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Abstract

Laminar natural convection in an enclosure divided by a
complete vertical conducting partition is studied numerically
by using a stationary two dimensional model. Two opposite
vertical sides of the enclosure were at constant different temper-
atures. The working fluid was glycerol. The heat conducting
partition was positioned in the middle of the enclosure. The
governing equations with variable density and thermophysical
characteristics of the fluid were used. An appropriate finite vol-
ume numerical procedure based on SIMPLE, uniform collocated
grid and deferred correction central difference scheme for con-
vective terms has been developed. Numerical procedure was
verified by comparing the results with numerical bench mark
solutions for a cavity without partition filled with air and also
by comparing them with the available experimental results for a
partitioned cavity filled with glycerol. The developed procedure
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takes into account the nonlinear dependence of the thermophys-
ical characteristics of the glycerol (especially viscosity) so that
a better agreement with the experimental results was achieved.

1 Introduction

Natural convection in enclosures has been receiving considerable atten-
tion in past decades. This is due to a lot of its applications such as in
solar collectors, thermal design of buildings, nuclear reactor design and
SO on.

The problem of the laminar natural convection in enclosures with
partitions was treated experimentally by Duxbury, 1979, where the
working fluid was air; Anderson and Bejan, 1981; Nishimura et al.,
1988, with water as working fluid and Nakamura et al., 1984, with the
radiation effects included as well.

The same problem was investigated analytically and numerically by
Anderson and Bejan, 1981; Nakamura et al., 1984; Acharya and Tsang,
1985; Tong and Gerner, 1986; Ho and Yih, 1987; Nishimura et al., 1988;
Kangni et al., 1991; Ciofalo and Karayiannis, 1991; Karayiannis et al.,
1992; and Mamou et al., 1994. In most of the papers the fluid used was
air (Pr=0.71), but in some cases water was used as well. The Bussinesq
approximation was used for all numerical models, and it is justifiable if
the density is linearly dependent on temperature and other properties
of the fluid are assumed to be constant. These assumptions are valid
if air and water are the working fluids, and temperature differences of
the opposite sides of the cavity are small.

In this paper glycerol was used as a working fluid. The coefficient
of the dynamic viscosity of glycerol depends nonlinearly on the tem-
perature and thus can decrease by an order of magnitude between the
different temperatures of the opposite walls. Therefore, to obtain a
better agreement between the experimental and numerical results, the
equations with variable properties of fluid were used. To increase nu-
merical accuracy, the convective terms were approximated by using the
deferred correction central difference scheme and a uniform grid.
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2 Numerical method

2.1 Governing equations

A two dimensional numerical simulation of natural convection was per-
formed. The steady state equations for the fluid with variable proper-
ties were used in the mathematical model. The continuity and momen-
tum equations read
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while the energy (conduction) equation for the partition wall reads
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The boundary conditions are presented in Figure 1. The horizontal
walls were assumed to be adiabatic, while the vertical walls were main-
tained at constant different temperatures. The conjugate heat transfer
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boundary conditions were applied for the vertical partition.
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Fig. 1. Physical model of the fully partitioned enclosure.

The dimension of the enclosure was 38 x 38 x 38 mm.
was made of Plexiglas, 2mm thic
between the vertical walls.

The partition
k. The partition was placed midway

The momentum equations (2) and (3)

can be written in a form
similar to that of energy equation (4), i. e.
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where

B, = pg. =0, B, = pg, = pg, (8)

are buoyancy volumetric forces, and
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are additional terms related to the viscosity.

For an incompressible fluid (p = constant) and fluid with constant
viscosity ( g = constant) V. and V. become zero. The assumption
of the density to be linearly dependent on the temperature only in
equations (8), in fact the application of the Boussinesq approximation,
opens the way to take into account the influence of the buoyancy forces
on the natural convection. The assumptions mentioned were applied
also in the most of the previous natural convection numerical models
where the working fluids were air and water.

In this paper. Boussinesq approximation is not applied and the flnid
properties are functions of temperature (defined as additional set of
algebraic equations). As a consequence, members (9) and (10) in the
momentum equations (6) and (7) are to be taken into account.

