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Abstract

The 24 components of the relativistic spin tensor consist of 3+3
basic spin fields and 9 + 9 constitutive fields. Empirically only
3 basic spin fields and 9 constitutive fields are known. This
empirem can be expressed by two spin axioms, one of them
identifying 3 spin fields, and the other one 9 constitutive fields
to each other. This identification by the spin axioms is material-
independent and does not mix basic spin fields with constitutive
properties. The approaches to the Weyssenhoff fluid and the
Dirac-electron fluid found in literature are discussed with regard
to these spin axioms. The conjecture is formulated, that another
reduction from 6 to 3 basic spin fields which does not obey
the spin axioms introduces special material properties by not
allowed mixing of constitutive and basic fields.
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1 Introduction

We investigate the constitutive theory of spin fluids in a relativistic
context. General Relativity Theory (GRT) using Riemann geometry
for geometrization of gravitation is currently assumed to be the most
appropriate geometrization.
Here we consider in a relativistic framework the general spin balance.
The systematic reduction from 6 to 3 basic spin fields is introduced
by two spin axioms which prohibit the mixing between the basic spin
fields and the constitutive fields. This is obvious, because no special
constitutive assumptions should be introduced by this reduction. As
an example the Weyssenhoff fluid and the Dirac-electron fluid with
regard to the general spin balance and the spin axioms are discussed.

2 The Spin Balances

Balance equations are differential equations for the wanted basic fields.
Beside these fields constitutive quantities describing the material ap-
pear in the balances. This structural distinction into basic fields and
constitutive properties is independent of writing down the balance
equations in relativistic or non-relativistic form.
First of all we consider the non-relativistic spin balance for characteriz-
ing, what are the basic spin fields and what the constitutive properties.

2.1 Non-relativistic spin balance

Starting out with the definition of the angular momentum as a skew-
symmetric 3-tensor of second rank (i, j, · · · = 1, 2, 3)

M ij = x[iρvj] + ρsij (1)

the balance of angular momentum is

1
2
∂t(ρsij) + ∂tx

[iρvj] +

∂k

(
1
2
ρsijvk − mijk + x[iρvj]vk − x[itj]k

)
=

lij + x[if j]

(2)
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Here the basic fields are (1) consisting of the orbital x[iρvj] and the
spin angular momentum densities ρsij. The constitutive properties are
described in (2) by the stress tensor tjk and the couple stress mijk. An
external angular momentum is given by lij.
Because the specific spin sij ⇔ sk can be identified with the axial
spin vector sk in R3 the balance of angular momentum can be written
down as a vector equation. If from this balance equation the balance
of momentum multiplied by ×x is subtracted, we obtain the balance
of spin in vector formulation [1]

∂t(ρsi) + ∇k

(
vkρsi − wik

)
+ εijktjk = ρgi (3)

Here the distinction into the basic fields ρs and the constitutive quan-
tities w and t is clear: There are 3 basic spin fields s, 9 fields of the
couple stress w, and 3 fields from the balance of momentum by the
skew-symmetric part ε : t of the stress tensor. A given external angu-
lar momentum density is ρg.

2.2 Relativistic spin balance

The non-relativistic momentum flux density ρvj in (1) is replaced in
relativistic formulations by the energy-momentum tensor T αβ. There-
fore the tensor order one of the momentum flux density is replaced
by the order two of the energy-momentum tensor in a relativistic for-
mulation. Consequently in special relativity theory the definition of
skew-symmetric angular momentum becomes (α, β, · · · = 1, . . . , 4)

Mαβµ := x[αT β]µ + Sαβµ (4)

and the balance results in

∂µM
αβµ = Lαβ + x[αfβ] (5)

