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Abstract

We analyze conditions on the equilibrium interface and de-
velop the concept of phase transition zones (PTZ) formed in
strain-space by all deformations which can exist on the equilib-
rium interface. The importance of the PTZ construction follows
from the fact that deformations outside the PTZ cannot exist on
the interface, whatever the loading conditions. The PTZ bound-
ary acts as a phase diagram or yield surface in strain-space. We
develop a general procedure for the PTZ construction and give
examples for various nonlinear elastic materials and in a case of
small strains. We study orientations of the interface and jumps
of strains on the interface and demonstrate that various points
of the PTZ correspond to different types of strain localization
due to phase transformations on different loading path.

1 Introduction

From the mechanical point of view phase transitions in deformable
solids result in the appearance of strain fields with interfaces which
are the surfaces of discontinuity in deformation gradient at continuous
displacements [10, 12, 11]. We analyze conditions on the equilibrium
interface and develop the concept of phase transition zones (PTZ). The
PTZ is formed in strain-space by all deformations which can exist on
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the equilibrium interface. The PTZ is determined entirely by properties
of the strain energy function of a material. The importance of the PTZ
construction follows from the fact that deformations outside the PTZ
cannot exist on the interface, whatever the loading conditions. The
PTZ boundary acts as a phase diagram or yield surface in strain-space.

We describe a general procedure for the PTZ construction [4, 5] and
give examples for various nonlinear elastic materials. Then we develop
a small strain approach to the theory of phase transitions in elastic
solids. The problem is reduced to the analysis of the linear elastic-
ity equations for heterogeneous medium with an additional condition
of phase equilibrium on the interface. The thermodynamic condition
takes the form of an equation that determines the normal to the inter-
face in dependence on a tensor that acts as a dislocation momentum
tensor induced by new phase areas.

Since the PTZ occurs naturally in the analysis of the local equi-
librium conditions, any point of the PTZ can be associated with some
piece-wise linear two-phase deformations. We study characteristic fea-
tures of such deformations – orientation of the interface and the jump
of strains. As a result we demonstrate that different passes of de-
formation lead to different types of strain localization due to phase
transformations.

2 Preliminaries. Equilibrium phase

boundaries and phase transition

zones

We are interested in equilibrium deformation fields such that the dis-
placements are twice differentiable everywhere in a body besides a con-
tinuously differentiable surfaces (interfaces) at which the deformation
gradient suffers a jump at continuous displacement.

Let Γ be the prototype of the interface in a reference (undeformed)
configuration of a body, m ∈ U is the unit normal to Γ, U denotes a
set of unit vectors. The following conditions have to be satisfied on the
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equilibrium interface:

[[F]] = f ⊗ m, (2.1)

[[S]]m = 0, (2.2)

[[W ]] = f · S±m, (2.3)

where F is the deformation gradient, W is the strain energy per unit ref-
erence volume (the elastic potential), S = WF(F) is the Piola stress ten-
sor related with Cauchy stress tensor as T = J−1SFT , J = det F >
0, brackets [[ · ]] = (·)+ − (·)− denote the jump of a function across Γ,
super- or subscripts “−” and “+” identify the values on different sides
of the shock surface.

The kinematic condition (2.1) follows from the continuity of the
displacement [20]. The vector f = [[F]]m is called the amplitude. The
traction continuity condition (2.2) follows from equilibrium considera-
tions.

An additional thermodynamic condition (2.3) [10, 12, 19, 11, 2, 18]
arises from an additional degree of freedom produced by free phase
boundaries. One could also see (2.3) in [14].

By (2.1), the conditions (2.2) and (2.3) can be rewritten as

(S(F + f ⊗ m) − S(F))m = 0,

W (F + f ⊗ m) − W (F) = f · S(F)m

where F ≡ F−. Given F, the above equations can be considered as a
system of four equations for five unknowns: the amplitude f 6= 0 and
the unit normal m. Those F only for which the system of equations
can be solved can be on the interface.

Definition [4]. The phase transition zone is formed by all defor-
mations which can exist on a locally equilibrium phase boundary.