2.2 Discretization of the governing equations

To discretize the domain and derive difference equations, the control
volume method based on the finite difference approach was used. Uni-
form collocated grid (Fig. 2) was applied for all variables - components
of velocities, pressure and temperature. The numbers of control vol-
ume cells were 76, 36 and 8 in the vertical direction, in the horizontal
direction in each half of the enclosure and in the horizontal direction
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for the partition, respectively.
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Fig. 2. Control volume cell.

The terms in the momentum equations like (—dp/dx + B, + V, and
—0p/0y + B. + V.) are present as source terms in the finite differ-
ence equations, so that the form and derivation of the finite difference
momentum equations are similar to those of the energy equation (see
Patankar, 1980).

The finite difference equations were derived by using the central dif-
ference scheme for both convective and diffusive terms. To obtain the
convergence of the numerical procedure, the central difference scheme
for the convective terms is used with the "deferred correction” as in
(Khosla and Rubin, 1974). The details of the finite difference deriva-
tions which are different from the procedures in (Patankar, 1980) will
be presented here.
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By using the second order central difference scheme (see Fig. 2) the
equation (6) could be written in the following finite difference form:
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If the first order upwind scheme is used for the convective terms,
the left side of the equation (11) takes the form

Up — Uw)
AX
(Up — Us) (U~ — Up)
+AMAX1(p3Lf;,D)——&Y + AMIN1(p, V,,0) NG ,(12)
as in (Patankar, 1980), where AMAX1 and AMIN1 are FORTRAN

functions defining maximal or minimal values of the attributes.

(Ug — Up)
AMIN1(pU,.,0)—
+ Al (peUe,0) e

AMAX1(ppUs, 0) [

If we add expression (12) to both sides of the equation (11) and
multiply it by AXAY, then the finite difference equation is obtained
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where:
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To note is that the coefficients Ay, Ag, As, Ay (14-17) are the same
as if the first order upwind scheme (see Patankar, 1980) is used for the
convective terms. The influence of the central difference scheme is pre-
sented in the part of the source term SP (23) which represents the
difference between the central and upwind difference schemes terms (as
in (Khosla and Rubin, 1974)). By doing so the second order accu-
racy (due to the grid being uniform) and the stability of the numerical
procedure were obtained.

To obtain the velocities U,,U,, V,,V, and fluxes on the faces of
the collocated control volume cells, the interpolation of the momentum
equations were used as in (Rhie,1981).

The calculation of the coefficients Ay, Ag, As, Ay in equation (13)
as well as of the source term Sy is based on the values of the velocities,
pressures, temperatures and thermophysical properties of the fluid in
the previous iteration of the numerical procedure SIMPLE (Patankar
and Spalding, 1972).

The modified equation (20) is used to calculate Up

_ AwUw + AgUg + AsUs + AnUn + Sy + 1522 ApU3

g 5 . Y@

Qg

where a,, and U are the factor of underrelaxation (in this case, a, =
a, = 0.8) and the value from the previous iteration of the SIMPLE
procedure, respectively. The system of the algebraic equations is solved
iteratively by using the procedure (Stone, 1968) as in (Peric, 1985).

The system of finite difference equations for the vertical velocity
components and temperature are derived in a similar way. The only
difference is that the finite difference equation for temperature (25)
(with 7" = 0.8) has an additional factor G’ multiplying the source term
5?; presenting the difference between the central and upwind difference
scheme terms and thus yielding
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To obtain the stability of the overall SIMPLE numerical procedure
at the beginning of the calculation, the upwind scheme was used for
the convective terms in the energy equation ( by using G = 0 ). After a
prescribed number of SIMPLE iterations the central difference scheme
was introduced ( G = 1) to provide (retain) the second order accuracy.

The flow and temperature fields were first solved in the portion
of the enclosure near the hot wall, then the temperature distribution
inside the partition was obtained, and finally the flow and temperature
fields inside the portion of the enclosure near the cold wall were found.
The procedure used to be repeated until the convergence of the solution
was reached. The convergence criterion was based on the average mass
imbalance to be less than 1077,

3 Verification of the numerical procedure

3.1 Comparison of the numerical results for the
unpartitioned enclosure filed with air

To verify the applied numerical procedure, the results for a cubic en-
closure without partition were compared with the benchmark results
presented by (de Vahl Davis, 1983) and (Hortmann M., et al. 1990).

