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Abstract

In this paper we propose a macroscopic model for elasto-
plastic materials with continuously distributed dislocations, when
we restrict to small elastic strains, but the elastic rotations and
plastic distorsions remain large. The material is not homo-
geneous and it behaves like an elastic material element with
respect to non-holonomic configuration. The elastic curvature
tensor vanishes. Consequently to complete the definition of the
mathematical model it is sufficient to prescribe the evolution
equation for the plastic distorsion (i.e.for time-dependent non-
holonomic configuration), as well as the for the internal vari-
ables.

1 Introduction

In this paper we propose a macroscopic model in the continuum the-
ory of an elasto-plastic material with continuously distributed dislo-
cations, under the hypothesis of small elastic strains, but large elas-
tic rotations and plastic deformations. There are several approaches
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to the bahaviour of finite elasto-plastic crystalline materials based on
different physical motivations, developed for instance by Kondo and
Yuki [12], Bilby [2], Kröner [13], Teodosiu [23], Naghdi ans Srinivasa
[19], Shizawa and Zbib [22], Le and Stumpf [15], [16]. The plasti-
cally deformed body is thought as a manifold, embedded in the eu-
clidian space. Consequently, the differential geometrical problems (see
Vrânceanu [24], Schouten [21], Kondo and Yuki [12]) are closely re-
lated to the mathematical fundations for the theory of continuously
distributed dislocations, developed by Noll [20] and Wang [26].

In Beju, So os, Teodorescu [1] (for elastic materials only), Le and
Stumpf [17], Epstein and Maugin [9] the problem of the decompo-
sition of the appropriate connection into the cotorsion and the Rie-
mann metric connection plays a principal role. The models of material
with dislocations constructed by Kondo and Beju, Soós, Teodorescu [1],
Kröner and Lagoudas, [14] are based on Riemann-Christoffel curvature.
A Cosserat theory for plastic single crystals at finite deformations is
elaborated in [19], [15], where the additional momentum-like laws are
associated with the irreversible deformations. In [11] and [8] the couple
stresses account for the dislocation density.

In our approach to small elastic strains first we consider the con-
stitutive framework of finite elasto-plastic materials with continuously
distributed dislocations proposed by Cleja-Ţigoiu [8]. We derive the
peculiar feature of the model based on the assumptions of small elastic
strains (see for instance our analyze developed in [7] for anisotropic fi-
nite elasto-plasticity). The linearization of the equations derived in the
papers [23], [1]( herein elastic materials with continuously distributed
dislocations), [17], [11] are carried out in order to compare with the
well-known Kröner theory. In these papers the elastic distorsion as
well as the plastic distorsion are in the neighborhood of the identity
tensor. From our point of view the case of small elastic strains but
with large elastic rotations, considered by Mandel [18], is compatible
with the objectivity assumption in the finite approach to elasto-plastic
materials with continuously distributed dislocations.

The mathematical model proposed by Cleja-Ţigoiu [8] and [4] ex-
tend the rezults developed in [6], [3] for the elasto-plastic materials with
relaxed configurations to the materials with continuously distributed
dislocations. The fundamental idea is that the crystalline body is not
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homogeneous in Noll’s sense [20] and it has a non-holonomic time de-
pendent configuration K, i.e. which can not be generated by a global
configuration of B. The plastic distorsion and the plastic connections,
supposed to be invariant with respect to a change of frame in the actual
configuration, are compatible. This means the Riemann-Christoffel
curvature tensor vanishes.

Dynamical balance equations involve non-symmetric Cauchy

stress tensor and couple stresses. Based on energetic arguments
developed in Cleja-Ţigoiu and Maugin [5], we choose the set of vari-
ables involved in the model. The crystalline body behaves as an elastic

material element with respect to K(t) following an idea from [25].
Therefore the stress and the stress momentum defined as a third or-
der tensor attached to the couple stresses are functions of the elastic
distortion and its gradients.

The irreversible behaviour of the material is described by the
evolution equations for the plastic distortion as well as for the gradient
of plastic distortion. The evolution equations have to be compatible
with the requirement of zero plastic curvature.