For those F inside the PTZ, there in general exists an one-parameter
family of solutions for f and m.

It is known [13, 11] that the equilibrium deformation fields with
the surfaces of discontinuity which satisfy (2.1) and (2.2) at f 6= 0
can appear only if ordinary ellipticity of the equilibrium equations fails
at some deformation. It can be shown [6] that if the condition (2.3)
is added to (2.2) and a material is elliptic on the both sides of the
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Figure 1: Phase transition zone in strain space.

interface then a material must be non-elliptic at some segment on the
path

F(ξ) = F− + ξf ⊗ m (ξ ∈ (0, 1))

Thus, the PTZ contains the non-ellipticity sub-zone.

The PTZ is illustrated schematically by Fig. 1. The elements of the
PTZ are the PTZ-boundary, non-ellipticity sub-zone, critical points (a
bifurcation set). Deformations outside PTZ cannot exist on any phase
boundary, whatever the loading conditions are. The PTZ boundary
acts as a phase diagram or yield surface in strain space. As illustrated
below, different points of the PTZ boundary correspond to different
orientations of the interface and different types of jumps of strains on
the interface, i.e. different types of strain localization. So, we endow a
strain space with a structure relating to phase transitions. Note that
equilibrium interface can appear during the deformation process much
more earlier then the ellipticity fails.
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3 Phase transition zones for isotropic

nonlinear elastic materials

The conditions (2.1), (2.2), (2.3) can be rewritten as

F± = (I + a∓ ⊗ n)F∓, (3.1)

[[T]]n = 0, (3.2)

[[W ]] = c · Tn (3.3)

where I denotes the unit tensor, n is the normal to the interface in the
deformed configuration,

n = |F−T
∓ m|−1F−T

∓ m, m = |FT
∓n|−1FT

∓n. (3.4)

Amplitudes f , a∓ and c are related as

c , JN
−1/2
1 f = J−a− = J+a+, (3.5)

where N1∓ = |FT
∓n|2 = n · B∓n, B = FFT is the left Cauchy-Green

tensor, and, as can be shown [4], [[JN
−1/2
1 ]] = 0.

In a case of nonlinear elastic isotropic materials

W = W (I1, I2, J), T = µ0I + µ1B + µ−1B
−1, (3.6)

µ0 = W3 + 2J−1I2W2, µ1 = 2J−1W1, µ−1 = −2JW2, (3.7)

where
I1 = λ2

1 + λ2
2 + λ2

3 = trB,
I2 = λ2

1λ
2
2 + λ2

1λ
2
3 + λ2

2λ
2
3 = J2trB−1,

J = λ1λ2λ3

(3.8)

are the strain invariants, λi > 0 (i = 1, 2, 3) are the principal stretches,
W1, W2, W3 denote ∂W/∂I1, ∂W/∂I2 and ∂W/∂J respectively.

3.1 Orientation invariants

Further we will see that the normal n appears in relationships through
the orientation invariants

G1 =
N1

J2
, G−1 =

I2

J2
− N−1 (Nk = n · Bkn, k = ±1) (3.9)
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and the amplitude c can be decomposed using the vectors

t1 = J−1PBn, t−1 = JPB−1n (3.10)

where P = I − n ⊗ n is a projector.

If values of principal stretches are different then at given B a couple
of invariants G1, G−1 determines the normal n. Relative to the basis
e1, e2, e3 of eigenvectors of B we have the system of equations

∑

n2
i = 1,

∑

n2
i λ

2
i = J2G1,

∑

n2
i λ

−2
i =

I2

J2
− G−1 (3.11)

which is linear with respect to n2
i (i = 1, 2, 3).

Since the solution of the system (3.11) for n2
i has to be non–negative,

the domain G of admissible values for the orientation invariants Gl, G−1

is a triangle with vertexes lying on the parabola J 2G2
1−I1G1+G−1 = 0

(Fig. 2).

