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Abstract

The problem of an unsteady two-dimensional flow of a viscous
incompressible and electrically conducting fluid between two par-
allel plates in the presence of a uniform transverse magnetic field
has been analyzed, when in case-I the plates are at different tem-
peratures and in case-II the upper plate is considered to move
with constant velocity where as the lower plate is adiabatic. Fluid
velocities and temperatures are obtained and plotted graphically.

1 Introduction

Borkakati and Bharali [1] have discussed the flow and heat transfer be-
tween two horizontal parallel plates, where the lower plate is a stretching
sheet and the upper one is a porous solid plate in the presence of a trans-
verse magnetic field. The heat transfer in an axisymmetric flow between
two parallel porous disks under the effect of a transverse magnetic field
is studied by Bharali and Borkakati [2]. Also, they discussed the hydro-
dynamic flow and heat transfer between two horizontal parallel plates,
where the lower one is a stretching sheet and the upper one is a porous
solid plate in the presence of a transverse magnetic field [3]. Shih-I-Pai
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[4] studied an unsteady motion of an infinite flat insulated plate sets im-
pulsively into the uniform motion with velocity in its own plane in the
presence of a transverse uniform magnetic field.

The objective of the present paper, is to investigate an unsteady flow of
an incompressible and electrically conducting fluid between two horizontal
parallel plates, one of which is at rest, other moving in its own plane with
a velocity u0 in the presence of a uniform transverse magnetic field is
analyzed.

2 Formulation of the problem

The unsteady laminar flow of an incompressible viscous electrically con-
ducting fluid between two horizontal parallel non-conducting plates at a
distance 2h apart is considered under the action of transverse magnetic
field. The flow is assumed to be in the X ′-axis along the horizontal direc-
tion through the central line of the channel and Y ′-axis is normal to it.
The plates of the channel are at y′ = ±h and that the relative velocity
between the two plates is 2u0 and also, there is no pressure gradient in
the flow field. The uniform magnetic field B0 makes an angle θ with X ′-
axis induced a magnetic field B(y) or the imposed magnetic field makes
an angle θ to the free stream velocity [1, 2]. The plate at y′ = −h is
maintained at temperature T0, while the other plate y′ = +h is kept at
temperature T1(T1 > T0) and the plates are electrically non-conducting.
The components of the velocities and the magnetic field are given [4] as
follows:

u′ = {u, v, w} = {u(y, t), 0, 0},

B′ = {Bx, By, Bz} = {λB(y, t), (1 − λ2)1/2B0, 0}

and p = constant, where λ = cos θ is imposed and t is the time.

In order to derive the governing equations of the problem, we are to
assume that the fluid is finitely conducting and the viscous dissipation
and the Joule heat are neglected, and the Hall effect and polarization
effect are negligible.

Under the above conditions the governing equations are as follows[5]:
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ρ
D~u′

Dt′
= −∇p + µ∇2~u′ + ~J × ~B + ~X (1)

and

ρcp
∂T ′

∂t′
= k

∂2T ′

∂y′2
. (2)

Here the third term in the right hand side of equation (1) is the mag-

netic body force and ~J is the current density due to the magnetic field
and ~X is the force due to the buoyancy, ~X = ρgβ(T ′ − T0). Where ρ is
the density of the fluid, σ is the electrically conductivity, k is the thermal
conductivity, υ = µ

ρ
is the kinematics viscosity, µ is the coefficient of vis-

cosity, cp is the specific heat at constant pressure and β is the coefficient
of thermal expansion.

Using velocity and magnetic field distributions as stated above, the
equations (1) and (2) are as followed;

∂u′

∂t′
= υ

∂2u′

∂y′2
−

σB2

0

ρ
(1 − λ2)u′ + gβ(T ′ − T0) (3)

and

∂T ′

∂t′
=

k

ρcp

∂2T ′

∂y′2
. (4)

We consider here two cases [3]:

(i) when the plates are maintained at different temperatures;

(ii) when the lower plate is adiabatic and the upper plate is maintained

at a constant temperature.

Case(i): when the plates are at different temperatures, the boundary
conditions are

t′ > 0 :

{

u′ = u0, T ′ = T1, at y′ = +h,

u′ = −u0, T ′ = T0, at y′ = −h.
(5)
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Consider the non-dimensional parameters as

u =
u′

u0

, y =
y′

h
, t =

t′u0

h
, T =

T ′ − T0

T1 − T0

. (6)

Using the conditions (6) in the equations (3) and (4), we get

∂u

∂t
=

1

Re

∂2u

∂y2
− Ha Re(1 − λ2)u +

Gr

Re2
T (7)

and

∂T

∂t
=

1

Pe

∂2T

∂y2
, (8)

where
Ha = σB2

0
υ/ρu2

0
magnetic Hartmann number,

Re = hu0/υ Reynolds number,

Gr = gβh3(T1 − T0)/υ
2 Grashoff number,

α = k/ρcp thermal diffusivity,

Pr = υ/α Prandtl number and

Pe = PrRe Peclet number.

