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Abstract

We study a viscoelastic body, in a linear stress state with
fractional derivative type of dissipation. The model was for-
mulated in [1]. Here we derive restrictions on the model that
follow from Clausius-Duhem inequality. Several known constitu-
tive equations are derived as special cases of our model. Two
examples are discussed.

1 A model of a visco-elastic body

We shall analyze a model of a viscoelastic body proposed in [1]. We
first recall few results from [1]. Suppose that the stress σ (t) and its
derivatives of real (not necessarily integer) order at time instant t in
a linear stress state depend on a strain ε (t) and its derivatives of real
order. Then, we may write

b0σ + b1σ
(α1) + ... + bMσ(αM ) = a0ε + a1ε

(α1) + ... + aNε(αN ), (1)

where a0, ...aN , b0, ...bM and α1, ...αN are real constants and we used ε(α)

and σ(α) to denote the α − th derivative of ε (t) and σ (t) , respectively
defined as (see [2])

dα

dtα
ε (t) = ε(α) =

d

dt

1

Γ (1 − α)

∫ t

0

ε (ξ) dξ

(t − ξ)α , (2)
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where Γ is the Euler gamma function. For the case when b0 = 1, bi =
0, i = 1, ...M,N = 1, α1 = 1 we obtain Kelvin-Voigt model of viscoelastic
body. Recently a distributed order differential equations are introduced,
as a generalization of (1) (see [3], [4], [5] and references given there) that
lead to the following type of σ − ε relation proposed in ([1])

∫ 1

0

φσ (γ) σ(γ)dγ =

∫ 1

0

φε (γ) ε(γ)dγ, (3)

where φσ (γ) and φε (γ) are constitutive functions. To clarify notation
in (3) we express (3) in another form. Let

Fσ (γ, t) ≡ σ(γ) =
d

dt

1

Γ (1 − γ)

∫ t

0

σ (τ) dτ

(t − τ)γ , (4)

Fε (γ, t) ≡ ε(γ) =
d

dt

1

Γ (1 − γ)

∫ t

0

ε (τ) dτ

(t − τ)γ , (5)

and assume that the functions Fσ (γ, t) , Fε (γ, t) are integrable with re-
spect to γ for any t ∈ [0,∞) on the interval [0, 1].Then (3) may be
written as

∫ 1

0

φσ (γ, t) Fσdγ =

∫ 1

0

φε (γ, t) Fεdγ. (6)

Note that in the special case when φσ (γ, t) = δ (γ) , where δ is the Dirac
distribution, (6) becomes

σ (t) =

∫ 1

0

φε (α) ε(α) (t) dt, (7)

with φε (α) given. Of course the stress σ could depend on integer order
derivatives, so that equation (7) may read

σ (t) =
m

∑

i=0

aiε
(i) +

∫ 1

0

φ (α) ε(α) (t) dt, (8)

where m ≥ 1. Models (7) and (8) we shall use in the example that we
present later.

The functions φσ (γ, t) and φε (γ, t) in (3) characterize the material
under consideration and must satisfy restrictions that follow from the
entropy inequality. We proceed now to derive those restrictions.
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2 The restriction following from the sec-

ond law of thermodynamics

Constitutive equations must satisfy the restrictions that follow from the
Clausisus-Duhem inequality. For fractional derivative type of constitu-
tive equations, such an analysis is presented in [7] and [8], for example.
The Second law of thermodynamics requires that the tangent of the me-
chanical loss angle is non-negative. We apply this criteria to the model
(3)

∫ 1

0

φσ (γ) σ(γ)dγ =

∫ 1

0

φε (γ) ε(γ)dγ. (9)

By applying Fourier transform to (9) we obtain

σ̂ (iω)

∫ 1

0

φσ (γ) (iω)γ dγ = ε̂ (iω)

∫ 1

0

φε (γ) (iω)γ dγ, (10)

where σ̂ (iω) = F (σ) =
∫

∞

−∞
σ (t) e−iωtdt is the Fourier transform of

σ (t). From (10) we obtain the complex modulus as

E∗ (iω) =

∫ 1

0
φε (γ) (iω)γ dγ

∫ 1

0
φσ (γ) (iω)γ dγ

. (11)

Writing E∗ (iω) = E ′ + iE” and using (iω)γ = ωγ
(

cos π
2
γ + i sin π

2
γ
)

in
(11) we obtain

E ′ =
C1C2 + S1S2

(C2)
2 + (S2)

2 ; E” =
S1C2 − C1S2

(C2)
2 + (S2)

2 , (12)

where

C1 =

∫ 1

0

φε (γ) ωγ cos
π

2
γdγ; C2 =

∫ 1

0

φσ (γ) ωγ cos
π

2
γdγ; (13)

S1 =

∫ 1

0

φε (γ) ωγ sin
π

2
γdγ; S2 =

∫ 1

0

φσ (γ) ωγ sin
π

2
γdγ. (14)