In the case of small elastic strains the appropriate elastic curvature
introduced here vanishes. Consequently now it is sufficient to prescribe
the evolution equations for time-dependent non-holonomic configura-
tion through the rate for plastic distorsion only. Here we impose the
invariance requirement to the constitutive and evolution equations de-
rived with respect to the non-holonomic configuration. When we push
the model forward to the actual configuration the corotational rates
with respect to the elastic spin replace the material derivative of the
appropriate fields.

Notations. We use the following notations:

E− the three dimensional Euclidian space, with the vector space of
translations V ; Vk, Vχ, VK are the tangent vector spaces of the body
B related to the reference k, actual χ and non-holonomic K configura-
tions;

ρ, ρ0 and ρ̃ are mass densities in the actual, initial and non-holonomic
K configurations;

Lin, Lin+, Lin+
s − the set of the linear mappings from V to V , its subset

of invertible transformations and the set of symmetric and positive def-
inite second order tensors, respectively; Ort− the set of all orthogonal
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mappings;
As and Aa are the symmetrical and skew-symmetrical parts of the
tensor A while AT denotes the transpose of A;
dφ(x) denotes the differential of the function φ.

Lin(V , Lin) = {N : V −→ Lin linear}− defines the set of the third
order tensors or (1,2)-tensors, with N = Nijke

i ⊗ ej ⊗ ek. As usual we
have N · M = NijkM

ijk.

For any second order tensor field A we denote by ∇A the third order

tensor field characterizing its differential, i.e. ∇A =
∂Aij

∂xk
ei ⊗ ej ⊗

ek; εijk− the permutation symbol. We have the formula 5χL ≡
∂

∂xk
(
∂vi

∂xj
)ei ⊗ ej ⊗ ek.

∇2
K
εe denotes the second order differential of the field εe;

| εe |(4), | εe |(3), denotes the modulus of the fourth and third order,
respectively, tensors.

2 Constitutive framework

We give a brief review of some of the basic assumptions to our approach
to elasto-plastic materials with continuously distributed dislocations in
[8].

Let k and χ(, ·) be the reference and actual configurations of the
body B, respectively. Let NX be an open simple connected part of B,

for X a given material point of the body.
A1. For any motion χ there exists an invertible second order tensor
field Fp(Z, t) at time t, defined for all Z ∈ NX , which can not be derived
from a (smooth) mapping.

A2. There exists an affine (plastic) connection
(p)

Γ , i.e. (1,2)-tensor
field on Vk, with the property: the Pfaffian system

Fp(
(p)

Γ dZ) = d Fp (1)

has solution or is integrable.
C1. As a first consequence we derived the necessary and sufficient
conditions (Frobenius theorem) to have the complete integrability con-
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dition of (1)

(
(p)

R (Z)u)v ≡ (
(p)

Γ (Z)u)(
(p)

Γ (Z)v) − (
(p)

Γ (Z)v)(
(p)

Γ (Z)u)+

+(d
(p)

Γ (Z)u)v − (d
(p)

Γ (Z)v)u = 0

(2)

written for all u,v ∈ Vk.
(p)

R is called the Riemann-Christoffel (fourth order) curvature tensor.
Fp is called the plastic distortion and we define the elastic distortion

by

Fe = F(Fp)−1 ⇐⇒ F = FeFp, F(Z, t) = ∇(χ(·, t) ◦ k−1)(Z), (3)

where F is the deformation gradient relative to k, defined for all Z ∈
k(NX).

Hence the multiplicative decomposition of the deformation gradient
relative to the reference configuration holds.

A non-holonomic configuration of NX

K(t) = {K(X, t) = Fp(Z, t) ◦ ∇k(Z), Z ∈ NX , k(Z) = Z} (4)

at any time t can be defined; here K(X, t) is a local configurations in
Noll’s sense [20] which can not be generated by a global configuration
of B.

Several affine connections of the deformation gradient, elastic and
plastic distorsions, respectively, can be introduced related to different
possible configurations of the body.
Proposition 1. 1. Two elastic connections

(e)

Γ≡
(e)

Γχ= Fe∇χ (Fe)−1,
(e)

ΓK= (Fe)−1∇K Fe (5)

can be defined with respect to the actual and non-holonomic configu-
ration, respectively.

2.
(e)

ΓK is a third order tensor field invariant with respect to a change

of frame in the actual configuration, while Fe and
(e)

Γχ are objective
fields, i.e.

