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Abstract

By applying the inviscid approximation, a simple relation for pre-

dicting the drag coefficient of a growing vapor bubble at rectilinear

accelerated ascension in uniformly-superheated pure liquids was

developed. The relation is valid in both regions: inertia controlled

and heat diffusion controlled bubble growth, respectively. The

drag coefficient decreases with time for all accelerations, as well

as with augmentation of the bubble acceleration at each instant

of time, independently of the internal vapor parameters.

Notations

A a parameter, defined by Eq. (12);
a1 thermal diffusivity of fluid;
B a parameter, defined by Eq. (13);
hfg latent heat of evaporation;
Ja Jakob number;
R bubble radius;

Ṙ bubble growing velocity;
R+ dimensionless bubble radius (10);
T temperature;
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∆T liquid superheat, T∞ − Tsat;
Tsat saturation temperature (corresponding to p∞ );
ż0 translation velocity of a bubble;
z̈0 bubble acceleration;
r radial coordinate;
t time;
t+ dimensionless time (11).

Greekletters
ρ density;
θ spherical polar angle;
ϕ velocity potential.

Subscripts
l liquid;
v vapor;
∞ infinity.

1 Introduction

Bubble growth rates were extensively investigated in the last few decades.
Generally, the work has been initially divided into the following two
main regions: growth rates controlled by inertia forces, applicable in
the range of a relatively low pressure and high Jakob numbers, e.g.
Rayleigh [1] and growth rates for heat diffusion controlled growth,
e.g. Plesset and Zwick [2], Birkhoff et al. [3]. Lien and Griffith [4]
experimentally investigated bubble growth in uniformly superheated
water covering the low pressure range. They concluded that the bub-
ble growth at very low pressures is controlled solely by inertia forces
and that, as the pressure increases heat diffusion becomes a predomi-
nant factor, which at the upper part of their pressure range completely
controlled the bubble growth. They also found that the interface resis-
tance at the vapor-liquid interface is never a significant factor in bub-
ble growth. Motivated by these experimental results, Mikic et al.[5]
developed one single analytical relation applicable in the entire range
of bubble growth in a uniformly superheated liquid. This relation is
later slightly improved and extended by Miyatake et al. [6] for predict-



On an evaluation of the drag force... 105

ing the growth rate of a vapor bubble also in binary solutions with a
non-volatile solute.

A knowledge of the heat and mass transfer associated with a moving
bubble (or droplet) is of importance to a variety of industrial processes.
Boussinesque [7] has been the first to obtain a solution for the heat
transfer rate from a fluid sphere of uniform and constant surface tem-
perature, moving at a constant speed in another fluid of infinite extent.
Ruckenstein [8] studied the heat transfer between a vapor bubble in mo-
tion and the liquid from which the bubble was generated. Amongst the
relatively small number of papers on deforming bubbles in movement,
the most often is used an impulsively started motion in a quiescent
liquid initially at rest. So, in [11] for instance, the simultaneous so-
lutions of the unsteady boundary-layer equations for the both outside
and inside flows of the bubble in an impulsive ascension are obtained
by using the method of successive approximations. Generally speak-
ing, the viscous effect is small when the Reynolds number exceeds two
or three hundred. It may be of interest to note that if the hydrody-
namic boundary layers are developing simultaneously with the thermal
boundary layer, the inviscid approximation is even better [9]. That is
why, we are going to use hereafter the inviscid approximation for the
external fluid flow.

2 On an accelerated rectilinear movement

of a spherical undeformable bubble in

an inviscid fluid

Let a fluid non-deforming sphere be put into an accelerated movement
along a rectilinear trajectory in an inviscid liquid initially at rest. The
movement of the bubble will be described in an inertial system of coor-
dinates shown in Fig. 1. So the bubble surface at each instant of time
is given by:

x2 + y2 + [z − z0(t)]
2
−R2 = r2 −R2 = 0

where R designates the radius of the bubble.
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Figure 1: Inertial system of coordinates

In the case of an inviscid external fluid flow, the only condition is
that the normal velocity components of the interface and of the fluid
flow are identical:

vr = ż0(t) cos θ, (1)

where r and θ are the spherical coordinates linked with the bubble
(Fig. 1).

