (23)

and combining (23), (19), (20) and (13) it results for the like curvature
tensor components the following expressions :

ωij =
1

2
(vi|j − vj|i), (i, j = 1, 2, 3). (24)

According to our definition of ω, we assume that the considered above
small deformations are symmetric with respect to the plane (i = 1, j = 3).
Then ω13 = 0, and we can associate to the deformation the following
skew-symmetric matrix

Ω =





0 ω12 0
−ω12 0 ω23

0 −ω23 0



 (25)

where ω12 and ω23 measure the small ”deviations” of the orbit projections
on the planes generated by the pairs ( ẽ1, ẽ2) and ( ẽ2, ẽ3) from the di-
rections of ẽ1 and ẽ2, respectively. Finally, we remark that in the cases
of orthogonal systems of curvilinear coordinates (x1, x2, x3) at δt(P) in
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the manifold M the covariant derivatives can be replaced by the usual
ones, and the matrix of components of the tensor ω can be obtained as
half of the difference between the deformation gradient matrix and its
transposed :

2Ω = Fx − F T
x

. (26)

6 Metric structure of a deformed body -

manifold

Here we establish the following result:
Assume the body-manifold M is endowed with a Riemannian metric

g whose components with respect to a local coordinate system {xi}, (i =
1, 2, 3), on an open set U ⊂M by the entries of the matrix D of elastic
constants of the body is defined.

Then, the Gram matrix G̃ defining the metric structure of the tangent
spaces to the deformed body, TP̃(M̃), at image points by a deformation
φ : M→ M̃ is of the form

G̃ = F−T
x
·D · F−1

x
, (27)

where Fx denotes the deformation gradient matrix at x = (xi)(∈ R3),
which is the image of the point P ∈ U with respect to a local cart (U, h)
on M.

First we observe D is a symmetric nonsingular matrix of size s × s,
(s = 2, 3, 6, . . .). We can prove, it is also positive definite for many classes
of body-manifolds. For instance, if we fix s = 3,

D =





λ + 2µ λ λ
λ λ + 2µ λ
λ λ λ + 2µ



 ,

where λ and µ are the elastic constants of Lame:

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
,

and, for ν < 1/2, all the corner minors of D will be positive.
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So, a body-manifold M corresponding to such a matrix D of elastic
constants can be endowed with a Riemannian structure; otherwise, we
may introduce a pseudo-Riemannian structure on it.

Now we consider a bijective differentiable mapping φ : M → M̃ of
class Ck, (k ≥ 1), that is a deformation of M.

At each point P of an open set U ⊂M we join to M its tangent space
TP (M) whose Euclidean structure by the elements of D is defined. Let
(ei) be the corresponding basis of TP (M). The deformed basis (ẽi) of
TP̃ (M̃) at the end point of the orbit c of P in the trace-manifold M is
connected with the initial one by the relation

Gei = ẽi, (i = 1, 2, 3), (28)

where G = x̄i
,jei ⊗ εj is the deformation gradient tensor of type (1,1),

G : TP (M)→TP̃ (M̃), of coordinates x̄i
,j = δi

j + vi
,j ; here εj denotes the

covectors of ei (see, for instance, [1], pp.20-21).

From this it results the coordinate matrix of the tensor G is the gra-
dient matrix Fx at x = (x1, x2, x3), given by (9).

Thus, if E and Ẽ are the row-matrices of the canonical bases (ei)
and ( ẽi), respectively, the relation (28) can be translated into a matrix
equation such as

Ẽ = E · Fx. (29)

According to the hypothesis we have ET · E = D.

So, G̃ defined by the similar matrix product ẼT · Ẽ, can be written
under the form (27), if we take into account the relation (29). This ends
the proof.

The basic idea of the previous theorem consists in the assertion that
the Euclidean structure of each tangent space to the strained body is
directly connected with the material properties of the body during the
deformation, that is, for an isotropic elastic body it can be described by
the matrix of elastic constants.