Two vertical opposite walls were maintained at constant different
temperatures and the horizontal walls were assumed to be adiabatic.
The working fluid was air (Pr = 0.71). The comparison was performed
for the Rayleigh numbers Ra = 10*, Ra = 10° and Ra = 10%. The
results presented by (de Vahl Davis, 1983) and (Hortmann M., et al.
1990) were obtained by using 81 x 81 and 640 x 640 grids, respectively.
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In both papers the Boussinesq approximation was used. The den-
sity was linearly dependent on temperature only in the buoyancy force
term while the thermophysical properties of air were considered to be
constant. For small temperature differences between the opposite ver-
tical walls, the application of the Boussinesq approximation for air is
justifiable.

To verify the numerical model with variable thermophysical prop-
erties, the following expressions for air properties were used

p=—4167-10"". T2 +1.0-1078. T4 — 9.625- 107" - T2+
(26)
+5.7-1075 . T2 — 5.563 - 1073 - T + 1.299 [kg/m?],

p=-1772-100% .75 - 8.333- 1071 . T4 +1.5- 107! . Tg—

—9.917-1071° . T2 4+ 7.45 - 108 - T + 1.697 - 1073 [kg/ms],
(27)

k=—-4285-10"8.T2 +9.878-107° - Tk + 3.675-10~* [W/mK], (28)

¢, = —5.555-107% . T3 +5.802- 10 *T} — 1.95- Tk +1.219-10° [J/kgK],
(29)

3=23393-10"%.T2 - 1.306-107° - Tc +3.659 - 107% [1/K].  (30)

The expressions (26-30) for air properties are based on the data from
(Schmidt F.W. et al., 1993) and can be applied for the temperature
range 20-60°C'".

The temperatures of the vertical sides were 21.77 - 20°C, 40.36 -
20°C' and 46.7 - 20°C, to provide the results corresponding to Ra = 10?,
Ra = 10° and Ra = 108, respectively. For the last case (Ra = 10%)
the size of the enclosure was increased from 38 mm to 76 mm (so that
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the set of equations (26-30) for the same temperature range were used).
All ealculations were performed by using a uniform grid with 76 x 76
control volume cells. The streamlines and isotherms for Ra = 10°,
Ra = 10° and Ra = 10° (Fig. 3) were compared with those from (de
Vahl Davis G., 1983) and a good agreement was achieved.

ﬁ/ s

B e

c)

Fig. 3. Streamlines and isoterms for the enclosure without. partition
with air as a working fluid (Pr = 0.71)
a) Ra="10°,'b) Ra=10% ¢) Rd'= 10°.
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The average Nusselt numbers are compared in Table 1 where the
results from (de Vahl Davis, 1983), (Hortmann M., et al. 1989). and
this paper are presented in the first, second and third rows, respectively.

Table 1. Comparison of the average Nusselt numbers for the enclosure

without partition with air as a working fluid (Pr = 0.71).

Ra 10 10° 10°

de Vahl Davis, 1983 2.243 4.519 9.799
Hortmann M. et al., 1989 | 2.24475 | 4.52164 | 8.82513

Presented results 2.256 4.549 9.068

The greatest discrepancy between the average Nusselt numbers is
for Ra = 10° but it is not more than 2.7% (between rows 2 and 3). The
central difference scheme was introduced after 800 SIMPLE iterations
for Ra = 10* and Ra = 10° (by assuming of G = 1 instead of G' = 0).
The calculation was stopped after 2500 iterations (see Fig. 4 a).

a)

T

i i 1 i - 1 e L L il L
500 1000 1500 2000 2500 ] 1000 2000 3000 4000 5000
number of iterations ankhar ol it

Fig. 4. Decrease of error (average mass imbalance)

for a) Ra = 10*, b) Ra = 106.
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In the case of Ra = 10° the central difference scheme was introduced
after 1500 iterations ( with the factor G being changed from 0 to 0.6
- hence, not a complete central difference scheme) and calculation was
stopped after 5000 iterations (see Fig. 4 b).