Therefore the tangent of the mechanical loss angle is

tan δ =
E”

E ′
=

S1C2 − C1S2

C1C2 + S1S2

(15)
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The second law of thermodynamics requires that

tan δ ≥ 0. (16)

(see [6]) and that both E ′ and E” are positive for all values of ω (see
[7]p.140). Thus we must have

C1C2 + S1S2 ≥ 0; S1C2 − C1S2 ≥ 0; for all 0 ≤ ω ≤ ∞. (17)

We consider several special cases of the restrictions imposed by (17).
1. Suppose that

φσ = δ (γ) + aδ (γ − α) ; φε = δ (γ) + bδ (γ − α) , (18)

where a, b and 0 < α < 1 are constants. This choice correspond to the
generalized Zener model σ + aσ(α) = ε + bε(α). By substituting (18) into
(16) we obtain

(

bωα sin π
2
α
) (

1 + aωα cos π
2
α
)

−

(

1 + bωα cos π
2
α
) (

aωα sin π
2
α
)

≥ 0;

(

1 + bωα cos π
2
α
) (

1 + aωα cos π
2
α
)

+

(

bωα sin π
2
α
) (

aωα sin π
2
α
)

≥ 0,

(19)

or
bωα sin π

2
α − aωα sin π

2
α ≥ 0;

(

1 + bωα cos π
2
α
) (

1 + aωα cos π
2
α
)

+

(

bωα sin π
2
α
) (

aωα sin π
2
α
)

≥ 0.

(20)

From (20) it follows that

b > a > 0, (21)

a well known result (see [7]).
2. Suppose that

φε (γ) = cφσ (γ) , c > 0. (22)
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Then tan δ = 0 and we conclude that the body behaves as an elastic
body.

3. Let us assume that

φσ = δ (γ) ; φε = E (τ0)
γ , (23)

where E = const. and τ0 = const. are known constants. Thus, the
constitutive equation reads σ = E

∫ 1

0
(τ0)

γ ε(γ)dγ which is of the type
(7). The condition (17) becomes

E

∫ 1

0

(τ0ω)γ sin
π

2
γdγ ≥ 0; E

∫ 1

0

(τ0ω)γ cos
π

2
γdγ ≥ 0, (24)

or

E > 0; τ0 > 0. (25)

4. Next we suppose that

φε = δ (γ) ; φσ = C (τ1)
γ , (26)

where C and τ1 are constants. The constitutive equation corresponding
to (26) reads

C

∫ 1

0

(τ1)
γ σ(γ)dγ = ε. (27)

The constants (14) are

C1 = 1; C2 = C

∫ 1

0

(τ1ω)γ cos
π

2
γdγ; (28)

S1 = 0; S2 = C

∫ 1

0

(τ1ω)γ sin
π

2
γdγ, (29)

so that (17) leads to

−C

∫ 1

0

(τ1ω)γ sin
π

2
γdγ ≥ 0; C

∫ 1

0

(τ1ω)γ cos
π

2
γdγ ≥ 0. (30)

From (30) we conclude that (30) violates the second law of thermody-
namics for any value of C 6= 0.
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In conclusion we write the conditions (17) in expanded form by using
definitions of S1, ...C2, so that

(

∫ 1

0
φε (γ) ωγ cos π

2
γdγ

)(

∫ 1

0
φσ (γ) ωγ cos π

2
γdγ

)

+
(

∫ 1

0
φε (γ) ωγ sin π

2
γdγ

) (

∫ 1

0
φσ (γ) ωγ sin π

2
γdγ

)

≥ 0;

for all 0 ≤ ω ≤ ∞

(31)

(

∫ 1

0
φε (γ) ωγ sin π

2
γdγ

) (

∫ 1

0
φσ (γ) ωγ cos π

2
γdγ

)

−
(

∫ 1

0
φε (γ) ωγ cos π

2
γdγ

)(

∫ 1

0
φσ (γ) ωγ sin π

2
γdγ

)

≥ 0.

for all 0 ≤ ω ≤ ∞.

(32)

3 Examples

We use the constitutive equation (3) to formulate two concrete problems.
I. Consider a mechanical system shown in Fig. 1. The system con-

sists of a body of mass m that moves translatory and is connected to one
end of a viscoelastic rod. The other end of the rod is fixed to unmovable
wall. Suppose that the initial (undeformed) length of the rod is l0 = 1.
In the deformed state the length is given as l (t) = l0 + y (t) where y (t)
is the change of the length. Therefore the strain is ε = y/l0.