(Fe)∗ = Q(t)FK(t),
(e)

Γχ∗

∗ = Q(t)
(e)

Γχ [QT (t),QT (t)], or

((
(e)

Γχ∗

∗)u)v = Q(t)(
(e)

Γχ (QT (t)u))QT (t)v,

(6)
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∀ u,v ∈ Vχ and for any time dependent orthogonal mapping Q(t)
characterizing the change of frame in the actual configuration.
Proof. The Pfaffian system (1) is integrabil and then there exists an
invertible and differentiable mapping Fp such that the equality

(p)

Γ= (Fp)−1∇k Fp (7)

holds on the neighborhood NX . Thus from (3) the existence of the dif-
ferentiable elastic distorsion follows. Moreover the elastic connections
(5) satisfy the condition (2) to have zero curvature.

The objectivity properties (6) are direct consequences of The ob-

jectivity assumption given in [8] under the form:
A5. The pair (Fp,∇K(Fp)−1) which characterizes the relaxed state,
attached to the motion χ by assumptions A1 and A2, corresponds to
any χ∗ : NX × R −→ E , related to χ, by a change of observer.
Remark 1. In the theory we can assume the existence of Fe or of
(Fe)−1 such that the Pfaffian systems similar to (1) have solutions. In
this case we define the plastic distortion in term of the elastic distortion
by

Fp = (Fe)−1F, (8)

and so on.
We put into evidence the rule of the calculus for the representa-

tion of the differential of the tensor field F̄ when we pass from one
configuration to the non-holonomic one

(∇KF̄)(ũ) = (∇kF̄)((Fp)−1ũ),

(∇KF̄)(ũ) = (∇χF̄)(Feũ) ∀ ũ ∈ VK

(9)

Let µ be a third order or (1,2)- tensor, respectively, tensor field. We in-
troduce the useful notation µ[F1,F2] for the third order tensor related
to µ by the following relationship

(µ[F1,F2]u)v = (µ(F1u))F2v (10)

that holds for all vectors u,v. Here F1 and F2 are two arbitrary given
second order tensors.
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Proposition 2. 1. The connections Γ,
(e)

ΓK and
(p)

ΓK are related by

(e)

ΓK ũ = Fp(Γ(Fp)−1ũ)(Fp)−1+
(p)

ΓK ũ,∀ ũ ∈ VK,

Γ = F−1(∇kF), or

(e)

ΓK= FpΓ[Fp)−1, (Fp)−1]+
(p)

ΓK, where
(p)

ΓK= Fp∇K(Fp)−1,

((Γ[(Fp)−1, (Fp)−1])ũ)ṽ = (Γ(Fp)−1ũ)((Fp)−1ṽ) ∀ ũ ∈ VK.

(11)

2. The both connections
(e)

ΓK and
(p)

ΓK have the same torsion

(SKũ)ṽ ≡ Fp[((∇K(Fp)−1)ũ)ṽ − ((∇K(Fp)−1)ṽ)ũ] =

= (Fe)−1[((∇KFe)ũ)ṽ − ((∇KFe)ṽ)ũ], ∀ṽ, ũ ∈ VK.

(12)

Now we recall the decomposition theorem for the connection that
can be found in [24], [21], [1] and which appears in [17], [12], but written
here for the plastic connection:

Theorem of the decomposition of the plastic connection 1. The

plastic connection
(p)

Γ is expressed in terms of the metric tensor Cp and
the cotorsion Wp by

(p)

Γ= γp + Wp. (13)

The cotorsion, third order tensor field Wp and the torsion S determine
each other by

(Wpu)v =
1

2
((Su)v − (Su)Tv − (Sv)Tu),

(Su)v = (Wpu)v − (Wpv)u.

(14)

2. The following skew-symmetry holds

(Su)v = −(Sv)u, (Wpu)T = −Wpu, ∀ u,v ∈ Vk. (15)
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3. The torsion S is defined as skew-symmetric part of the plastic con-
nection

(Su)v = (
(p)

Γ u)v − (
(p)

Γ )u, ∀ u,v ∈ Vk. (16)

In (13) γp denotes the Riemann connection, with components given by
the second order Christoffel symbols corresponding to the plastic metric
tensor Cp. We use here an intrinsic formula, see also [17],

(γpu)v · w ≡
1

2
(Cp)−1w · [((∇kC

p)v)u + (∇kC
pu)v]−

−
1

2
∇kC

p((Cp)−1w)u · v, Cp = (Fp)TFp,
(17)

(Cp)−1 denotes the inverse tensor of Cp.