Thus, if <,>g̃ denotes the inner-product on the Euclidean vector

space TP̃ ( M̃) and q̃ is the associated quadratic form, then we have the
equality [q̃] = G̃ with respect to the basis ( ẽi), where G̃ by the relation
(27) is obtained.
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7 The energy of deformation and stiffness

matrices

Another facet of this development is that to consider the body-manifold
M as an elemental component of a material structure with s nodes. Then
we may associate to it the corresponding stiffness matrix of size s × s,
usually used in the Finite Element Method and expressing the rigidity
properties of the body with respect to the deformation.

The energy of a continuous deformation of a body-manifold φ : M→
M̃ depends on the stiffness matrix K associated to the body by means of
the relation

E(φ) =
1

2
[δ]T ·K · [δ], (30)

where [δ] denotes the column-matrix of the displacement at each point of
M.

To establish the relation (30) we start with the energy E(φ) associated
to the diffeomorphism φ defined by the expression ([7], p.202)

E(φ) =
1

2

∫

M

‖φ∗‖
2dω, (31)

where φ∗ is the differential of φ and dω is the volume element of M . The
Euclidean norm ||.|| here present acts on the tangent space TP̃ (M̃) at each
image P̃ = φ(P), (P ∈M).

Denote by X and X̃ two vector fields on M and M̃, respectively,
which are φ-related in the sense that if XP is the tangent vector at a
point P ∈ M to its orbit c ⊂ M , then during the deformation X̃P̃=
φ∗XP is the strained vector tangent to the same curve at P̃. Here we
mention that the two considered above vectors fields are not unit.

Thus, if we denote by X and X̃ the column-matrices of the coordinates
of the considered above vectors an equation of type (11),

X̃ = Fx ·X, (32)

holds.
The expression (31) of the energy of φ can be successively transformed

as

E(φ) =
1

2

∫

M

〈φ∗XP ;φ∗XP 〉g̃dω =
1

2

∫

M

q̃(φ∗XP )dω =
1

2

∫

M

X̃T · G̃ · X̃dω
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(33)

According to the relations (32) and (27) we also have

E(φ) =
1

2

∫

M

XT · (Fx · G̃ · Fx) ·Xdω, (34)

or, still,

E(φ) =
1

2

∫

M

XT ·D ·Xdω. (35)

Now we choose that vector field X on M of which value at each point
P,X(P) = XP , will coincide with the vector [ε] of principal strains. It is
known the fact that this last one is a tangent vector to the integral curve
of X.

Thus E(φ) will coincide with the strain energy of deformation U.

But the strain vector is connected with the displacement vector at each
point of the strained body-manifold by means of the matrix equation

[ε] = B · [δ], (36)

where B is a s × s-matrix of derivatives of a vector-valued function of
nodal coordinates. Because the strain energy of deformation associated
to M is of the form

U =
1

2
[δ]T (

∫

M

BT ·D ·Bdω)[δ] (37)

and we observe that the value under integral represents the stiffness ma-
trix

K =

∫

M

BT ·D ·Bdω (38)

of the body-manifold, from (35), (36), (37) and (38), for X = [ε] it results
the relation (30), which ends the proof.
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O mnogostrukosti traga odredjenog deformacijama
mnogostrukosti tela

UDK 531.01

U radu se razmatra deformacija materijalne sredine koristeci neke el-
emente moderne diferencijalne geometrije. Uvodi se pokretni sistem Fre-
neovog tipa duž orbita jednoparametarske grupe koja deluje na takoz-
vane ”mnogostrukosti traga - trace-manifold” , M, a koja se odnodi na
deformacije tela. Takva mnogostrukost se definǐse kao beskonačna unija
neprekidnih kompaktnih mnogostrukosti koju generǐsu uzastopni položaji
(mnogostrukosti) tela usled njegove deformacije u afinom Euklidskom
trodimenzionom prostoru u zatvorenom vremenskom intervalu. Uvodi
se antisimetričan (povezujuci) tenzor drugog reda ω koji opisuje defor-
maciju u bliskoj okolini bilo koje tacke duž orbite. Komponente tenzora
ωi,i+1, različite od nule, tenzora ω predstavljaju krivine u svakoj tački or-
bite a u ravnima odredjenim parom vektora (ei, ei+1) pokretnog sistema
u M, a koji je asociran orbiti na sličan nacin kao klasičan Freneov sis-
tem. Takodje je data formula za energiju orbita i odredjena njena veza
sa nekom matricom krutosti.