For the relation (6), the boundary conditions (5) become

t > 0 :

{

u = 1, T = 1, at y = +1,

u = −1, T = 0, at y = −1.
(9)

In order to solve equations (7) and (8), we consider

u = f(y)e−nt and T = g(y)e−nt, (10)

where n is the decay constant.
Substituting (10) in equations (7) and (8), they become

f ′′(y) − Re{Ha Re(1 − λ2) − n}f(y) = −
Gr

Re
g(y) (11)

and

g′′(y) + nPe g(y) = 0 . (12)
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The corresponding boundary conditions are

t > 0 :

{

f = ent, g = ent, at y = +1,

f = −ent, g = 0, at y = −1.
(13)

Solving the equations (11) and (12) with the help of conditions (13),
and substituting in the relations (10), we get

u =
[2Re(a2

1
+ a2

2
) − Gr] sinh a2y

2Re(a2

1
+ a2

2
) sinh a2

−

Gr cosh a2y

2Re(a2

1
+ a2

2
) cosh a2

+
Gr sin(1 + y)a1

Re (a2

1
+ a2

2
) sin 2a1

(14)

and

T =
sin(1 + y)a1

sin 2a1

, (15)

where a1 = (nPe)1/2 and a2 = (Re{Ha Re(1 − λ2) − n})1/2.

Case(ii): when the lower plate is adiabatic, then the boundary conditions
are

t′ > 0 :







u′ = u0, T ′ = T1, at y′ = +h,

u′ = −u0,
∂T ′

∂y′
= 0, at y′ = −h.

(16)

For the relation (6), the boundary conditions (16) become

t > 0 :







u = 1, T = 1, at y = +1,

u = −1,
∂T

∂y
= 0, at y = −1,

(17)

whereas for (10), the corresponding boundary conditions are given by

t > 0 :







f = ent, g = ent, at y = +1,

f = −ent,
∂g

∂y
= 0, at y = −1.

(18)
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Solving the equations (11) and (12) with the help of (18), and substi-
tuting in the relations (10), we get

u =

[

Gr(1 − cos 2a1)

2Re(a2

1
+ a2

2
) cos 2a1 sinh a2

+
1

sinh a2

]

sinh a2y−

Gr cosh a2y

2Re(a2

1
+ a2

2
) cos 2a1 cosh a2

+
Gr cos(1 + y)a1

Re(a2

1
+ a2

2
) cos 2a1

(19)

and

T =
cos(1 + y)a1

cos 2a1

. (20)

3 Results and discussion

Numerical solutions for case I. by equations (14) and (15) are analyzed
for different values of λ, where λ = cos θ which varies as θ = 450, 600,
750.

The figure 1. shows the nature of the fluid velocity for the variation
of θ. The values of the velocity distribution increase with the increase of
λ. The velocity distribution increases near the plates and then decreases
very slowly at the central portion between the two plates.

The figure 2. is obtained by plotting the temperature distribution
against the variable y for different values of Prandtl number Pr, while Pr=
0.71, 1 and 2. The temperature distribution between the plates increases
gradually with the increase of Pr. However the values of temperature
increase towards the plate y > 0 and decreases towards the plate y < 0.
Also the values of the temperature due to the increase of Pr are very
closed - that is why the plotted graphs are touching among the three
curves which are drawn by taking the values of Pr= 0.71, 1 and 2.

Numerical solutions for case II by means of the equations (19) and
(20) are obtained for different values of λ, where λ = cos θ which varies
again as θ = 450, 600, 750.

The figure 3. shows the fluid velocity and the values of the velocity
distribution increase also with the increase of λ. The figure 4. is made by
plotting the temperature distribution against the variable y for different
values of Prandtl number Pr, while the values of Pr varies as the same
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Figure 1: Velocity, u for I: θ = 450, II: θ = 600and III: θ = 750

Figure 2: Temperature, T for Pr = 0.71, 1,2
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as in Figures 1. and 2. The temperature distribution between the plates
increases gradually with the increase of Pr.

Figure 3: Velocity, u for I: θ = 450, II: θ = 600and III: θ = 750

Figure 4: Temperature, T for I: Pr = 0.71, II: Pr =1 and III: Pr = 2.
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MHD Couette-tečenje sa prenosom toplote izmedju
dve horizontalne ploče u prisustvu uniformnog

poprečnog magnetskog polja

UDK 537.84

Analizira se problem nestacionarnog dvodimenzionog tečenja nekog
viskoznog nestǐsljivog elektroprovodnog fluida izmedju dve horizontalne
ploče u prisustvu uniformnog poprečnog magnetskog polja. Pritom su
u slučaju-I ploče na različitim temperaturama, a u slučaju-II posmatra
se kretanje gornje ploče konstantnom brzinom dok je donja ploča adija-
batska. Fluidne brzine i temperature su dobijene i prikazane grafički.