3 Small elastic strains and elastic connec-

tions

In our approach to small elastic strains first we consider the constitu-
tive framework of finite deformation and subsequently we derive the
peculiar feature involved in the model by assuming that the elastic
strains are small. The linearization of the equations derived in the
papers [23], [1]( herein elastic materials with continuously distributed
dislocations), [17], [11] are carried out in order to compare with the
well-known Kröner theory. In these papers the elastic distorsion as
well as the plastic distorsion have the form

Fe = I + βe, | βe |� 1, Fp = I + βp, | βp |� 1, (18)

where βe and βp can be neglected in the presence of the identity ten-
sor. In contrast with these paper we adopt here the point of view
developed by Mandel [18], based on the polar decomposition of the
elastic distorsion represented under the form

Fe = ReUe, Re ∈ Ort, Ue = I + εe, with | εe |� 1. (19)

Hence the elastic strains are small, since

∆e =
1

2
(Ce − I) ' εe, Ce ≡ (Fe)TFe = (Ue)2 ' I + εe, | εe |� 1.(20)
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The invariant elastic connection
(e)

ΓK introduced in (5) can be expressed
via the decomposition theorem (13) by

(e)

ΓK= γe
K

+ WK, (21)

with γe
K

given by

(γe
K
u)v · w ≡

1

2
(Ce)−1w · [((∇kC

e)v)u + (∇kC
eu)v]−

−
1

2
((Ce)−1w)u · v, Ce = (Fe)TFe.

(22)

In order to compare the order of magnitude of the different terms we
introduce a dimensionless parameter δ > 0 such that

εe = δε with | δ |� 1, ∇Kεe =
δ

l
∇Kε, (23)

where l is a characteristic length. Then

((∇2
K
εe)u)v =

δ

l2
((∇2

K
ε)u)v,

(∇Kεe)u)(∇Kεe)v =
δ2

l2
((∇Kε)u)(∇Kε)v

(24)

and thus the following inequalities hold

| ((∇2
K
εe)u)v |≤

δ

l2
| ∇2

K
ε |(4)| u || v | while

| (∇Kεe)u)(∇Kεe)v |≤
δ2

l2
(| ∇Kε |(3))

2 | u || v | .

(25)

Based on (24) we justified that ((∇Kεe)u)(∇Kεe)v can be neglected in
the presence of ((∇2

K
εe)u)v.

Proposition 3. As a consequence of the appropriate exact formulae
defining the properties of the elastic connection we obtain that

(e)

ΓK' ∇Kεe + (Re)T∇KRe. (26)

The elastic metric connection γe
K

can be reduced to



102 S. Cleja-Ţigoiu

(γe
K
u)v · w '

(((∇Kεe)v)u + ((∇Kεe)u)v) · w − ((∇Kεe)w)u · v.

(27)

The torsion SK defined for all u,v ∈ VK by the second form written in
(12)

(SKũ)ṽ = (Fe)−1[((∇KFe)ũ)ṽ − ((∇KFe)ṽ)ũ] (28)

contains two part

(SKũ)ṽ = ((∇Kεe)ũ)ṽ − ((∇Kεe)ṽ)ũ+

+(Re)T [((∇KRe)ũ)ṽ − ((∇KRe)ṽ)ũ].
(29)

The first part of the torsion SK is characterized by the skew-symmetric
part of the gradient of εe− the small elastic strain tensor, while the
second part is the torsion attached to the affine connection generated
by the elastic rotation only.

Now we pass to the cotorsion WK from (21) taking into account
the appropriate formula (14)1 together with (28):

(WKu)v · z ' ((∇Kεe)z)v · u − ((∇Kεe)v)u · z + (WRu)v · z, (30)

where the cotorsion attached to the elastic rotation is expressed by

(WRu)v · z =
1

2
(Re)T [((∇KRe)ũ)ṽ − ((∇KRe)ṽ)ũ] · z−

−
1

2
(Re)T [((∇KRe)ũ)z̃ − ((∇KRe)z̃)ũ] · v−

−
1

2
(Re)T [((∇KRe)ṽ)z̃ − ((∇KRe)z̃)ṽ] · u.

