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Abstract

The motion of a massive particle with intrinsic spin in a gravita-
tional Einstein vacuum plane wave background is explored using the
pole-dipole approximation to the Dixon multipole expansion for mat-
ter with compact support. Motivated by application to astrophysical
processes the dynamical behaviour of the spin and particle motion
is described by numerically solving a system of non-linear first order
ordinary differential equations. Some results are displayed in a ref-
erence frame adapted to the transverse nature of a monochromatic
polarised gravitational wave of arbitrary intensity.

1 Introduction

In strong gravitational fields the motion of massive test particles with in-
trinsic spin is not expected to follow timelike geodesic worldlines [6]. Fur-
thermore the behaviour of continuously distributed matter with “angular
momentum” in such fields is relevant to many astrophysical phenomena
that have been observed. It is widely believed that the origin of γ-ray
bursts, astrophysical jets, X-ray emitters and other exotic processes may be
due to the dynamics of electrically charged relativistic matter with “angular
momentum” in strong electromagnetic and gravitational fields. Models of
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such systems can be attempted in terms of the relativistic Einstein-Maxwell-
Boltzmann equations [13] provided some basic mechanism for the coupling
of charge and “angular momentum” distributions to such fields is adopted.
In principle such tidal interactions follow from the stress tensor and cur-
rent vector used as sources for extended matter in the Einstein-Maxwell
equations. Solving such equations for even simple matter models is often
impossible and recourse to approximation schemes is necessary in order to
gain insight. Some years ago Dixon suggested [1, 2, 3, 4] that for contin-
uous matter with compact support on spacetime a collection of mass and
charge multipoles along a suitable worldline might offer such a scheme. He
suggested that the worldline could be determined in terms of a finite set of
such multipoles in an arbitrary background spacetime.

Although the resulting equations of motion offer a consistent dynamical
scheme [9] for the classical behaviour of “spinning matter” [7, 8] they are
difficult to solve analytically in all but the simplest gravitational fields and
in the lowest pole-dipole approximation [10], [11] to the full multipole series.
Truncation of this series leads to further concerns since for sufficiently strong
spacetime curvature the initial motion of massive particles with spin is not
guaranteed to remain timelike. If such approximation schemes are to find
application in more complex astrophysical scenarios it becomes necessary to
examine their limits of validity in such gravitational backgrounds. In this
article we report on preliminary results in which the motion of a massive
electrically neutral test particle with spin is determined numerically in a
class of gravitational plane wave geometries in the simplest pole-dipole ap-
proximation. The aim is to gain some insight into the resulting motion and
explore how it depends on the specific spin to mass ratio of the particle, the
strength of the gravitational wave and the nature of its profile. Such infor-
mation is relevant to astrophysical situations where spinning matter (e.g.
particles in plasmas or accretion discs) is irradiated by strong gravitational
waves.

2 Equations of Motion in the Pole-Dipole

Approximation

The equations of motion under consideration were derived by Dixon from
the divergence of the matter stress-energy tensor. A canonical derivation
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Figure 1: Spacetime figure illustrating the vectors used to define total an-
gular momentum of the particle with history on the right as determined by
the observer with history on the left in flat spacetime

was later given by Kunzle [5]. In this paper we are concerned with these
equations in background spacetimes with a class of metric tensors g that
satisfy the vacuum Einstein equation and describe gravitational plane waves.
The history of a particle of mass m 6= 0 will be described by a future
pointing initially timelike parametrised curve with parameter τ and tangent
vector V (τ). In addition to this vector the dynamics of the particle is also
determined by a second timelike vector P (τ) and a spacelike vector Σ(τ).
In the following it proves expedient to relate elements in the tangent space
at each point on the worldline of the particle to particular elements in the
dual space. Thus for any such vector Z in the tangent space we define
z = Z̃ where Z̃ = g(Z,−). Similarly for any covector z in the associated
cotangent space we define Z = z̃ = G(z,−) where G is the inverse of g.
Furthermore the use of exterior methods streamlines many computations,
especially those involving the Hodge map, ?, associated with g.
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Figure 2: Spacetime figure illustrating the vectors used to define intrinsic
angular momentum of a particle with history in a general spacetime

