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J. Jarić ∗ Z. Golubović †
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Abstract

Following the approach of Gurtin and Podio-Guidugli (1998),
the problem of crack propagation based on the notion of configu-
rational forces and couples in micropolar continua is considered.

1 Introduction

Very recently Gurtin and Podio-Guidugli (1998), developed a frame-
work for dynamical fracture, concerning on the derivation of balance
equations and constitutive equations that describe the motion of the
crack tip in two-space dimensions. They worked within the nonlin-
ear theory because the basic ideas are most easily explained within a
framework that distinguishes between reference and deformed configu-
rations; moreover, instead of laying down specific assumptions regard-
ing the strength of the crack-tip singularities, they consider hypotheses
motivated by the requirement that the underlying physical laws make
sense. The theory is based on a configurational force balance and a
mechanical version of the second law of thermodynamics.
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In classical continuum mechanics the response of a body to defor-
mation is described by standard deformational forces consistent with
balance laws for linear and angular momentum. But, as they stated,
configurational forces are less intuitive: they are related to the intrinsic
coherency of a body’s material structure and perform work in the addi-
tion and removal of material and in the evolution of structural defects.
Following Gurtin and Struthers (1990) and Gurtin (1995), they viewed
configurational forces as basic primitive objects consistent with their
own force balance. Configurational forces defined via the calculus of
variations as derivatives of an energy have been introduced earlier, e.g.
in the classic works of Eshelby (1951), (1975) on lattice defects.

The role of configurational forces, however, seems more pervasive
and fundamental than problems susceptible to a variational formu-
lation can indicate, a view they demonstrated within the context of
fracture dynamics.

Particularly, we refer to the recent monograph by Maugin (1993),
for a discussion of configurational forces within an Eshelbian frame-
work, and for related references.

In this short communication we strictly follow the approach of
Gurtin and Podio-Guidugli (1998), in a case of micropolar continua.
Our final results are not different in form results well known (see Jarić
(2000)). What is different is a derivation and a interpretation in terms
of configurational forces, which we believe most accurately describe the
underlying physics.

The scope of the paper is the following: at the beginning we re-
view some basic formulae of the geometry and the kinematics of a
cracked body given by Gurtin and Podio-Guidugli (1998), we need in
our investigation; for the same reason we described the motion of the
crack bodies; next we state the balances laws for deformational and
configurational forces for micropolar continua; the last part belongs to
the derivation of Eshelby tensor as a consequence of invariance under
reparametrization (Gurtin, 1995).
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2 Cracks; time-dependent control volumes

Let B denote a closed region of R2 with boundary ∂B and, for each t
in some open time interval, let C(t) be a smooth, connected, oriented
curve in B with one end, Z0, fixed at the boundary ∂B, with the
remainder of C(t) - including the other end point Z(t) - contained in
the interior of B, and with

C(τ) ⊂ C(t) for all t ≥ τ (2.1)

We view
B(t) = B\C(t) (2.2)

as a referential neighborhood of a growing crack C(t) with Z(t) the
crack tip. (See Fig.1. Note that B contains the points of C(t) while
B(t) does not; hence B(t) is cracked, while B is not. Note also that
the assumed regularity of C(t) precludes singularities such as kinks and
bifurcations.) We let e(t) denote the unit tangent to C(t) at Z(t) in
the direction of (possible) propagation (Fig.1).

Figure 1:

Then the tip velocity

v(t) = dZ(t)/dt (2.3)

may be written in the form

v(t) = V (t)e(t), V (t) ≥ 0, (2.4)
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with V the speed. Finally, we choose a continuous unit normal field
m(X, t) for C(t).

By a control volume we mean a closed subregion R(t) of B for which
∂R(t) evolves smoothly with t, and for which

CR(t) = C(t) ∩R(t), (2.5)

the portion of the crack in R(t), does not intersect ∂R(t) at more than
two points (Fig.2).

Figure 2:

For convenience, we limit our discussion to two classes of control
volumes: those that do not intersect the tip and those that contain the
tip in their interior. We view the dependence of R(t) on t as resulting
from the addition and removal of material points. So defined a control
volume does not preclude control volumes R that are independent of
time.