(31)

The differential of the elastic metric connection has the following rep-
resentation

(((d γe
K
)z)u)v · w ' w · (((∇2

K
εe)z)v)u + w · (((∇2

K
εe)z)u)v−

−v · (((∇2
K
εe)z)w)u,

(32)



Small elastic strains in finite elasto-plastic materials... 103

written for all u,v,w, z ∈ VK.

We remark that the Riemann-Christoffel curvature tensor attached
to the metric connection (27) has the expression

((
(γ)

R v)u)w · z = z · [((∇2
K
εe)v)w)u − ((∇2

K
εe)u)w)v]

+w · [((∇2
K
εe)u)z)v − ((∇2

K
εe)v)z)u].

(33)

In the case of small elastic strains the above formulae allow us to em-
phasize the differences between the cases of small and large elastic ro-
tations, respectively. When the elastic rotations are also in the vecinity
of the identity tensor we get

(e)

ΓK' ∇Kβe, (SKũ)ṽ = ((∇Kβe)ũ)ṽ − ((∇Kβe)ṽ)ũ (34)

with the elastic metric connection described by (27) written for εe,

while the cotorsion is expressed in terms of small spin measure ωe.

Here

(WKu)v · w '

((∇Kωeu)v · w + ((∇Kεe)w)u · v − ((∇Kεe)v)u) · w,

εe =
1

2
(βe + (βe)T ), ωe =

1

2
(βe − (βe)T ).

(35)

Remark 2. The Riemann-Christoffel curvature tensor, defined in the
left hand side of (2) and attached to the elastic connection given in
(34), and the related problems with the linearized framework can be
found in [23], [1], [17],[11], [12].

Proposition 4. 1. The Riemann-Christoffel curvature tensor, defined
in the left hand side of (2) and attached to the non-symmetric elastic
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connection given in (26) can be expressed

(
(e)

R v)u = (
(R)

R v)u ≡

(∇K(Re)Tv)(∇K(Re)Tu) − (∇K(Re)Tu)(∇K(Re)Tv)

+(Re)T [((∇2
K
Re)v)u − ((∇2

K
Re)u)v]

+((Re)T (∇KRe)v) ◦ (Re)T (∇KRe)u

−((Re)T (∇KRe)u) ◦ (Re)T (∇KRe)v

(36)

written for all u,v ∈ Vk.

2. (
(R)

R u)v = 0, for all u,v.

Proof. We put into evidence the formula for the differential of the
connection (26), taking into account the second order in magnitude

(d
(e)

ΓK v)u =

(Re)T ((∇KRe)u)(∇Kεe)v − (∇Kεe)v(Re)T ((∇KRe)u)

+((∇2
K
εe)u)v − (∇Kεe)v(∇Kεe)u+

+(∇K(Re)Tv)(∇K(Re)Tu) + ((Re)T (∇2
K
Re)v)u) + O(δ3).

(37)

By the direct calculus we can prove the result written in (37).

The curvature tensor
(R)

R is attached to an orthogonal mapping. The
equality with zero follows from the property of orthogonal tensor field.

4 Constitutive and evolution equations

elasto-plastic materials with small

elastic strains

In [8] the set of variables to describe the behaviour of elasto-plastic
materials as elastic with respect to the non-holonomic configuration
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are chosen based on the energetic arguments presented in [5]. The
evolution equations for the irreversible behaviour complete the math-
ematical model.

The Piola-Kirchhoff stress tensor and the stress momentum as pulled
back fields to the non-holonomic configuration and Mandel’s non-symmetric
stress measure, all of them referred to K are defined by

ΠK ≡ Π = det (Fe)(Fe)−1Ts(Fe)−T , detFe =
ρ̃

ρ
µK = (det Fe)(Fe)T µ[(Fe)−T , (Fe)−T ],

ΣK ≡ Σ = Ce
ΠK

ρ̃
, Ce = (Fe)TFe.

(38)

Here Ts is the symmetric part of Cauchy stress tensor and µ denotes
stress momentum, a non-symmetric third order tensor field with respect
to the actual configuration. The notation introduced in (10) is also
used.