A comment on the notion of “angular momentum” of a massive particle
in an arbitrary gravitational field is in order, since such a concept is properly
associated with rotational isometries. In a Minkowski spacetime background
(that possesses such isometries) such a particle worldline has an associated
linear momentum vector P ≡ mc2V collinear with V where g(V, V ) = −1. A
Minkowski observer with 4-velocity Ż(τ) and g(Ż, Ż) = −1 can use his local
rest space orthogonal to Ż to uniquely specify a spacelike vector W con-
necting any event on his worldline to the particle worldline (since Minkowski
spacetime is isomorphic to an affine vector space). The orbital angular mo-
mentum covector of the particle at that instant observed by Ż is then defined
to be

lorb = ?(P̃ ∧ ˜̇Z ∧ W̃). (1)

In terms of the spacelike momentum P and energy E of the particle with
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respect to Ż,

P = cP + EŻ (2)

where g(Ż,W) = 0, one has:

lorb = −c#(W̃ ∧ P̃) (3)

in terms of the induced Hodge map given by ?1 = ˜̇Z ∧#1 and the speed of
light c. The “intrinsic” spin covector lspin of the particle is given in terms
of a 2-form s(τ):

lspin = −1

2
? (u ∧ s) (4)

where P = mc2U and g(U,U) = −1. This ensures that iU lspin = 0. In
Minkowski spacetime one may define the total angular momentum covector
with respect to Ż as:

j ≡ lorb + lspin. (5)

For a particle in a general spacetime, W and therefore lorb cannot be so
naturally defined but one may continue to call lspin the instantaneous angu-
lar momentum or classical intrinsic spin of the particle, independent of any
Ż. Such a mathematical formulation however says nothing about the origin
of lspin. Indeed in the Dixon scheme lspin may be regarded as a distribu-
tional approximation to the collective history of matter about the worldline

defined by P and Σ ≡ el
m
≡ σ̃ with l ≡ −1

2
? (u ∧ s) in any background.

In terms of these definitions, P, s and V must satisfy the equations

Ṗ = ĩV f, (6)

ṡ = 2P̃ ∧ Ṽ , (7)

iP s = 0 (8)

where for any tensor Q(τ) along the worldline, Q̇ ≡ ∇V Q in terms of the
Levi-Civita connection restricted to this curve and iV denotes interior con-
traction with V . The tidal bivector f̃ is given in any local cobasis {ea} along
the worldline as:

f = −1

4
? (Rab ∧ ?s) ea ∧ eb (9)

where {Rab} denote the curvature 2-forms of ∇ in this cobasis.
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To reduce these equations to a system of evolution equations for P (τ), σ(τ)
and the particle worldline it is convenient to adopt a parameterisation such
that g(U, V ) = −1 where P (τ) = m(τ) c2U(τ) for g(U,U) = −1. Then after
some calculation the spin transport law for σ becomes:

(1 + u ∧ iU) σ̇ = 0. (10)

Furthermore one may verify from 6, 7, 8 that m and s ∧ ?s are constant
along the world line and that v can be expressed in terms of u ≡ P̃ /(mc2)
as

v =
u− iΣΛ

1 + iU iΣΛ
(11)

where c4Λ ≡ ?(Rab ∧ σ ∧ u) ? (ea ∧ eb). The system 6,8,10,11 constitutes
the differential algebraic system that we propose to analyse numerically in a
gravitational wave background. A judicious choice of spacetime coordinates
{t, x, y, z} for this calculation will assist in the interpretation of the results.
An exact Einstein vacuum metric for a gravitational wave can be written in
these coordinates as:

g = −c2 d t⊗d t+d x⊗d x+d y⊗d y+d z⊗d z+2Fd (ct−z)⊗d (ct−z) (12)

where F(t, x, y, z) = 1
2
f1(ct−z) (x2−y2)+f2(ct−z) xy in terms of arbitrary

smooth g-wave profiles f1 and f2 describing the polarisation states of the
wave. This form of the metric is particularly useful for interpreting the
behaviour of a spinning particle in regions of spacetime where g departs
negligibly from Minkowski spacetime. A convenient g-ortho-normal cobasis
to use below in calculating the forms f and Λ is

e0 = (ρ3 + ρ4)/
√

2 (13)

e1 = d x (14)

e2 = d y (15)

e3 = (ρ3 − ρ4)/
√

2 (16)

where ρ3 = 1
2
(cd t + d z)−F ρ4 with ρ4 = d (ct− z)

3 Reduction

The first step is to accommodate the algebraic condition 8. Since g(Σ, Σ) is
a constant of the motion with Σ spacelike and g(U,U) = −1 by definition,
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we can write:

u = cosh(β) e0 + sinh(β)
(
cos(θ) e1 + sin(θ) (cos(φ) e2 + sin(φ) e3)

)
(17)

σ = S0

(
sinh(α) e0+

cosh(α) (cos(ξ) e3 + sin(ξ) (cos(η) e2 + sin(η) e1))
)
.