The vertexes (λ−2
i λ−2

j , λ−2
i + λ−2

j ) (i 6= j) correspond to to n = ek

(k 6= i, j), t1 = t−1 = 0. On the i − j – side of the triangle

G−1 = G1λ
2
k + λ−2

k , nk = 0 (k 6= i, j) (3.12)

corresponding normals n lie in the i−j− principal plane of B, t1 ‖ t−1.

The triangle G degenerates into the segment if λ1 = λ2 6= λ3 or
the point if λ1 = λ2 = λ3. Relations with the normals in the case are
evident.

Due to the kinematical condition (2.1), the invariants G1 and G−1

are continuous on the interface:

[[G1]] = 0, [[G−1]] = 0 (3.13)

The conditions (3.13) have obvious geometrical meanings. If da and
dA denote surface elements in deformed and reference configurations
then it is simple to check that G1 = (dA/da)2. Then (3.13)1 means
that [[da]] = 0 at given dA. Analogously, (3.13)2 means that tangent
line elements are continuous across a shock surface. For the plane case
one can find (3.13)1 in [13, 1].
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3.2 Kinematic compatibility

From (3.1), (3.5) follows that

B+ = B− + J−1
− (c ⊗ B−n + B−n ⊗ c) + G−1c ⊗ c, (3.14)

B−1
+ = B−1

− − J−1
+

(

(n ⊗ B−1
− c + B−1

− c ⊗ n)
)

+ J−2
+ (c · B−1

− c)n ⊗ n.
(3.15)

From (3.1) also follows

c = [[J ]]n + h, h , Pc. (3.16)

Then (3.14) – (3.15) lead to the following relationships between the
strain and orientation invariants on the interface and h:

[[I1]] = G1[[J
2]] + 2h · t−1 + G1h · h, (3.17)

[[I2]] = G−1[[J
2]] − 2h · t−−1 + h · B−1h. (3.18)

3.3 Traction continuity condition

Projecting the traction condition (3.2) onto the normal n and the plane
tangent to the shock surface and taking into account (3.6) we obtain

[[µ0]] + [[µ1N1]] + [[µ−1N−1]] = 0, (3.19)

[[µ1Jt1]] + [[µ−1J
−1t−1]] = 0 (3.20)

The condition (3.19) for the normal component of the traction can be
rewritten as

− [[W3]] = 2 [[JW1]] G1 + 2 [[JW2]] G−1. (3.21)

The equation (3.20) for the tangent component of the traction takes
the form of an equation for h:

A+h = −[[W1]]t
−
1 + [[W2]]t

−
−1, A+ , G1W

+
1 I + W+

2 PB−1 (3.22)

and leads to the
Representation theorem [4]. Assume that the material is isotropic

and on the shock surface the kinematic (3.1) and traction (3.2) condi-
tions are satisfied and

D+ = G1

(

W+
1

)2
+ G−1W

+
1 W+

2 +
(

W+
2

)2
6= 0 (3.23)
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holds. Then the amplitude c is an isotropic function of the strain tensor
B− and the normal n and can be decomposed as follows:

c = [[J ]]n + h, h = αt−1 + βt−−1 (3.24)

where the coefficients α and β are uniquely given as functions of ori-
entation and strain invariants by the system of linear equations

(

G1W
+
1 W+

2

−G1W
+
2 G1W

+
1 + G−1W

+
2

)(

α

β

)

=

(

− [[W1]]

[[W2]]

)

, (3.25)

The representation (3.24) remains true for incompressible materials;
one needs only to set J ≡ 1.

There are physical and mathematical reasons to believe that the
deformations cannot be observed if the Legendre-Hadamard condition
fails. The Baker-Ericksen inequalities

W1 + λ2
kW2 > 0 (k = 1, 2, 3) (3.26)

are the necessary conditions for strong ellipticity of isotropic nonlinear
elastic materials. If (3.26) holds on the interface then (3.23) is satisfied
at any G1, G−1 ∈ G and the amplitude is represented by (3.24), (3.25)
[7, 8, 9].