Here Sαβµ is the skew-symmetric spin tensor and Lαβ the external
angular momentum. Caused by the extension of the tensor order in
relativistic theories with respect to non-relativistic ones, we now have
6 × 4 = 24 fields of the spin tensor, including the basic spin fields
and the constitutive quantities. Of how many basic and constitutive
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fields these 24 fields are composed, can be seen, if the spin tensor is
decomposed into its spatial and time-like parts by a 3+1 split. By use
of the 4-velocity uα the 3+1 split of the spin tensor is

−S · ·ν
λµ = S · ·ν

µλ = s · ·ν
µλ +

1

c2
s̃µλu

ν +
1

c2
u[µŝ

·ν
λ] +

+
1

c2
š ·ν
[µ|u|λ] +

1

c4
s̃[µuλ]u

ν +
1

c4
u[µŝλ]u

ν (6)

= s · ·ν
µλ +

1

c2
s̃µλu

ν +
1

c2
u[µΞ ·ν

λ] +
1

c4
u[µΞλ]u

ν (7)

Here we have introduced the following abbreviations

s · ·λ
µν := S

· ·γ
αβ hα

µhβ
νhλ

γ couple stress (8)

s̃µν := S
· ·γ
αβ hα

µhβ
νuγ spin density (9)

ŝ ·λ
ν := S

· ·γ
αβ hβ

νhλ
γu

α (10)

š ·λ
µ := S

· ·γ
αβ hα

µuβhλ
γ (11)

s̃µ := S
· ·γ
αβ hα

µuβuγ (12)

ŝν := S
· ·γ
αβ uαhβ

νuγ (13)

Ξ ·λ
ν := ŝ ·λ

ν − š ·λ
ν spin stress (14)

Ξν := ŝν − s̃ν spin density vector (15)

The spin balance equation determines the divergence of the spin tensor

Sαβµ
· · · ;µ = T [αβ] + Lαβ (16)

Here T [αβ] is the skew-symmetric part of the energy momentum tensor
which couples the spin balance to the balance of momentum. Beyond
this source, there may be other external moments Lαβ from (5). We
now decompose (16) by its 3+1 split which results in two parts, the
hh-part and the hu-part. Because of the skew-symmetry of the spin
tensor the uu-part is zero. In more detail the hh-part of the 3+1 split
results in 3 equations
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hµ
αhν

βS · ·λ
µν · ;λ = s · ·λ

µν · ;λh
µ
αhν

β
︸ ︷︷ ︸

♠

+
1

c2
s̃µν;λu

λhµ
αhν

β +
1

c2
s̃µνh

µ
αhν

βuλ
· ;λ

︸ ︷︷ ︸

♦

−

−
1

c2
u[µΞ ·λ

ν]

(
hµ

αhν
β

)

;λ
︸ ︷︷ ︸

4

−
1

c4
u[µΞν]u

λ
(
hµ

αhν
β

)

;λ
︸ ︷︷ ︸

4

= T[µν]h
µ
αhν

β
︸ ︷︷ ︸

]

+ Lµνh
µ
αhν

β
︸ ︷︷ ︸

\

(17)

and the 3 equations of the hu-part becomes

hν
γu

µS · ·λ
µν · ;λ = s · ·λ

µν · ;λh
ν
γu

µ −
1

c2
s̃µνh

ν
γu

µ
· ;λu

λ

︸ ︷︷ ︸

4

+

+
1

2

1

c2
Ξν;λu

λhν
γ +

1

2

1

c2
Ξνh

ν
γu

λ
· ;λ

︸ ︷︷ ︸

♦

+
1

2

1

c2
uµΞ ·λ

ν · ;λu
µhν

γ

︸ ︷︷ ︸

♠

= T[µν]h
ν
γu

µ

︸ ︷︷ ︸

]

+ Lµνh
ν
γu

µ

︸ ︷︷ ︸

\

(18)

Now we compare (17) and (18) with the non-relativistic balance of spin
(3)

∂t(
1

2
ρsi) + ∇k(v

k 1

2
ρsi)

︸ ︷︷ ︸

♦

− wik
︸︷︷︸

♠

) = −εikjtkj
︸ ︷︷ ︸

]