(18)

1 The condition g(U, Σ) = 0 then gives

tanh(α)
tanh(β)

= cos(θ)(sin(η) sin(ξ))+

sin(θ){sin(φ) cos(ξ) + cos(φ) sin(ξ) cos(η)}.
(19)

This equation for α (and its derivative along the worldline) can be inserted
in 6, 10, 11 and the system reduced to a first order set of non-linear ordinary
evolution equations of the form:

dA(τ)

d τ
= K(A(τ)) (20)

where A(τ) = (T (τ), X(τ), Y (τ), Z(τ), β(τ), θ(τ), φ(τ), χ(τ), η(τ)) and

V̇ = Ṫ (τ)∂ct + Ẋ(τ)∂x + Ẏ (τ)∂y + Ż(τ)∂z.

Given an initial condition A(0) these equations can be integrated for a choice
of constant S0 and profiles f1, f2.

4 Interpretation

One may interpret the results of integration of the system above in different
reference frames associated with the geometry of the problem [12]. Provided
the motion of the particle remains timelike one may construct a local basis
of three spacelike vectors along the particle history orthogonal to either
U or V since in general they will not be collinear. A more natural basis

1For a metric with physical dimensions of length2 it follows from the definitions above
that the constant S0/c has physical dimensions [angular momentum]/[mass]. Thus in
units with c = 1 one finds for an electron that S0 ' 1

2 . On the other hand for a
homogeneous massive sphere rotating about an axis through its centre with Newtonian
angular speed ω, S0 = 2

5a2 c ω.
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perhaps is that offered by the spacetime propagation direction of the g-
wave itself. The null vector Y ≡ ∂ct + ∂z is parallel with respect to ∇ and
hence Killing. It determines the gravitational wave fronts which at every
event yield hypersurfaces containing non-zero vectors orthogonal to Y . Let
Ż be some unit timelike vector along the particle’s timelike worldline and W3

be the unique spacelike unit vector obtained by normalising the projection
of Y (restricted to the worldline for each τ) onto the local rest space of Ż.
Then any observer with 4-velocity coinciding with Ż at that instant detects
a g-wave propagating in the direction W3 with a 2-dimensional wave front
orthogonal to that direction. In the local rest space of Ż an ortho-normal
basis can be constructed:

W3 = −Y

E + Ż (21)

W2 = ∂y − 1

E g(Ż, ∂y) Y (22)

W1 = ∂x − 1

E g(Ż, ∂x) Y (23)

where here E = −g(Ż, Y ). In this g-wave adapted basis an observer congru-
ent with Ż at any instant measures a transverse g-wave in which all relative
3-accelerations are orthogonal to W3. For a choice of Ż we shall use this
frame to describe the motion of the projected spin vector ΠŻΣ where ΠŻ

projects onto the subspace orthogonal to Ż. In general Ż need not be par-
allel along the world line. If it is, then since Y is Killing it follows that E
is a constant of the motion proportional to the energy of the gravitational
wave observed by Ż.

5 Implementation

The initial value problem above has been analysed numerically for a class
of g-wave profiles and specific spins S0. The simplest wave to consider is a
linearly polarised monochromatic wave with angular frequency ω = Ω c Hz.
e.g.

f1 = 0, f2 = λ2 sin Ωt (24)

in units with c = 1 for some constants {λ2 , S0}. The choice of such constants
is made so that, on output, g(V, V ) ≤ 0 and is future pointing over at
least a period of the gravitational wave. Since g(V, V ) is periodic in τ for
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monochromatic waves this ensures that the history of the particle remains
within the forward light cone of such a spacetime. For such motion V can
be normalised if necessary and the motion given in terms of proper time.