3.4 Thermodynamic condition. Phase transition

zone

The thermodynamic condition (3.3) takes the form

[[W ]] = τn[[J ]] + 2W−
1 h · t−1 − 2W−

2 h · t−−1 (3.27)

where the normal component of the traction

τn = n · Tn = 2J (G1W1 + G−1W2) + W3 (3.28)

can be calculated at any side of the phase boundary.
If α and β are given by the system (3.25), then substituting the

representation (3.24) into (3.17), (3.18), (3.21) and (3.27) gives four
equations for five unknowns I+

1 , I+
2 , J+, G1 and G−1. So, the jump
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solution compatible with kinematic, traction and thermodynamic con-
ditions, if it exists at given I−

1 , I−
2 , J−, has a form of an one-parameter

family.
If we solve three of the equations for I+

1 = I+
1 (G1, G−1|I

−
1 , I−

2 , J−),
I+
2 = I+

2 (G1, G−1|I
−
1 , I−

2 , J−), J+ = J+(G1, G−1|I
−
1 , I−

2 , J−), then the
forth equation takes the form of an equation for the one-parameter
family of the orientation invariants:

Ψ(G1, G−1 | I
−
1 , I−

2 , J−) = 0. (3.29)

Since G1, G−1 ∈ G−, the invariants J−, I−
1 and I−

2 have to satisfy
inequalities

min
G1,G

−1∈G−

Ψ(G1, G−1, J−, I−
1 ) ≤ 0 ≤ max

G1,G
−1∈G−

Ψ(G1, G−1, J−, I−
1 ).

(3.30)
The one-parameter family of normals is represented on the G1, G−1–

plane by the intersection of the line (3.29) (the line ab on Fig. 2) with
the triangle G. The phase transition zone in λ1, λ2, λ3–space is formed
by all principal stretches at which the intersection is non-empty. If
(λ1−, λ2−, λ3−) belongs to the PTZ boundary then the line of the solu-
tion passes through a single point of G−, i.e. passes through the vertex
or externally touches the side of the triangle (the lines pq and cd on
Fig. 2). In these cases the normal coincides with an eigenvector of B−

or lies in a principal plane of B−; the one-parameter character of the
solution disappears.

To illustrate the PTZ in a case of finite strains construction we
consider below two examples.

3.4.1 Phase transition zones for the Hadamard material

The strain energy function for the Hadamard material has the form

W =
c

2
I1 +

d

2
I2 + Φ(J), c ≥ 0, d ≥ 0, c + d 6= 0. (3.31)

General analysis of the PTZ construction for the Hadamard material
was carried out in [4]. Below we give some illustrations.

Since [[W1]] = [[W2]] = 0, the representation theorem (see (3.25))
gives

h = 0, c = [[J ]]n (3.32)
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Figure 2: Admissible values domain G for the orientation invariants
and lines of solutions.

The condition (3.21) for the normal component of traction and the
thermodynamic condition (3.27) take the form

cG1 + dG−1 = U(J+, J−), U(J+, J−) , −
[[Φ′]]

[[J ]]
, (3.33)

[[W ]] = (J−(cG1 + dG−1) + Φ′) [[J ]] (Φ′ =
dΦ

dJ
) (3.34)

Substituting (3.32) into kinematic relationships (3.17), (3.18) gives

[[I1]] = [[J2]]G1, [[I2]] = [[J2]]G−1 (3.35)

Since

[[W ]] =
c

2
[[I1]] +

d

2
[[I2]] + [[Φ(J)]],
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from (3.33) – (3.35) follows

1

2
(Φ′

+ + Φ′
−)(J+ − J−) − (Φ+ − Φ−) = 0 (3.36)

The equation (3.36) can be solved for J+ = J+(J−). Then (3.33) takes
the form of the equation that determines the one-parameter family of
normals

cG1 + dG−1 = u(J), u(J) = U(J+(J), J), G1, G−1 ∈ G− (3.37)

The left part of the equation (3.37) is linear in G1, G−1 and reaches
the minimal and maximal values in vertexes of the triangle G. If λ1 <
λ2 < λ3 then

min
G1,G

−1⊂G
(cG1 + dG−1) = h(λ2, λ3), n = e1

max
G1,G

−1⊂G
(cG1 + dG−1) = h(λ2, λ1), n = e3

h(λi, λj) =
c

λiλj

+ d

(

1

λi

+
1

λj

)