In the case of small elastic strains

ΠK ≡ Π = (Re)TTsRe, ΣK ≡ Σ =
ΠK

ρ
,

µK = (Re)T µ[Re,Re].
(39)

First we recall that
A6. The elastic like behaviour of a material element is described
in terms of the Cauchy stress tensor and the stress momentum with the
deformation represented by the pair (FK,GK) ∈ Lin+ × Lin(V , Lin)

Ts(X, t) = fK(t)(FK(t), {GK(t)}
a),

µ(X, t) = gK(t)(FK(t), {GK(t)}
a).

(40)

Here FK− is the deformation gradient and GK− denotes the second
order gradient of the deformation, both of them from K to the actual
configuration

FK ≡ Fe, GK ≡ ∇KFe,

({GK}
aũ)ṽ =

1

2
[((∇KFe)ũ)ṽ − ((∇KFe)ṽ)ũ] =

1

2
Fe(SKũ)ṽ,∀ ũ, ṽ ∈ VK.

(41)
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These relations contain the symmetric part of Cauchy stress only and
stress momentum. The skew-symmetric part of the Cauchy stress is
obtained from the momentum balance equation (in agreement with
[10], for instance).

As a consequence of The objectivity assumption it can be proved
that
Theorem- Objectivity restrictions. The elastic type behaviour of
the material element satisfies the frame indifference principle if and
only if it can be equivalently represented under the invariant ( with
respect to a change of frame) form:

ΠK = fK(Ce, SK), or ΣK = hK(Ce, SK), µK = gK(Ce, SK). (42)

In the case of small elastic strains

ΠK = fK(εe, SK), µK = gK(εe, SK), (43)

with the torsion SK expressed through the formula (29).
In [8] we mentioned the evolution equations for irreversible variables

with respect to non-holonomic configuration. This means evolution
equations for Fp and ∇Fp.

Remark 3. We proved that
(e)

R= 0 in the case of small elastic strains.
Thus Fp is a differentiable field. Consequently it is sufficient to define
the evolution equation only for the plastic distortion. We assume that:
A7. The evolution equations for Fp with respect to K is described by

Lp ≡ Ḟp(Fp)−1 = BK(ΠK,µK, κ1, κ2, Ḟ,
d

dt
(∇kF),F,∇kF) (44)

related as usual to the yield surface defined in the appropriate stress
space, say the space of stress and stress momentum.

Let the yield condition be defined with respect to the set of variables
(ΣK,µK, κ1, κ2), under the form

FK(ΠK,µK,SK, κ1, κ2) ≡

FK((Re)TTsRe, (Re)T µ[Re,Re], (Re)TSK[Re,Re], κ1, κ2).
(45)
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SK may be introduced among the variables in all constitutive and evo-
lution function, since the torsion tensor can be identify with an internal
variable, with the evolution equation derived from (28) in term of Lp

and ∇KLp.

Remark 4. The frame indifference requirement has to be imposed on
the evolution equations (45) for the plastic distorsion Fp and for the
gradient of the plastic distorsion (if it is also involved in the model as for
instance in [8]). This objectivity restriction ensures the consistency
of A4. and A7.

The motion connection Γ is related to ∇kF by the definition (11).
Moreover Γ is invariant with respect o a change of frame in the actual
configuration and so it is Γ̇ its material derivative.

First of all we remark that any function containing the set of vari-

ables Ḟ,
d

dt
(∇kF)),F,∇kF can be written as dependent on

ḞF−1 ≡ L = D + W, D∗ = QDQT , W∗ = QWQT + Q̇QT ,

d

dt
(∇kF)F−1u = ((∇χL)u)F + L(∇kF)F−1u,

(46)

due to the rule of the calculus put into evidence in (9). Here D = Ls

is the rate of strain and W = La is the spin motion.
We take into account that for all u ∈ Vk the material derivative of

the motion connection and the second order gradient of the velocity
field are related by

Γ̇u = F−1((∇χL)Fu)F. (47)

We pass from D an objective field to Ċ− the material derivative of
Cauchy-Green total strain tensor, via the formulae

Ċ = 2FTDF, with C = FTF. (48)

Finaly we proved that
Proposition 5. The evolution equation for plastic distortion is invari-
ant with respect to the change of frame in the actual configuration if
and only if (44) can be expressed under the form

Lp ≡ Ḟp(Fp)−1 = BK(ΠK,µK, κ1, κ2,C,Γ, Ċ, Γ̇), (49)
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where ΠK,µK, κ1, κ2 are invariant tensor and scalar, respectively, ten-
sor fields.