The magnitude of the constant λ2 determines the intensity of the grav-
itational wave. For a metric with the physical dimensions of length2 this
constant has the same dimensions so we require a dimensionless measure of
relative intensity.

At any event a family of neighbours to any observer will experience tidal
accelerations due to the curvature of spacetime. For a neighbour modelled
as a spacelike vector field W along the observer worldline with unit tangent
Ż, a measure of the neighbour’s relative acceleration A is (∇F

Ż
(∇F

Ż
W)) in

terms of the Fermi-Walker covariant derivative ∇F along the curve. This
can be expressed in terms of the ambient curvature operator as RŻWŻ. If
W is a dimensionless vector then ortho-normal components of c2A have the
dimensions of Newtonian acceleration. A gravitational wave will be said to
be intense at some point if the ratio of this acceleration field at the point
to, say, the Newtonian acceleration due to gravity G at the earth’s surface
is large. Note that this definition is observer dependent. In the following
we shall use the same choice of Ż as in the construction of the g-wave
adapted basis above. An averaged estimate of the intensity can be obtained
by averaging over a a spatial sphere in the rest space of Ż at each τ . Thus
we define the dimensionless specific intensity I by the relation:

I2 =
c4

G2
g(A,A) (25)

and, with Ż = U (timelike), average over directions:

Ī2 =
1

4π

∫ 2π

0

∫ π

0

I2 sin(θ)d θ d φ. (26)

With

W = r1W1 + r2W2 + r3W3 (27)

one finds for the plane polarised wave above:

IRMS =
c2

G
1√
5
Rλ2 sin (Ω(cT (τ)− Z(τ)))

√
cosh2 β(τ)− sinh4 β(τ) (28)
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where R =
√

r2
1 + r2

2. A plot of

κ(τ) ≡ G
c2RIRMS(τ)

versus τ , for chosen f1, f2 and Ż, enables one to make an estimate of the
tidal intensity in the vicinity R of the particle relative to G .

6 Conclusions

Numerical solutions of the system (20) can be generated for a range of
initial conditions, gravitational wave profiles f1, f2 and values of S0. These
permit one to explore the nature of the orbit of the particle and behaviour
of the spin vector in various frames attached to the particle worldline. An
illustration of such results is displayed in Figures 4-118. These are generated
with

A(0) =
(
T (0) = 0, X(0) = 0.1, Y (0) = 0.1,

Z(0) = 0.1, β(0) = 0.1, θ(0) = 0.1, φ(0) = 0.1,

χ(0) = 0.1, η(0) = 0.2
)
,

a monochromatic wave (24) with λ2 = 3, Ω = 5 and a particle with S0 = 1.
An estimate of the associated relative intensity IRMS over a range of the
parameter τ can been seen from Figure 3. Figure 18 indicates that the
motion is timelike throughout this interval. The results indicate that the
particle executes an overall mean spiral motion in space (Figure 12) with a
superimposed oscillatory motion about the mean spiral. The drift coordi-
nate is given by Z(τ) (Figure 11) and the superimposed oscillations follow
from the X(τ), Y (τ) solutions (Figures 9-10). The overall motion in space
in bounded with aspects reminiscent of the motion of an electrically charged
particle in certain electromagnetic fields. With Ż = U , the spin motion is
found to be orthogonal to the W3 direction of the {W1, W2,W3} frame along
the orbit. Figure 15 illustrates the bounded motion of the spin vector Σ(τ)
over the same interval of τ and projected into the W1−W2 subspace. Thus
in this frame the spin simply oscillates with finite directional amplitude.
By contrast the locus of the spin vector in the frame {X1, X2, X3} is more
complicated (e.g. Figure 16). With Ż = V , the motion of the spin vector in
the {W1,W2,W3} frame is indicated in Figure 17 and is not restricted to the
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W1 −W2 plane. Although these results refer to plane polarised monochro-
matic gravitational waves the methods are readily adapted to more complex
polarisations and gravitational wave pulses.