Thus, the strains inside the PTZ satisfy the inequalities

h(λ2, λ3) ≤ u(J) ≤ h(λ2, λ1). (3.38)

The typical PTZ cross-section by the plane λ2 = const is shown on
the Fig. 3. For the simplicity sake we take Φ(J) in a form

Φ(J) =
(J − Jc)

4

4
−

A(J − Jc)
2

2
+ a(J − Jc). (3.39)

Note that W 9 ∞ at J → 0 but one can consider (3.39) as an ap-
proximation of Φ in the vicinity of Jc. Since J+ > Jc if J− < Jc on the
interface [4], we take Jc > 1 and do not consider the behavior of the
material at small J .

Thick lines denote the PTZ boundaries, dotted lines bound the non-
ellipticity sub-zone. If the point A is reached during the deformation,
the interface with the normal directed as e1 becomes possible. The
coexistent deformations on the interface are represented by the points
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Figure 3: PTZ for the Hadamard material (Jc = 1.45, A = 0.3, d =
0.155, c = 0.03).

A and B. Only λ1 jumps on the interface. If the point D is reached,
the normal is directed as e3, λ3 jumps on the interface.

The line OAC represents the path of plane stretching in the “3”–
direction in a case of uniform deformation - without the separation into
two phases. In this case

λ2 = 1, λ1 = Λ(λ3)λ3, τ1(λ1, λ3) = 0 (3.40)

where τ1 is the principal Cauchy stress and the function Λ(λ3) is found
from the condition (3.40)3.

One can see that instead of passing through the non-ellipticity
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sub-zone the sample can be divided into two phases before the non-
ellipticity zone is reached. If A corresponds to the deformation on one
side of the interface, then n = e1 and B corresponds to the deforma-
tions on the other side. Since τ1 remains to be zero after the plane
interface (interfaces) appear, the condition (3.40)3 does not fail be-
cause of internal stresses. Thus, the point B must belong to the curve
OAC. The role of internal stresses produced by phase transformations
is demonstrated in the example given below.

3.4.2 Phase transition zones construction for compressible

materials with strain energy depending on two strain

invariants

Let W = W (Iα, J) (α = 1 or 2). Then, by (3.24), (3.25), (3.17) and
(3.18)

h = −
[[Wα]]

W+
α G1

t−1 , (3.41)

[[I1]] = G1[[J
2]] −

[[W 2
α]]

W 2
α+

L−
1 , [[I2]] = G−1[[J

2]] −
[[W 2

α]]

W 2
α+

L−
2 , (3.42)

L1 = I1 − J2G1 − G−1G
−1
1 , L2 = I2 − J2G−1 − G−1

1 , (3.43)

If W = W (I1, J) then the conditions (3.21) and (3.27) take the
form

2G1 [[JW1]] = − [[W3]] , (3.44)

[[W ]] =
W−

1 W+
3 + W+

1 W−
3

W−
1 + W+

1

[[J ]] +
2W−

1 W+
1

W−
1 + W+

1

[[I1]]. (3.45)

Relationships (3.42)1, (3.44) and (3.45) are three equations for the
four unknowns J+, I+

1 , G1 and G−1. If we solve (3.44) and (3.45) to
obtain

J+ = J+(G1, J−, I−
1 ), I+

1 = I+
1 (G−

1 , J−, I−
1 ), (3.46)

and substitute the expressions into (3.42), we derive an equation in the
form

Ψ , Ψ1(G1, J−, I−
1 ) + Ψ2(G1, J−, I−

1 )G−1 = 0. (3.47)
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The equation (3.47) determines a line of one-parameter solutions on
the G1, G−1–plane.

The invariants J− and I−
1 have to satisfy inequalities

Ψmin(J−, I−
1 ) ≤ 0 ≤ Ψmax(J−, I−

1 ),

Ψmin(J−, I−
1 ) = min

G1,G
−1∈G−

Ψ(G1, G−1, J−, I−
1 ),

Ψmax(J−, I−
1 ) = max

G1,G
−1∈G−

Ψ(G1, G−1, J−, I−
1 ).