+ ρgi

︸︷︷︸

\

(19)

The ♦-terms in (19), (17), and (18) are equivalent to the total time
derivative, the ♠-terms belong to the couple stress, the ]-terms to the
skew-symmetric part of the energy-momentum tensor, and the \-terms
to the external angular momentum. The 4-terms can be interpreted
as coupling terms between the hh- and hu-part in which the other fields
appear respectively. Consequently we obtain balance equations for the
spin density (hh-part) and for the spin density vector (hu-part) which
are coupled to each other by the 4-terms.
From (7), (17), and from (18) we can see, how the 24 components of
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the spin tensor are distributed on the basic fields and the constitutive
quantities. The first term in (7), the couple stress (8), is according to
(19) a constitutive equation. Because the couple stress is space-like,
it represents 9 fields. The second term in (7), the spin density (9), is
according to (17) a basic spin field having 3 components. According to
(17) and (18) there are other spin fields, the spin stress (14) and the
spin density vector (15). Comparison of (17) and (18) with (19) yields,
that the spin density vector is an other basic spin field and that the
spin stress is a constitutive quantity. The spin density vector field has 3
components, whereas the spin stress has 9 components. Consequently
we have 3+3 = 6 basic spin fields and 9+9 = 18 constitutive quantities
which all together result in the 24 components of the spin tensor.

3 Spin Axioms

As discussed in the previous section there are 6 basic spin fields in
relativistic theories. But up to now only 3 spin fields are known in
physics, a fact which is formulated in the following

Empirem

According to (19) in non-relativistic physics only 3 basic
spin fields (the spin density) and 9 constitutive functions
(the couple stress) are known and measurable.

�

This empirem can be interpreted in two different ways: 3 of the 6 spin
fields are caused by typically relativistic effects. They are very small
and not be measured up to now. Interestingly these 6 spin fields are
connected with 18 constitutive couple stresses so that also materials
should have relativistic properties which cannot be detected in the
non-relativistic limit. If this possibility of interpretation seems to be
too artificial, the other possibility remains:

Spin Axiom 1

Also in relativistic physics only 3 basic spin fields and 9

couple stresses exist.

�
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A consequence of axiom 1 is to reduce the 6 spin fields to 3 ones in
relativistic theories. The question is how to reduce them.
One first possibility is to demand, that the spin tensor is totally skew-
symmetric

Sαβγ
!
= S[αβγ] (20)

In this case we obtain only 4 spin fields which may correspond to the
wanted 3 basic spin fields and 1 additional constitutive field. Therefore
by (20) the constitutive equations are severely restricted by setting 8
of the 9 fields of the couple stress to zero.
A second possibility of reducing fields is to cancel 3 spin fields and 9
constitutitive quantities arbitrarily. But this possibility seems not to
be very systematic, because the basic spin fields and the constitutive
fields are properly separated from each other: There is the spin den-
sity (9) and the spin density vector (15) as basic spin fields, and the
couple stress (8) and the spin stress (14) correspond to each other as
constitutive fields. Because the hh-part (17) and the hu-part (18) of
the spin balance are coupled to each other, a third possibility

Ξν = 0, ∧ Ξ ·λ
ν = 0 (21)

or

s̃µν = 0, ∧ s · ·λ
µν = 0 (22)

results in differential equations which are not of balance type any more.
Inserting (21) into (17) and (18) we obtain from (17) a balance equation
of the spin density, whereas (18) has to be interpreted as a constraint
for the constitutive quantity couple stress: The couple stress cannot be
chosen arbitrarily, because its divergence is restricted by the constraints
(18). The same happens to the spin stress and the spin density vector,
if (22) is inserted into (17) and (18). Consequently by choice of (21)
or (22) hidden material properties are introduced.
An essential point is, that the reduction of the fields should not restrict
the free choice of the also reduced constitutive equations. Consequently
the possibility of identifying spin density with spin density vector and
couple stress with spin stress remains.