Suppose that the rod is made of a material described by (7). The
equation of motion reads

my(2) (t) +
1

l0

∫ 1

0

φ (α) y(α) (t) dα = 0, (33)

For φ (α) we take (see [1])

φ (α) = E (τε)
α (34)

where E > 0, τε > 0 (see (25)) are constants.
By applying Laplace transform L (f) =

∫

∞

0
eitzf (t) dt = f̄ (z) to

(33) we obtain (with m = 1, l0 = 1)
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Figure 1: Mechanical system corresponding to (28)

z2ȳ (z) =

h̄ (z) − E
∫ 1

0
(τε)

α zαȳ (z) dα+

+y(1) (0) + zy (0)

+
∫ 1

0

[

E (τε)
α
(

1
Γ(1−α)

∫ t

0
y(τ)dτ

(t−τ)α

)

t=0

]

dα,

(35)

where we used the fact that

L[y(α)] = pαf̄ (p) −

(

1

Γ (1 − α)

∫ t

0

y (τ) dτ

(t − τ)α

)

t=0

. (36)

The last term in (35) vanishes if y (t) is bounded for t → +0, so that
from (35) we obtain

[

z2 + E
τεz − 1

ln (τεz)

]

ȳ (z) = y(1) (0) + zy (0) , (37)
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or

ȳ (z) =
y(1) (0) + zy (0)

z2 + E τεz−1
ln(τεz)

(38)

= ln (τεz)
y(1) (0) + zy (0)

z2 ln (τεz) + E (τεz − 1)
(39)

=
y(1) (0) + zy (0)

z2 + E(τεz−1)
ln(τεz)

. (40)

If lim
t→0

y (t) and lim
t→∞

y (t) exist, then they are given as

lim
t→0

y (t) = lim
z→∞

zȳ (z) = lim
z→∞

z
y(1) (0) + zy (0)

z2 + E(τεz−1)
ln(τεz)

= y (0) , (41)

and

lim
t→∞

y (t) = lim
z→0

zȳ (z) = lim
z→0

z
y(1) (0) + zy (0)

z2 + E(τεz−1)
ln(τεz)

= 0. (42)

If the constitutive equation of the viscoelastic rod is given in the
form (8),that is

σ (t) = a1ε
(1) + E

∫ 1

0

(τε)
α ε(α) (t) dt, (43)

where a1, E and τε are constants, the equation of motion reads

my(2) (t) +
a1

l0
y(1) +

E

l0

∫ 1

0

(τε)
α y(α) (t) dα = 0. (44)

The asymptotic behavior of (44) could be obtained by the same proce-
dure as in first case.

II. On the basis of constitutive equation (3) one can derive a moment
curvature relation for a rod. Such relations may be used for the study
of motion and stability of viscoelastic rods (see [9],[10] and [12]). Fol-
lowing the standard procedure (plane cross section hypothesis), as was
described in [11] we obtain

∫ 1

0

φσ (γ, t) M (γ)dγ = I

∫ 1

0

φε (γ, t)

(

1

ρ

)(γ)

dγ, (45)
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where I is the moment of inertia of the rod’s cross-section A, that is
I =

∫

A
y2dA, where y is the distance from the neutral axis, and ρ is the

radius of curvature of the rod axis.
Note that in the special case of elastic material φσ (γ, t) = δ (γ) , φε (γ, t) =

Eδ (γ) equation (45) becomes

M = EI

(

1

ρ

)

, (46)

i.e., the moment curvature relation of classical Bernoulli-Euler rod the-
ory.

For the case φσ = δ (γ) + aδ (γ − α) ; φε = δ (γ) + bδ (γ − α) (see
(18)) we obtain

M + aM (α) = I

(

1

ρ

)

+ bI

(

1

ρ

)(α)

. (47)

The constitutive equation of the type (47) was used in [9], [10] and [11].
If we choose φσ = δ (γ) , φε = Eδ (γ) + bδ (γ − α) we obtain

M = EI

(

1

ρ

)

+ bI

(

1

ρ

)(α)

. (48)

Equation (48), as a matter of fact its linearized version, was used in [12].

4 Conclusion

In this note we studied the viscoelastic body that in linear, isothermal
stress state has constitutive equation of the form (3). The restrictions
on the constitutive functions φσ and φε following from the second law
of thermodynamics, are given by (32). We showed that several known
constitutive aerations and corresponding restrictions on coefficients fol-
low from (3),(32). An example is formulated and asymptotic behavioral
of the solution is examined. Also the moment curvature relation for the
rod made of material described by (3) is derived in the form (45).
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O jednom tipu frakcionog izvoda za neko
viskoelastično telo UDK 531.01, 539.374

Posmatra se neko viskoelastično telo, u linearnom naponskom stanju
sa disipacijom tipa frakciog izvoda. Ovaj model je formulisan u radu [1].
Ovde izvodimo ograničenja koja na model propisuje Clausius-Duhem-
ova nejednakost. Nekoliko poznatih konstitutivnih jednačina se izvode
kao specijalni slučajevi našeg modela. Diskutujemo takodje i dva primera.