Since Ψ(G1, G−1, J−, I−
1 ) is linear in G−1, its maximal and minimal

values are reached at the boundary of G−. The corresponding normal
lies in the principal planes of B− or coincide with the eigenvector of
B−. Thus, three types of strain localization due to phase transitions
can be expected if the interface corresponds to the PTZ boundary: (1)
the interface is analogous to the shear band, plane jump of strains takes
place on the interface, (2)the interface is perpendicular to the direction
of the maximal stretch, only the maximal stretch suffers a jump on the
phase boundary, (3) the interface is perpendicular to the direction of
the minimal stretch that suffers a jump.

Materials with a potential W = W (I2, J) may be considered anal-
ogously.

Let
W (I1, J) = V (I1) + Φ(J) (3.48)

where

V (I1) =

{

c1I1, I1 ∈ (0, Ic)
c2(I1 − Ic) + c1Ic, I1 ∈ (Ic,∞)

, c1 > c2, (3.49)

Φ(J) = aJ2 + bJ + c

where the coefficient a > 0 characterize the reaction of the material
with respect to volume changing. A “kink” in a point I1 = Ic replaces
the non-ellipticity sub-zone.

The conditions on the equilibrium interface (3.42)1, (3.44) and
(3.45) take the form

[I1] = (γ2 − 1)G1J
2
− + (k2 − 1)L−

1 (3.50)

−A(γ − 1) = (γ − k)G1 (3.51)
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Figure 4: PTZ for the model material in a plane case.

[I1] = (k + 1)(Ic − I−
1 ) − AJ2

−(γ − 1)2 (3.52)

where γ = J+/J−, k = c1/c2, A = a/c2 and L1 is determined by (3.43)1.
The equation (3.51) can be solved for γ = γ(G1). Then substituting

(3.50) into (3.52) leads to the following relationship for the orientation
invariants

J2
−G2

1

A + G1

+ L−
1 =

Ic − I−
1

k − 1
(3.53)

The “−”– PTZ subzone is determined by the inequalities

min
G1,G

−1∈G

J2
−G2

1

A + G1

+ L−
1 ≤

Ic − I−
1

k − 1
≤ max

G1,G
−1∈G

J2
−G2

1

A + G1

+ L−
1 (3.54)

The “+”– subzone is constructed analogously.
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The PTZ cross-section for the material (3.48) is shown at Fig. 4
at A > k. The dot-and-dash line corresponds to I1 = Ic. Thick lines
correspond to “shear bands”. In this case the normal to the interface
lies in a plane of maximal and minimal stretches. A shear parameter
contributes to the jump of strains.

If thin lines are reached then the interfaces may appear which are
perpendicular to the direction of the maximal principal stretch, and
only this stretch suffers a jump.

Dotted lines denote internal PTZ boundaries. Corresponding inter-
faces are perpendicular to the direction of minimal stretching. Thus,
depending on the deformation path various types of strain localization
are possible due to phase transformations.

The competition between the types of the interfaces also depends on
the material parameters. If A � k then interfaces of shear band type
are preferential if the PTZ boundary is reached. The angle between
the interface and the direction of the maximal stretch is about π/4.
If the parameter A decreases then the angle increases, and interfaces
perpendicular to the direction of maximal stretching can also appear.

At A ≈ k the difference between two types of the interfaces disap-
pears. If A < A∗ then only the interfaces perpendicular to the maximal
stretching correspond to the PTZ boundary, where A∗ depends on k
and Ic.

The line OACD represents plane stretching in the “3”– direction in
a case of uniform deformation - without the separation into two phases.
Note that in the vicinity of the line I = Ic the behavior at loading
and unloading includes hysteresis PQST . Similar to the Hadamard
material, two-phase deformation can appear before the line I = Ic is
reached.

Since the PTZ construction arises from the analysis of the local
equilibrium conditions, every point of the PTZ corresponds to some
piece-wise linear two-phase deformation with plane interfaces. Points
A and B represent such a deformation. If the point A is reached on
the path OAQ, one can suppose that a thin layer of the phase “+”
appears in an unbounded media and the point B corresponds to the
deformation inside the layer.