For R(t) a control volume, n(X, t) designates the outward unit
normal to ∂R(t), and U∂R the (scalar) normal velocity of the boundary
curve in the direction n. A useful example of a time-dependent control
volume is the tip disc

Dδ(t) = {X ∈ B : |X − Z(t)| ≤ δ} , (2.6)

a disc of radius δ centered at the tip Z(t); here the normal velocity is

U∂Dδ
= v·n. (2.7)
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For convenience, we write

Cδ(t) = CDδ
(t) = C(t) ∩Dδ(t). (2.8)

2.1 Derivatives following the crack tip;
tip integrals; transport theorems

According to Gurtin and Podio-Guidugli (1998), a field Φ(X, t) is re-
ferred as smooth away from the tip if Φ(X, t) is defined for all X ∈ B(t)
and all t, and if, away from the tip, Φ(X, t) and its derivatives have
limits up to the crack from either side. Then we write, for X ∈ C(t),
X 6= Z(t)

Φ±(X, t) = lim
ε→0

Φ(X ± εm(X, t), t), [Φ] = Φ+ − Φ−. (2.9)

Given such a field Φ(X, t), consider the corresponding field Φ̂(Y, t) in
which Y represents the position of the material point X relative to the
tip Z(t)

Φ̂(Y, t) = Φ(X, t), Y = X − Z(t). (2.10)

The partial derivative

Φ0(X, t) =
∂Φ̂(Y, t)

∂t

with respect to t holding Y fixed represents the time derivative of
Φ(X, t) following the tip Z(t); by the chain rule,

Φ0 = Φ• + ∇Φ·v (2.11)

away from the tip, where

Φ•(X, t) =
∂Φ(X, t)

∂t
.

We will repeatedly take limits, as δ → 0, of integrals of fields over
∂Dδ(t); we refer to such limits, when meaningful, as tip integrals; ex-
amples, for ϕ a scalar field, w a vector field, and T a tensor field,
are:

∮

tip

ϕn = lim
δ→0

∫

∂Dδ(t)

ϕn, (2.12a)
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∮

tip

(w ⊗ n) = lim
δ→0

∫

∂Dδ(t)

w ⊗ n, (2.12b)

∮

tip

Tn = lim
δ→0

∫

∂Dδ(t)

Tn. (2.12c)

Let R(t) be a control volume that includes the tip and consider the
region

Rδ(t) = R(t)\Dδ(t), (2.13)

with δ > 0 sufficiently small that ∂Rδ(t) = ∂Rδ(t) ∪ ∂Dδ(t). Then,
using the same letter n for the outward unit normal on both ∂R and
∂Dδ, and bearing in mind that the outward unit normal to ∂Rδ on
∂Dδ is n, we may use the gradient theorem in the usual manner-with
CRδ

considered as a ”slit in Rδ” giving rise to an additional pair of
boundary segments (Fig.3),

Figure 3:

and with
∫

Rδ

∇Φ interpreted accordingly - to conclude that, for Φ
smooth away from the tip,

∫

Rδ

∇Φ =

∫

∂R

Φn −

∫

CRδ

[Φ]m −

∫

∂Dδ

Φn. (2.14)
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Here, for convenience, we have suppressed the argument t. Thus, if
∮

tip
Φn exists, and if [Φ] is integrable on C then

∫

R
∇Φ exists as the

limit

lim
δ→0

∫

Rδ

∇Φ

and we have the generalized gradient theorem

∫

R

∇Φ =

∫

∂R

Φn −

∫

CR

[Φ]m −

∮

tip

Φn. (2.15)

The next definition allows us to state succinctly our hypotheses
concerning momenta and energies. We will refer to Φ as regular if, in
addition to being smooth away from the tip,

(R1) Φ is integrable on B; given any control volume R(t), the mapping
t→

∫

R(t)
Φ is differentiable;

(R2) Φo is integrable on B and [Φ]m·v is integrable on C(t), both
uniformly in t;

(R3)
∮

tip
Φn exists.