Such computations offer a valuable insight into the dynamics of spin-
ning particles in strong gravitational plane waves and display the degree to
which the motion of such particles deviates from that determined by time-
like geodesics. They enable one to bound the parameters that enter into
f1, f2 and S0 in order that the solutions remain physical and are a starting
point for more general equations of motion involving higher multipoles and
particles with additional electromagnetic properties. We hope to present
the results of such generalisations elsewhere.
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Figure 3: For Ż = U , κ(τ) ≡ G
c2R IRMS(τ) plotted versus τ where f1 =

0, f2 = λ2 sin Ωt with λ2 = 3, S0 = 1 and Ω = 5. This plot enables one to
make an estimate of the tidal acceleration intensity IRMS in the vicinity R
of the particle relative to any reference acceleration G (with c,R,G in any
common units).
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Figure 4: Ṫ (τ) = iV d t for
f1 = 0, f2 = λ2 sin Ωt with
λ2 = 3, S0 = 1 and Ω = 5.
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Figure 5: Ẋ(τ) = iV d x for
f1 = 0, f2 = λ2 sin Ωt with
λ2 = 3, S0 = 1 and Ω = 5.
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Figure 6: Ẏ (τ) = iV d y for
f1 = 0, f2 = λ2 sin Ωt with
λ2 = 3, S0 = 1 and Ω = 5.
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Figure 7: Ż(τ) = iV d z for
f1 = 0, f2 = λ2 sin Ωt with
λ2 = 3, S0 = 1 and Ω = 5.
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Figure 8: T (τ) for f1 = 0, f2 =
λ2 sin Ωt with λ2 = 3, S0 = 1
and Ω = 5.
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Figure 9: X(τ) for f1 = 0, f2 =
λ2 sin Ωt with λ2 = 3, S0 = 1
and Ω = 5.
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Figure 10: Y (τ) for f1 =
0, f2 = λ2 sin Ωt with λ2 =
3, S0 = 1 and Ω = 5.
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Figure 11: Z(τ) for f1 =
0, f2 = λ2 sin Ωt with λ2 =
3, S0 = 1 and Ω = 5.
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Figure 12: World Line Motion
Y (τ) vs X(τ) for f1 = 0, f2 =
λ2 sin Ωt with λ2 = 3, S0 = 1
and Ω = 5.
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Figure 13: World Line Motion
Z(τ) vs X(τ) for f1 = 0, f2 =
λ2 sin Ωt with λ2 = 3, S0 = 1
and Ω = 5.
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Figure 14: World Line Motion
Z(τ) vs Y (τ) for f1 = 0, f2 =
λ2 sin Ωt with λ2 = 3, S0 = 1
and Ω = 5.
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Figure 15: Locus of Spin Mo-
tion in W1 − W2 plane with
components of Σ(τ) taken with
respect to W1 and W2. The
{W1,W2,W3} frame here has
been generated with the choice
Ż = U .
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Figure 16: Locus of Projected
Spin Motion in X1 − X2 plane.
The spin vector Σ(τ) has here
been projected onto the sub-
space spanned by X1, X2, X3

and its motion displayed in the
X1 −X2 subspace.

Spin Motion in Transverse W1-W2 g-wave plane
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Figure 17: Locus of Spin Mo-
tion in W1 − W2 plane with
components of Σ(τ) taken with
respect to W1 and W2. The
{W1,W2,W3} frame here has
been generated with the choice
Ż = V .



92 D. A. Burton, R.W. Tucker,C.Wang

g(V,V)

–1

–0.9

–0.8

–0.7

–0.6

0 10 20 30 40

Figure 18: g(V, V ) vs τ . Since
this invariant remains negative
over the range displayed, the par-
ticle remains within the local light
cone of the gravitational wave
spacetime.

Kretanje izazvano spinom u intezivnoj
prostor-vremenskoj talasnoj geometriji

UDK 530.12, 514.752, 514.82

Kretanje masivne čestice sa unutrašnjim spinom u nekoj ravansko talas-
noj pozadini gravitacionog Einstein-ovog vakuuma se istražuje korǐsćenjem
Dixon-ovog vǐsepolnog razvoja za materiju sa kompaktnim nosačem. Mo-
tivisani primenom na astrofizičke procese numerički opisujemo dinamičko
ponašanje spina i kretanja čestice rešavanjem jednog sistema nelinearnih
običnih diferencijalnih jednačina prvog reda. Neki od rezultata su prikazani
u sistemu referencije prilagodjenom poprečnoj prirodi monohromatskog po-
larizovanog gravitacionog talasa proizvoljne jačine.