The problem of a rectilinear and accelerated movement of a sphere
in an inviscid stationary fluid concerns the determination of the flow
potential ϕ around a sphere put in movement with an unsteady velocity
ż(t). Or, the instantaneous boundary condition at the sphere interface,
suitable to (1), should be written as follows:

(
∂ϕ

∂r
)r=R = ż(t) cos θ, (2)
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where r and θ are the instantaneous spherical coordinates and ż(t) is
the instantaneous velocity of the bubble (Fig. 1). The function ϕ has
to satisfy also the condition:

ϕ → 0 for r → ∞. (3)

As the boundary condition (2) is presented in the form of separated
variables, the solution of the Laplace equation, written in spherical
coordinates, can be obtained by the well known method of separation
of variables. Hence, this solution is:

ϕ =
∞∑
n=0

Anr
−n−1Pn(cos θ), (4)

where Pn(cos θ) are the Legendre ordinary polynomials.. By replacing
(4) into (2):

(
∂ϕ

∂r

)
r=R

=
∞∑
n=0

An(n+ 1)R−n−2Pn(cos θ) = ż0(t) cos θ (5)

it results that:

A0 = 0, A1 = −
1

2
ż0R

3, A2 = A3 = ... = 0

In this way, the velocity potential ϕ becomes:

ϕ = −
1

2
ż0R

3r−2 cos θ (6)

verifying directly the condition (3).

3 Radial expansion of a spherical bubble

in an inviscid stationary fluid

In the case of a spherical bubble of the radius R(t) in expansion in an
inviscid fluid initially at rest, the boundary condition is:(

∂ϕ

∂r

)
r=R

= Ṙ. (7)
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Then, the only coefficient in the development (5) is obtained as:

A0 = −R2Ṙ.

Consequently, the velocity potential ϕ for a sphere in radial expan-
sion, after (4), becomes:

ϕ = −R2Ṙr−1, (8)

verifying also, evidently, the condition (3).

4 Drag force of a growing vapor bubble

at rectilinear accelerated ascension

Consider a growing vapor bubble at a rectilinear accelerated ascension
in liquid (Fig. 2) at a pressure p∞ and initially uniform temperature
T∞. Let pv and Tv represent the vapor pressure and the vapor temper-
ature inside a growing bubble, respectively. Let us further assume that
the vapor is in equilibrium with the liquid, hence pv and Tv would rep-
resent a saturation state for the considered fluid. We are going to use
herein the solution of Mikic et al [5]. Neglecting gravitational effects,
work done by viscous forces, surface-tension regime, bubble growth
acceleration effects and irreversible conversion to internal energy, they
proposed [5] for a bubble growth in a uniformly superheated liquid, the
following expression (taking account of inertia controlled and diffusion
controlled growth, respectively):

R+ =
2

3

[
(t+ + 1)3/2 − (t+)3/2 − 1

]
, (9)

where:

R+ =
R

B2/A
, (10)

t+ =
t

B2/A2
, (11)
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Figure 2: Growth of a spherical vapor bubble

A =

[
2

3

ρvhfg∆T

ρlTsat

]1/2
, (12)

B =

[
12

π
alJ

2

a

]1/2
. (13)

In order to study the problem resulting of two movements of a vapor
bubble, discussed in §2 an §3, we will use the principle of superposition
[10]. Hence, the potential ϕ of the external flow around a growing
vapor bubble at rectilinear accelerated motion in an inviscid liquid,
can be written by adding (6) and (8):

ϕ = −
1

2
ż0(t)R

3r−2 cos θ −R2Ṙr−1, (14)

which verifies directly the condition: ϕ → 0 for r → ∞.
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Let us calculate now the pressure distribution on the bubble surface
by using the Bernouilli equation for the external unsteady flow:[

p+
1

2
ρl(v

2
r + v2θ) + ρl

∂ϕ

∂t

]
r=R

=

[
p+

1

2
ρl(v

2

r + v2θ) + ρl
∂ϕ

∂t

]
r→∞

,

whence:

(p)r=R = p∞ −
1

2
ρl(v

2

r
+ v2

θ
)r=R − ρl

[
∂ϕ

∂t

]
r=R

. (15)

From (14), we have:

vr =
∂ϕ

∂r
= R2Ṙr−2 + ż0R

3r−3 cos θ → (vr)r=R = Ṙ+ ż0 cos θ,

vθ =
1

r

∂ϕ

∂θ
=

1

2
ż0R

3r−3 sin θ → (vθ)r=R =
1

2
ż0 sin θ,

(
∂ϕ

∂t

)
r=R

= −2Ṙ2
−RR̈−

5

2
Ṙż0 cos θ −

1

2
Rz̈0 cos θ − ż2

0
cos2 θ,

then replacing to (15), it results that:

(p)r=R = p∞ +
1

2
ρlż

2

0
(1−

9

4
sin2 θ) +

+ρl(RR̈+
3

2
Ṙ2) +

1

2
ρl(Rz̈0 + 3Ṙż0) cos θ.