Spin Axiom 2

Spin density and spin density vector field are semi-dual to
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each other, as couple stress and spin stress are, that means

we identify

s̃αβ
!
=

1

2

1

c2
ηαβδγu

δΞγ ⇔
1

c2
u[µΞν] =

1

2
η · ·αβ

µν s̃αβ (23)

sαβγ
!
=

1

2

1

c2
ηαβδλu

δΞλ
·γ ⇔

1

c2
u[µΞ ·λ

ν] =
1

2
η · ·αβ

µν s · ·λ
αβ (24)

�

Here ηαβδλ is the Levi-Civita symbol. From (23) we see that s̃αβ and
Ξγ are semi-dual to each other if s̃αβ and uδΞγ are dual to each other.
According to (24) the same is valid for sαβγ and Ξλ

·γ .

Inserting (23)2 and (24)2 into (7) we obtain for the spin tensor

S · ·λ
µν =

(

δα
[µδ

β

ν] +
1

2
η · ·αβ

µν

)
1

c2
s̃αβuλ +

(

δα
[µδ

β

ν] +
1

2
η · ·αβ

µν

)

s · ·λ
αβ (25)

and inserting (23)1 and (24)1 into (7) results in

S · ·λ
µν =

(

δ
γ

[µδ
δ
ν] +

1

2
η · ·γδ

µν

)
1

c4
Ξγuδu

λ +

(

δ
γ

[µδ
δ
ν] +

1

2
η · ·γδ

µν

)
1

c2
Ξ ·λ

γ uδ (26)

By adopting the spin axiom 2 (25) and (26) are different but equivalent
representations of the spin tensor, (25) in spin density and couple stress,
(26) in spin density vector and spin stress. From (25) and (26) we
obtain

S · ·λ
µν =

(

δα
[µδ

β

ν] +
1

2
η · ·αβ

µν

)(
1

c2
s̃αβuλ + s · ·λ

αβ ·

)

(27)

=

(

δ
γ

[µδ
δ
ν] +

1

2
η · ·γδ

µν

)(
1

c4
uγΞδu

λ +
1

c2
uγΞ

·λ
δ

)

(28)
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The common bracket in the representations of the spin tensor has the
remarkable property

1

2
η · ·µν

κρ

(

δα
[µδ

β

ν] +
1

2
η · ·αβ

µν

)

=

(

δα
[κδ

β

ρ] +
1

2
η · ·αβ

κρ

)

(29)

Consequently we have proven the

Corollary

By the spin axioms the spin tensor is self dual with respect
to the first two indices

S · ·λ
µν =

1

2
η · ·αβ

µν S · ·λ
αβ (30)

From the two representations (27) and (28) for the spin tensor we
obtain two equivalent versions of the spin balance

S · ·λ
µν · ;λ =

(

δα
[µδ

β

ν] +
1

2
η · ·αβ

µν

)(
1

c2
s̃αβuλ + s · ·λ

αβ ·

)

;λ

(31)

=

(

δ
γ

[µδ
δ
ν] +

1

2
η · ·γδ

µν

)(
1

c4
uγΞδu

λ +
1

c2
uγΞ

·λ
δ

)

;λ

(32)

The 3+1 decomposition of (31) gives
hµ

κh
ν
σ:

hµ
κh

ν
σS

· ·λ
µν · ;λ = hµ

κh
ν
σ

(

δα
[µδ

β

ν] +
1

2
η · ·αβ

µν

)(
1

c2
s̃αβuλ + s · ·λ

αβ ·

)

;λ

= hµ
κh

ν
σT[µν] + hµ

κh
ν
σL[µν]

= t[κσ] + hµ
κh

ν
σL[µν] (33)

uµhν
σ:

uµhν
σS

· ·λ
µν · ;λ = uµhν

σ

(

δα
[µδ

β

ν] +
1

2
η · ·αβ

µν

)(
1

c2
s̃αβuλ + s · ·λ

αβ ·

)