Because of internal stresses acting in the “1” - direction inside the
layer, the condition (3.40)3 fails. That is why the point B does not
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belong to the curve DCS, in contrast to the Hadamard material. Anal-
ogously, if the point C is reached on the path DCS, appearance of the
layer of the phase “−” surrounded by the phase “+” can be assumed.

In conclusion note that we do not study here how the phase “−”
transforms into the phase “+”. In a case of heterogeneous deformation
due to multiple appearance of a new phase areas average deformations
are prescribed by boundary conditions. Two-phase structures have to
be found but the local deformations on the interfaces belong to the
PTZ.

4 Equilibrium phase boundaries

in a case of small strains

In a case of small strains a problem on equilibrium two-phase config-
urations of elastic bodies can be reduced to the determination of the
phase boundary Γ and displacements u(x) smooth enough at material
points x /∈ Γ, continuous on Γ

[[u]] = 0, x ∈ Γ (4.1)

and satisfying boundary conditions, thermal condition θ = const, and
equilibrium conditions

x /∈ Γ : Div σ = 0, (4.2)

x ∈ Γ : [[σ]]n = 0, [[f ]] − σ : [[ε]] = 0 (4.3)

where σ and ε are the stress and strain tensors, θ is the temperature,
f (ε, θ) is the volume free energy density represented by a number of
quadratic function of ε.

Further, for the sake of simplicity, we consider two-branches free
energy function

f(ε, θ) = min
−,+

{

f−(ε, θ), f+(ε, θ)
}

, (4.4)

f±(ε, θ) = f±
0 (θ) +

1

2
(ε − ε

p
±) :C± : (ε − ε

p
±)

The constitutive equations take the form:

σ (ε) = C± : (ε − ε
p
±) (4.5)
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Parameters C±, f±
0 , ε

p
± are the elasticity tensors, free energy densities

and strain tensors in unstressed phases “±”. If ε
p
+ = 0, then [εp] ≡ ε

p

is the self–strain tensor. Body forces and thermoelastic effects are not
taken into account. Twinning also is not studied here.

It follows from (4.1), (4.3)1, (4.5), that [16, 6]

[ε] = K∓ (n) :q±, q± = −C1 :ε± + [C :εp] , (4.6)

K± (n) = {n ⊗ G± ⊗ n}s, G± = (n · C± · n)−1, C1 = C+ − C−,

s means the symmetrization: Kijkl = n(iGj)(knl). Substituting (4.4),
(4.5) and (4.6) into (4.3)2 brings the thermodynamic condition to the
form [15, 6]

2γ+[εp :C :ε p]+ε± :C1 :ε±−2ε± : [C : ε
p]±q± :K∓ (n) :q± = 0 (4.7)

where γ = [f0 (θ)] acts as temperature in absence of thermal stresses.
So, the system of equations is split. Given γ, any of two equations
(4.5) determines one-parametric family of unit normals depending on
strains on one side (“+” or “−”) of the interface. Strains on the other
side can be computed by formulas (4.6).

If tensor C1 is nonsingular, the equations (4.7) can be rewritten in
q – space:

K∓(q±,n) = ∓ϕ(q±), (4.8)

K±(q,n) = q : K±(n) : q, ϕ (q) = 2γ∗ + q :C−1
1 :q,

γ∗ = γ +
1

2
[εp] : B−1

1 : [εp], C1 = C+ − C−, B1 = B+ − B−, B = C−1.

Strains for which the equation (4.7) or (4.8) can be solved for the unit
normal n form the phase transition zone in ε– or q–space. Note that
the equation ϕ(q = 0) determines the surface of discontinuity in the
derivative of f(ε) where f+(ε = f−(ε).