(The phrase ”uniformly in t” signifies ”uniformly for t in any compact
interval”.) By (R2) and (2.8),

∫

Cδ(t)

[Φ]m·v approaches zero as δ → 0. (2.16)

The following well-known transport theorem is valid when Φ(X, t) is
smooth away from the tip and R(t) does not contain the tip

d

dt











∫

R(t)

Φ











=

∫

R(t)

Φ• +

∫

∂R(t)

ΦU∂R. (2.17)

We now give two generalizations of (2.17) that account for the crack
tip.
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Transport theorem. For R(t) a control volume that includes the tip, if
Φ(X, t) is regular, then

d

dt











∫

R(t)

Φ











=

∫

R(t)

Φ• +

∫

∂R(t)

ΦU∂R −

∮

tip

Φ(v·n), (2.18a)

d

dt











∫

R(t)

Φ











=

∫

R(t)

Φo +

∫

∂R(t)

Φ(U∂R − v·n) +

∫

CR(t)

[Φ]m·v (2.18b)

(with
∫

R(t)

Φ• defined as limδ→0

∫

Rδ

Φ•, which exists).

2.2 Motions of cracked bodies

The motion of micropolar body B(t) is described completely by y(X, t)
and χ(X, t), where orthogonal χ is called microrotation (see Eringen
(1976)). Let y(X, t) be smooth away from the tip with y(X, t) one-to-
one in X on B(t) for each t. The deformation gradient

F = ∇y (2.19)

and the material velocity y• is then smooth away from the tip.
Let R(t) be a control volume. The boundary curve ∂R(t) may be

parameterized in a sufficiently small time interval and in a neighbor-
hood of any of its points by a function of the form X = X̂(σ, t) =
X̂(σ1, σ2, t); the field

u(X, t) =
∂X̂(σ, t)

∂t
(2.20)

then represents a velocity field for ∂R(t) in that neighborhood. It is
possible to use such parametrizations to construct a velocity field for
∂R(t); that is, a smooth field u(X, t) defined for all X on ∂R(t) and
all t in any (sufficiently small) time interval. A field u so constructed
depends on the choice of local parametrizations, but its normal com-
ponent is intrinsic (see Fig.4)

u·n = U∂R. (2.21)
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Figure 4:

Each local parametrization X = X̂(σ, t) induces a corresponding lo-
cal parametrization x = x̂(σ, t) = y(X̂(σ, t), t) for the deformed bound-
ary curve y(∂R(t), t); the corresponding induced velocity field

ū(X, t) =
∂x̂(σ, t)

∂t
(2.22)

for the deformed boundary y(∂R(t), t) is related to u by the formula

ū = y• + Fu. (2.23)

The tip velocity v(t) may be considered as a velocity field for the
boundary of the disc Dδ(t) using as a parametrization

X = X̂δ(σ, t) = Z(t) + δv(σ) (2.24)

with v(σ) a unit vector at an angle σ from a fixed axis (see Fig.5).
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Figure 5:

Then

yo = y• + Fv (2.25)

the time derivative following Z(t), represents the corresponding in-
duced velocity field for y(∂Dδ(t), t). We assume that:

(Al) there is a function v̄(t) such that

yo(X, t) → v̄(t) as X → Z(t) uniformly in t. (2.26)

One might expect that v̄(t) represents the velocity of the deformed
crack tip. Granted sufficient regularity this is indeed the case. Assume
for the moment that y(X, t) has a limiting value y(Z, t) as X → Z(t),
so that the deformed crack tip is well defined. Then y(Z, t) is differen-
tiable in t and

v̄(t) =
dy(Z(t), t)

dt
. (2.27)

To verify (2.27) consider (2.24) with σ fixed, and let yδ = y(X̄δ(σ, t), t).
Then dyδ/dt = yo(X̄δ(σ, t), t), so that, by (2.26), dyδ/dt → v̄(t) as
δ → 0, uniformly in t. But, by hypothesis, yδ → y(Z(t), t); thus
y(Z(t), t) is differentiable in t and (2.25) holds at Z(t).