;λ

= uµhν
σT[µν] + uµhν

σL[µν]

= (qσ − pσ) + uµhν
σL[µν] (34)
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And the 3+1 decomposition of (32) results in
hµ

κh
ν
σ:

hµ
κh

ν
σS

· ·λ
µν · ;λ = hµ

κh
ν
σ

(

δ
γ

[µδ
δ
ν] +

1

2
η · ·γδ

µν

)(
1

c4
uγΞδu

λ +
1

c2
uγΞ

·λ
δ

)

;λ

= hµ
κh

ν
σT[µν] + hµ

κh
ν
σL[µν]

= t[κσ] + hµ
κh

ν
σL[µν] (35)

uµhν
σ:

uµhν
σS

· ·λ
µν · ;λ = uµhν

σ

(

δ
γ

[µδ
δ
ν] +

1

2
η · ·γδ

µν

)(
1

c4
uγΞδu

λ +
1

c2
uγΞ

·λ
δ

)

;λ

= uµhν
σT[µν] + uµhν

σL[µν]

= (qσ − pσ) + uµhν
σL[µν] (36)

Equations (33) and (35) are identical, as well as equations (34) and
(36). The reduction from 6 to 3 equations (spin balances) requires,
that also equations (33) and (34) are dependent on each other, as well
as equations (35) and (36). This leads to the requirement that also
(qσ − pσ) and tσκ are semi-dual to each other:

tκσ =
1

2

1

c2
η · ·βα

κσ uβ(qα − pα) (37)

The particular meaning of the spin axioms (23) and (24) can be char-
acterized by the following proposition which we will prove later

Conjecture

All reductions from 6 + 18 to 3 + 9 basic and constitutive
spin fields which do not use spin axiom 2 are introducing a
specially chosen material.

�

If this conjecture is true, the reduction of the spin fields has to obey
the spin axiom 2, because a reduction has to be performed before con-
stitutive properties are introduced into the theoretical considerations.
With respect to the spin axioms we now will shortly discuss two exam-
ples of spin fluids well-known from the literature.
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4 Examples

There are two spin fluids which are typically different from each other:
The Weyssenhoff fluid which is a classical one, and the Dirac-electron
fluid which represents the classical description of a quantum-fluid. We
now will discuss these fluids with respect to the spin axioms introduced
above.

4.1 Weyssenhoff fluid

According to [2, 3] the spin tensor of the Weyssenhoff fluid reads:

S
· ·µ
αβ =̇

1

c2
s̃αβuµ (38)

This choice of the spin tensor can be interpreted in two ways: Com-
paring (38) with (25) we could state, that the couple stress s · ·λ

αβ , the

spin density vector Ξν , and the spin stress Ξ·λ
ν are chosen to zero and

that therefore the choice (38) of the spin tensor does not satisfy the
spin axiom 2, because in (38) the η-term of the first bracket in (25)
is missing. Consequently we obtain from (17) the balance of the spin
density

1

c2
s̃µν;λu

λhµ
αhν

β +
1

c2
s̃µνh

µ
αhν

βuλ
· ;λ

︸ ︷︷ ︸

♦

= T[µν]h
µ
αhν

β
︸ ︷︷ ︸

]

+ Lµνh
µ
αhν

β
︸ ︷︷ ︸

\

(39)

and from (18) the constraint for the spin density

−
1

c2
s̃µνh

ν
γu

µ
· ;λu

λ

︸ ︷︷ ︸

4

= T[µν]h
ν
γu

µ

︸ ︷︷ ︸

]

+ Lµνh
ν
γu

µ

︸ ︷︷ ︸

\

(40)

which only appears, if the spin axiom 2 is not taken into account.
If the spin axiom 2 is taken into account, (38) is compatible with (25),
if