(16)

The total drag force of a growing vapor bubble at an accelerated
ascension is different from zero even in an inviscid fluid (due to the
instationarity), and may be evaluated as:

D = −2πR2

π∫
0

(p)r=R cos θ sin θdθ + ρlg
4

3
πR3 (17)

where the last term represents the buoyancy force experienced by the
bubble. By replacing (16) into (17), after integration, we obtain:

D = −
2

3
πρlR

3z̈0 − 2πρlR
2Ṙż0 +

4

3
πρlgR

3. (18)
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In this kind of problems, sometimes the so-called ”added mass” is
utilized , as follows:

ma(t) =
2

3
πR3ρl,

which represents the (variable) mass of the liquid sphere, simultane-
ously accelerated with the vapor bubble during its movement. It is still
to be noted that the relation (18) could be also established as follows:

D =
4

3
πR3ρlg −

d

dt
(maż0) =

4

3
πR3ρlg −

2

3
πρlR

3z̈0 − 2πρlR
2Ṙż0.

It is customary to introduce the drag coefficient Cz, defined by:

Cz =
D

1

2
ρlż

2

0
πR2

.

From Eq. (18), one finds:

Cz =
8

3

g

z̈2
0

R

t2
−

4

3z̈0

R

t2
−

4

z̈0

Ṙ

t
, (19)

i.e., taking into account (9):

B2z̈0
A3

Cz =
8

9
(2

g

z̈0
− 1)

[
(t+ + 1)3/2 − (t+)3/2 − 1

]
(t+)2

−

−4

[
(t+ + 1)1/2 − (t+)1/2

]
t+

.

(20)

Fig. 3 shows the variation of the drag coefficient with non dimen-
sional time (i.e.t+) for some arbitrarily assigned values of the acceler-
ation parameter: (g/z̈0) ∈ 4, 5, 6. Another values may be used as well
but the main features of the finding as described in the next section
would not be affected.
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Figure 3: Evolution of the drag coefficient of a vapor bubble for differ-
ent accelerations z̈0

5 Concluding remarks

Besides the hypothesis of the non viscous external flow, all the results
presented in Fig. 3 seem to be acceptable. Due to the buoyancy effect,
the drag coefficient decreases with time for all values of the accelera-
tion non-dimensional parameter g/z̈0 as well as with the augmentation
of acceleration at each instant of time t+. Of course, thermal char-
acteristics of the growing vapor bubble are implicitly present through
dimensionless parameters t+ and B2z̈0/A

3 (or A3/B2z̈0).

It is to be noticed that the analysis cannot give the correct predic-
tion at very early stages of a bubble growth, where the assumptions
incorporated in the analysis [5] are not justifiable. In particular, a
vapor bubble cannot exist in a thermodynamic equilibrium with the
surrounding liquid for radii smaller than certain critical radius deter-
mined by the fluid properties and the liquid superheat. Then, the
evaluation of the vapor temperature inside the growing bubble is not
also correct in the initial stages of the bubble growth. Nevertheless,
as Mikíc et al. [5] showed, the uncertainty related to the early life
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history of a vapor bubble did not noticeably affect the prediction for
most of its life range. Anyway, in a perspective, we will try to include
also into the computation of the drag force of a growing vapor bubble
at accelerated ascension some other effects such as this initial surface
tension controlled bubble growth regime as well as the influence of the
fluid viscosity.
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Priblǐzni proračun sile otpora pri translatornom ubrzanom

kretanju rastúceg parnog mehura

UDK 532.526; 532.15

Primenom neviskozne aproksimacije, u ovom radu je dobijena jedna
relativno prosta relacija za približno odredjivanje koeficijenta otpora
pri translatornom ubrzanom usponu rastúceg parnog mehura u uni-
formno pregrejanoj tecnosti. Dobijena relacija važi u oba slučaja rasta
mehura: kako u slučaju rasta kontrolisanog inercijom, tako i u slučaju
rasta kontrolisanog toplotnom difuzijom. Koeficijent otpora opada sa
vremenom pri svakom ubrzanju, kao i pri povécanju ubrzanja uspona
- nezavisno od unutrašnjih parametara parnog mehura - a u svakom
posebnom vremenskom trenutku.