We recall that for micropolar continua, the skew-symmetric gyra-
tion tensor ν is defined by

ν = χ
•
χ

T , ν = −ν
T . (2.28)
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The corresponding angular velocity ν is defined by

ν = −
1

2
ε · ·ν or νk = −

1

2
εklmνlm. (2.29)

Then,
χ(X̂(σ, t), t) ≡ H(σ, t) (2.30)

and
µ̄ = H•HT ; (2.31)

where

H• =
∂H

∂t
= χ

• + u·∇χ.

Now, it is easy to show that

µ̄ = ν + (u·∇χ)χT , or µ̄kl = νkl + uLχk
K;Lχ

lK (2.32)

since

µ̂k
.l = H•k

KH
K

l =

(

∂χk
K

∂t
+ χk

KLu
L

)

χ K
l .

Its corresponding angular velocity µ̄ is given by

µ̄ = −
1

2
ε··µ̄ = −

1

2
ε··

[

ν + (u · ∇χ)χT
]

= ν−
1

2
ε··(u·∇χ)χT , (2.33)

or in the componental form

µ̄k = νk −
1

2
εklmχ

l
K;Lχ

mkuL. (2.33a)

Moreover, for the crack the boundary of the disc Dδ(t), using parame-
terization (2.24), we have

µ̂ = ν + (v · ∇χ)χT . (2.34)

3 Basic laws

3.1 Balance laws for deformational
and configurational forces

We let ρ denote the reference mass density, write

p = ρy•, ρσ = Π (3.1)
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for the momentum, and intrinsic angular momentum density due to
rotation; σ is a spin density. Let S denote the Piola–Kirchhoff stress
and M couple stress that arise in response to deformation. We neglect
external body forces and body couples, and assume that the crack faces
are traction-free, i.e

S±m = 0, M±m = 0, on C(t). (3.2)

The balance laws for linear and angular momentum then take the form

d

dt











∫

R(t)

p











=

∫

∂R(t)

(pU∂R + Sn) (3.3a)

d

dt











∫

R(t)

(y × p + Π)











=

∫

∂R(t)

{(y × p + Π)U∂R + y × Sn + Mn} ,

(3.3b)
for each control volume R(t).

We consider, in addition, a configurational stress C, a configura-
tional force f distributed over B(t), and a configurational force g con-
centrated at the tip, Λ - a configurational couple stress, ∆ - a config-
urational moment distributed over B(t), and M(t) - a configurational
moment concentrated at the tip; these are presumed consistent with
the configurational force balance, if R(t) does not contain the tip

∫

∂R(t)

Cn +

∫

CR(t)

[C]m +

∫

R(t)

f = 0, (3.4a)

∫

∂R(t)

(X × Cn + Λn) +

∫

CR(t)

(X × [C]m + [Λ]m) +

∫

R(t)

(X × f + ∆) = 0,

(3.4b)

and, if R(t) contain the tip
∫

∂R(t)

Cn +

∫

CR(t)

[C]m +

∫

R(t)

f + g(t) = 0, (3.5a)
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∫

∂R(t)

(X × Cn + Λn) +

∫

CR(t)

(X × [C]m + [Λ]m)+

∫

R(t)

(X × f + ∆) + Z(t) × g(t) + M(t) = 0. (3.5b)

We assume that each of f and g consists of internal and inertial
portions. While the decomposition of f is irrelevant to most of our
discussion, determining the inertial portion of g will form a major part
of our analysis. The same conclusion hold for ∆ and M.

To ensure that the balances (3.4) are well defined and that their
localization to the crack tip (in Section 4) is meaningful, we assume
that:

(A2) ρ is continuous; p and y×p+Π are regular; S, M, Λ and C are
smooth away from the tip; f and ∆ are integrable over B;

∫

∂Dδ

|Sn| and
∫

∂Dδ

|Mn| remains bounded as δ → 0; [C]m and [Λ]m are integrable

on C(t).
Then the following local relations away from the crack hold:

divS = p•, (3.6a)

Π• = divM − sA, (3.6b)

where

sA
i = εijkx

j
;KS

kK , (FST )A =
1

2
ε · ·sA.