1

2c2
η · ·αβ

µν s̃αβuλ +

(

δα
[µδ

β

ν] +
1

2
η · ·αβ

µν

)

s · ·λ
αβ = 0 (41)



180 H. J. Herrmann, G. Rückner, W. Muschik, H. H. v.Borzeszkowski

or

s · ·λ
µν = −

1

2
η · ·αβ

µν

(
1

c2
s̃αβuλ + s · ·λ

αβ

)

(42)

is valid. This is a constitutive equation of the couple stress which is
not zero, if the spin axiom 2 is accepted. From (42) follows by the

Proposition

s · ·λ
µν =

1

c2

(

δα
[µδ

β

ν] − η · ·αβ
µν

)

s̃αβuλ (43)

the couple stress as a function of the spin density.
Without accepting spin axiom 2 (38) describes an ideal spin fluid, but
taking spin axiom 2 into account the spin fluid is not an ideal one,
because the couple stress does not vanish according to (43).
According to (25) the spin tensor of an ideal spin fluid is

S · ·λ
µν =

(

δα
µδβ

ν +
1

2
η · ·αβ

µν

)
1

c2
s̃αβuλ (44)

if the spin axiom 2 is accepted.

4.2 Dirac-electron fluid

The following ansatz is made by Bäuerle und Haneveld [4]:

S · ·κ
µν gκλ =

1

c2
τ[µνuλ] with τµν := S · ·λ

µν uλ (45)

From this ansatz follows:

τ[µνuλ] = S[µνλ] =
1

c2
s̃[µν]uλ +

1

c2
s̃[λµ]uν +

1

c2
s̃[νλ]uµ (46)

=
1

c2
s̃[µν]uλ +

1

c2
u[µΞν]λ (47)

with Ξνλ
!
= s̃νλ ≡ s̃[νλ] (48)

Here one can see that a special material function is assumed, equation
(48) is a constitutive relation that determines the spin stress. The total
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antisymmetrisation mixes basic fields and constitutive functions which
is rather strange from a constitutive point of view.

The interpretation of this spin tensor by use of the spin axioms is
difficult.
In equation (45) the couple stress is set to zero

sµνλ =̇ 0 (49)

by use of the spin axioms also the spin stress vanishes

Ξµλ = 0 (50)

According to the total antisymmetrisation (46) the spin density vector
is zero

Ξµ =̇ 0 (51)

this implies by use of the spin axioms that

s̃µν = 0 (52)

This would means that the spin tensor vanishes.

As the total antisymmetrisation seems only to be necessary for the
reduction from the 6 fields in (45) to 3, there is another way using the
spin axioms. Starting out with (45)2

S · ·λ
µν = τµνu

λ (53)

and then using spin axiom 2 one gets the following spin tensor

S · ·λ
µν =

(

δα
µδβ

ν +
1

2
η · ·αβ

µν

)
1

c2
s̃αβuλ (54)

which is the same as (44), and represents an ideal fluid.
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24 komponente relativističkog tenzora spina se sastoje od 3+3 osnovna
polja spina i 9 + 9 konstitutivnih polja. Empirički samo 3 osnovna
polja spina i 9 konstitutivnih polja su poznata. Ovaj ”empirem” može
se izraziti sa dve aksiome spina pri čemu jedna od njih identifikuje 3
polja spina dok druga identifikuje ostalih 9 polja. Ova identifikacija
je objektivna i ne meša osnovna polja spina sa konstitutivnim osobi-
nama. Pristupi Weyssenhoffovom fluidu i Dirac-ovom elektronskom
fluidu nadjeni u literaturi se diskutuju pomoću ovih aksioma spina.
Formulǐsemo, zatim, lemu da jedna drukčija redukcija sa 6 na 3 osnovna
polja spina koja ne zadovoljavaju aksiome spina uvodi specijalne ma-
terijalne osobine ne dozvoljavajući mešanje konstitutivnih i osnovnih
polja.