A similar representation follows for the rate of the gradient of plastic

distortion, i.e. for
d

dt
(∇kF)(Fp)−1.

Note the complete set of the constitutive and evolution equations is
developed with respect to the non-holonomic reference configuration,
in an invariant form. The behaviour of elasto-plastic material with
continuously distributed dislocations can be described with respect to
the actual configuration by pushing forward procedure, see for instance
[5].

We take into account the multiplicative decomposition of the de-
formation gradient (3) and the following kinematic relationships are to
be considered

L = Ḟe(Fe)−1 + FeLp(Fe)−1, Lp = Ḟp(Fp)−1, L = ∇χv. (50)

Proposition 5. In the actual configuration kinematic relationships
between the appropriate strain rates

D =
◦

ε +D̂p, D̂p := ReDp(Re)T , D = Ls,

◦

ε= ε̇ − Ωε + εΩ, with ε = Reεe(Re)T

Reε̇e(Re)T =
◦

ε where Ω = Ṙe(Re)T

(51)

and between their associated spins

{L}a = Ω + Ŵp, with Ŵp = Re{Lp}a(Re)T , (52)

hold. The corotational rate of the fields taken in the actual configura-
tion with respect to the elastic spin Ω replace the material derivatives
of the fields defined in the non-holonomic configuration K.

The rate form of the elastic type constitutive equations is derived
by standard procedure, see for instance [5], [7]. For instance the ob-
jective rates of the symmetric part of the Cauchy stress and of the
stress momentum are involved in the actual description of the material
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behaviour:
◦

T

ρ
= Re

d

dt
(
Π

ρ̃
)(Re)T ≡

d

dt
(
T

ρ
) − Ω

T

ρ
+

T

ρ
Ω

◦

µ= Re
d

dt
(µK)[(Re)T , (Re)T ], with

◦

µ≡ −Ωµ +
d

dt
µ + µ[Ω, I] + µ[I,Ω].

(53)

We pointed out that the elastic spin Ω is replaced by the spin of
the motion La via the formula (52) by

Ω = {L}a − Re{BK}
a(Re)T , (54)

where BK represents the evolution equation from (49).
The objective rate of the elastic strain measure is expressed from

(51) by the rate of strain

◦

ε= D − Re{BK}
s(Re)T , D = Ls, (55)

in terms of the evolution function which characterized the rate of plastic
distorsion.
Remark. If the constitutive and evolution functions are isotropic with
respect to their arguments the remarkable simplified form can be de-
rived in the actual configuration. That is the elastic rotations disap-
pears from the constitutive representations.
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[3] S. Cleja-Ţigoiu, Large elasto-plastic deformations of materials
with relaxed configurations- I.Constitutive assumptions, II. Role
of the complementary plastic factor. Int. J. Engng. Sci., 28 (1990)
171-180, 273-284.
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[13] E. Kröner, On the physical reality of torque stresses in continuum
mechanics. Gauge theory with disclinations. Int.J.Engng.Sci. 1

(1963) 261–278.
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Male elastične deformacije konačnih
elastoplastičnih materijala sa neprekidno

rasporedjenim dislokacijama

UDK 514.8, 531.01

U ovom radu predlažemo jedan makroscopski model elastoplastičnih
materiala sa neprekidno rasporedjenim dislokacijama, sa malim elastičnim
deformacijama, ali konačnim elastičnim rotacijama i plastičnim distorz-
ijama. Materijal nije homogen i ponaša se kao neki elastični materijalni
element u odnosu na neholonomnu konfiguraciju. Tenzor elastične kriv-
ine isčezava. Dakle, za kompletiranje definicije mathematičkog modela
dovoljno je propisati evolucionu jednačinu za plastičnu distorziju (t.j.
za vremenski promenljivu neholonomnu konfiguraciju), kao i za un-
utrašnje promenljive.