From (3.4b) and (3.5b) it follows

divC + f = 0, (3.7a)

−cA + divΛ + ∆ = 0, (3.7b)

where

cAi = εijkx
j
;KC

kK , (FCT )A =
1

2
ε · ·cA.

3.2 Mechanical version of the second law

In the absence of defects (such as cracks), of external body forces, and
of thermal and compositional effects, micropolar continuum mechanics
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may be based on a ”second law” that utilizes stationary control volumes
R and has the form

d

dt







∫

R

ψ







+ K(R) ≤ W(R) (3.8)

where ψ is the free energy density,

K(R) =
d

dt







∫

R

(k + κ)







(3.9)

with
- the kinetic energy density due to the translation motion,

k =
1

2
ρ|y•|2 (3.10a)

- the kinetic energy density due to the microrotation of the particle,

κ =
1

2
ρσ · ν (3.10b)

- the total kinetic energy density,

k + κ, (3.10c)

and where

W(R) =

∫

∂R

(Sn · y• + Mn · ν) (3.11)

is the boundary working (Gurtin and Struthers, 1990; Gurtin, 1995).
For an evolving control volume R(t) generalization of (3.8)-(3.11)

is necessary, but by no means obvious. We consider the dependence of
R(t) on t as representing the addition of material to-or the removal of
material from-the boundary ∂R(t), and we write the second law in a
manner reflecting this view. To begin with we take

d

dt











∫

R(t)

ψ













Configurational forces and couples for crack propagation 199

as the sole term involving free energy; we do not include the outflow
term

∫

∂R(t)

ψU∂R

as we view noninertial interactions with the material exterior to R(t)
in terms of working, rather than transport.

This leads to the main issue: generalization of the expression (3.11)
to account for the work performed in the addition and removal of ma-
terial at the boundary. We assume that Cn u represents the boundary
working of the configurational stress C, where u is the velocity field
computed via a particular choice of local parametrizations X = X̂(σ, t)
for ∂R(t). The working of the deformational stress S must also be taken
into account. When the control volume depends on time there is no
intrinsic material description of its deformed boundary y(∂R(t), t), as
material is continually being added and removed, and it would seem
appropriate to use, as a velocity for y(∂R(t), t), the derivative ū(X, t)
of y(X̂(σ, t), t) with respect to t holding the surface parameter σ fixed;
we therefore write the boundary working of S in the form Sn · ū. The
same reasoning holds for Λ and M. Particulary, Mn ·µ̄ is the boundary
working of M.

Finally, as we view the kinetic energy as ”independent” of the in-
ternal structure of the material, we generalize K(R) in the standard
manner, viz.,

K(R(t)) =
d

dt







∫

R

(k + κ)







−

∫

∂R(t)

(k + κ)U∂R. (3.12)

In conclusion, we write the second law for an evolving control vol-
ume R(t) - that may or may not contain the crack tip-in the form

d

dt











∫

R(t)

ψ











+K(R(t)) ≤

∫

∂R(t)

(Sn·ū+Cn·u+Mn·µ̄+Λn·µ, ) (3.13)

with u a velocity field for ∂R(t); ū and µ̄ the corresponding induced ve-
locity field for y(∂R(t), t) and χ(∂R(t), t). (The configurational forces
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f and g perform no work, as their inertial components are accounted
for by K(R(t)), while their noninertial components are internal; more-
over, there is no contribution from C(t) because of (3.2) and since only
the tip of C(t) evolves.) Note that, by (2.23), the deformational work-
ing Sn · ū consists of a classical term Sn · y• plus a term Sn ·Fu; also
Mn ·µ̄ consist a clasical term Mn ·ν and − 1

2
Mn ·(ε · ·(u ·∇χ)χT ). They

account for the addition of strained material to ∂R. Note also that for
R independent of time (3.13) reduces to the standard inequality (3.8),
50 there is no conflict with classical continuum mechanics.

To ensure that this version of the second law be meaningful, and to
allow for its localization, we assume that:

(A3) ψ, k and κ are regular.