The PTZ is divided into sub–zones Q±. By (4.8), tensors q± ∈ Q±

satisfy inequalities

K∓
min(q±) ≤ ∓ϕ (q±) ≤ K∓

max(q±), (4.9)

K∓
max(q±) = max

n

K∓(q,n), K∓
min(q±) = min

n

K∓(q±,n).
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The normals n±
ex (q) and n±

in (q) afford a maximum and a minimum to
K∓(q±,n), respectively, and correspond to the external and internal
boundaries of the sub–zones Q± [17, 6]. Note that the tensor q+ can
be related with the tensor of the dislocation moments induce by new
phase areas [16].

If phase “−” is isotropic, maximal and minimal values of K−(q+,n)
as well as corresponding normals depend on relations between the
eigenvalues qi of q+ [3, 17, 6]. Let q1 ≤ q2 ≤ q3, q1 6= q3, |q|min, |q|max

are the minimal and maximal absolute values of the eigenvalues, e|q|min

e|q|max are the corresponding eigenvectors, ni are the components of
the normal n in the basis of eigenvectors of q+.

If q1q3 < 0 or q1q3 > 0, (1 − ν−)|q|min < ν−|q|max, then

n2
3 =

(1 − ν−)q3 − ν−q1

q3 − q1

, n2 = 0,

µ−K
−
max(q+) =

1 − ν−
2

(q2
1 + q2

3) − ν−q1q3.

The plane jump of strains similar to shearing takes place on the inter-
face.

In the other case

nex(q+) = e|q|max, K−
max(q+) =

1 − 2ν−
2µ−(1 − ν−)

|q|2max. (4.10)

Only maximal eigenvalue of the strain tensor suffers a jump on the
interface.

At minimal value of K−(q+,n)

nin(q+) = e|q|min, K−
max(q+) =

1 − 2ν−
2µ−(1 − ν−)

|q|2min. (4.11)

Only minimal eigenvalue of the strain tensor suffers a jump.
Thus, if q+ on the interface belongs to the external PTZ boundary

then, depending on a relation between eigenvalues of q+, the normal
n lies in the 1 − 3 – principal plane of the tensor q+ or coincides with
the eigenvector e|q|max. On the internal PTZ boundary (4.11) holds.
Thus, only plane or one-dimensional jumps of strains take place on the
interface if the interface corresponds to the PTZ boundary.
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Figure 5: PTZ cross-sections: (1) - by the plane tr q = const, (2)
- by the plane q2 = q3 = q; a′ and a” - external PTZ boundaries;
b - internal PTZ boundaries; c - the surface of discontinuity in the
derivative of f(ε); z0 corresponds to the undeformed state.

The PTZ cross-sections for the case of isotropic phases (εp is a
spherical tensor) are shown in Fig. 5. Depending on strain state, differ-
ent orientations of the interface and different types of jumps of strains
are possible. The line A in the Fig. 5(2) corresponds to uniaxial stretch-
ing – compression. When the path of deformation crosses the PTZ
boundary, the interface perpendicular to the direction of stretching
can appear at stretching and the “shear band” type interface appears
at uniaxial compression. The lines B and C correspond to uniaxial
deformations under pressure. Only “shear band” type interfaces can
appear if pressure is more than some critical value.
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Dvofazne deformacije unutar zona faznih prenosa

UDK 531.01, 532.59, 536.76

Analiziramo uslove na ravnotežnu medjugranicu i razvijamo kon-
cept zone faznog prenosa (PTZ) koja se formira u deformacionom
prostoru za sve deformacije koje postoje na ravnotežnoj medjugranici.
Važnost PTZ-konstrukcije sledi iz činjenice da deformacije van PTZ
ne mogu da koegzistiraju na medjugranici bez obzira kakvi su uslovi
opterećenja. PTZ-medjugranica deluje kao fazni dijagram ili površ
tečenja u deformacionom prostoru. Dalje razvijamo opšti postupak
za PTZ-konstrukciju i dajemo primere za različite nelinearne elastične
materijale kao i slučaj malih deformacija. Proučavamo orientacije med-
jugranice i skokove deformacija na medjugranici. Takodje pokazujemo
da različite tačke na PTZ odgovaraju različitim tipovima deformacione
lokalizacije uzrokovanim faznim transformacijama na različitim pute-
vima opterećenja.