3.3 The Eshelby tensor as a consequence of invari-
ance under reparameterization (Gurtin, 1995)

We require that our theory be independent of the choice of parametriza-
tion for ∂R(t). This requirement of invariance under reparametrization
has important consequences. In particular, the invariance of (3.13) is
equivalent to invariance of boundary working, which, by (2.30), can be
given the form

W(R(t)) =

∫

∂R(t)

(Sn · ū + Cn · u + Mn · µ̄+ Λn · µ). (3.14)

Here, in order to simplify the investigation, we did not consider the
rotation of Dδ(t). Then µ = 0. We write

W(R(t)) =

∫

∂R(t)

{

Sn · y• + (FTSn + Cn) · u + Mn · ν−

1

2
Mn · (ε · ·(u · ∇χ)χT )

}

, (3.14a)

where,

1

2
Mn · (ε · ·(u · ∇χ)χT ) =

1

2
MkKn

KεklmχlL,Mχ
L

m uM ,
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1

2
εklmMlKχmL ≡ Mk

.LK

−
1

2
Mn · (ε · ·[u · ∇χ)χT ] = uMχlL,MMlL

Kn
K .

Also
FTS · u = xk

;MSkKn
KuM

Cn · u = CMKn
KuM

(FTS + Cn) · u −
1

2
Mn · (ε · ·[u · ∇χ)χT ] =

(

CMK + xk
;MSkK + χlL;MMlL

K

)

nKuM =

tr(C + FTS + ∇χTM)n ⊗ u.

Then
(C + FTS + ∇χTM) · aα.

Changes in parametrization affect the tangential component of u,
but leave the normal component unaltered. In fact, invariance of (3.14)
under reparametrization is equivalent to the requirement that (C +
FTS+∇χM) ·aα on ∂R(t) for all tangential vector fields aα on ∂R(t);
thus, since R(t) is arbitrary, (C+FTS) ·n must be parallel to n for all
n, so that

⇒ (C + FTS + ∇χM) · aα = πI (3.15a)

and, by (2.28), the working has the intrinsic form

W(R(t), t) =

∫

R(t)

(Sn · y• + Mn · ν) +

∫

∂R(t)

πU∂R (3.16a)

The scalar field π is a configurational tension that works to increase the
volume of R(t) through the addition of material at its boundary. Re-
ferring to the final term in (3.16) as the configurational working, (3.16)
may be stated more suggestively as boundary working equals defrrma-
tional working plus configurational working. Note that the configura-
tional working πU∂R(t) is not due solely to the action of the configura-
tional stress C; the deformational stress contributes also through the
term (Sn · Fn)U∂R.
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Next, assuming that R(t) does not contain the crack, and using
(2.17) and (3.16), the inequality (3.13) may be rewritten as

∫

R(t)

(ψ + k + κ)• ≤

∫

∂R(t)

{Sn · y• + Mn · ν + (π − ψ)U∂R.} (3.17a)

Given a time τ , it is possible to find a second referential control volume
R′(t) with R′(t) = R(t), but with U∂R′(X, τ), the normal velocity of
∂R′(τ), an arbitrary scalar field on ∂R′(τ); satisfaction of (3.17) for all
such U∂R′ implies

π = ψ. (3.18)

Therefore, configurational tension coincides with free energy, a result
analogous to the coincidence of surface tension and surface free-energy;
what is more important, (3.16) and (3.18) yield the Eshelby relation

C = ψI − FTS −∇χTM (3.19)

for the configurational stress C.

4 Conclusion

The derivation of the Eshelby relation was accomplished without re-
course to constitutive equations or to a variational principle; the deriva-
tion was based on a version of the second law appropriate to referential
control volumes whose boundaries evolve with time. The result (3.18)
is a consequence of the invariance of W(R) under reparametrization;
it is independent of the particular form chosen for the second law and
is hence more basic than (1.4).
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Konfiguracione sile i spregovi za prostiranje
prsline
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Sledeći pristup Gurtin-a and Podio-Guidugli-a (1998), razmatra se
problem prostiranja prsline zasnovan na pojmu konfiguracionih sila i
spregova u mikropolarnom kontinuumu.