All the calculations were performed at the DEC 5000 work-station.

3.2 Results for the partitioned enclosure filled with
glycerol

As another set of data, the experimental results from (D. Cuéckovié -
Dzodzo et al., 1996 and D. Cuckovié-Dzodzo, 1996) were used to verify
the numerical model which takes into account the dependence of the
thermophysical properties on temperature. Thermochromic liquid crys-
tals and Plexiglas particles were used to visualize the temperature and
velocity fields experimentally in the partitioned enclosure filled with
glycerol (see Fig. 1). In this paper, the thermophysical properties of
the glycerol were considered as being variable. They were specified as
functions of temperature as follows

p=9.597-10"1. T2 — 0.6542 - Tc + 1276.0 [kg/m®],  (31)

3 = 0.002266667 - 10~ - Tc + 4.53133 - 1074 [1/K), (32)

kp = 0.2484397 + 1.318422 - 10 * - T, [W/mK], (33)
¢, = 0.412731 - 10° + 7.89332 - T, —
—~5.71088 - 107% . T7 + 4.31645-107%. T} [J/kgK],

(34)
p=—1.63280-10"8.T2 +4.129-107%- T4 — 4.238 - 10 . T3+

+0.02241 - T — 0.62486 - Tc + 7.6358 [kg/ms],
(35)
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where T and Tk are temperatures in °C’' and K, respectively. The
equations for the density, dynamic viscosity, and coefficient. of the vol-
umetric expansion were obtained experimentally (Dzodzo,1991) while
the curves for the coefficient of the conductivity and specific heat of
glycerol were taken from (Toloukin Y. S. et al. ed., 1970) and (Toulokian
Y.S. and Makita T., ed. 1970), respectively. Expressions can be ap-
plied for temperatures between 20-60°C'. The thermal conductivity of
the plexiglas partition is assumed to be k, = 0.195 W/mK.

The numerically and experimentally obtained streamlines for Ra =
96000 and Ra = 364000 (temperature differences 38°C-20°C' and 55.3-
20.1°C, resp.) are presented in Figure 5. By comparing Figures 5 a)
and 5 b) it could be concluded that the increase of the Ra numbers
brings forth an upward and downward shifting of the centers of the
vortexes towards the horizontal axis in the hot and cold portion of the
enclosure, respectively. The decrease of the thickness of the boundary
layers for higher Ra numbers could be an explanation for the varying
positions of the centers of the vortexes in the hot and cold halves of the
enclosures. For the highest Ra numbers (Fig. 5 b) the small thickness
of the boundary layers does not affect the positions of the vortex centers
so that they are almost at the horizontal axis of the enclosure.

The comparison of isotherms for Ra = 258000 (temperature differ-
ence 50.2-19.35°C') is presented in Figure 6. It could be concluded from
both figures that the shapes of the experimental and numerical velocity
and temperature fields are in a good qualitative agreement.

The quantitative discrepancy of the isotherm positions (compare
Fig. 6 a) and 6 b) could be explained by the inability to provide for the
horizontal walls of the enclosure the same boundary conditions as in the
experiment, by the uncertainty of the color-temperature calibration of
the liquid crystals as well as by possible three-dimensional flow effects.
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Fig. 5. Numerically and experimentally obtained streamlines for
the enclosure with partition and glycerol as a working fluid

a) T, = 38°C and T, = 20°C (Pr = 5100, Ra = 96000),

b) T}, = 55.3°C and T, = 20.1°C (Pr = 2700, Ra = 364000).
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Higher tempetature area

(=2 38 4°C

= 38.0°0
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Lower temperature area

8—=¢ 20,9°C

Fig. 6. Numerically and experimentally obtained isoterms for the
enclosure with partition and glycerol as a working fluid for

T, = 50.2°C and T, = 19.35°C (Pr = 3300, Ra = 258000).
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Fig. 7. Vertical velocity profiles in the enclosure with partition and
glycerol as a working fluid for T}, = 55.3°C' and T, = 20.1°C
(Pr = 2700, Ra = 364000) at different hights
a) at H/4,b) at H/2, c) at 3H/4.

In Figure 7, the numerically obtained vertical components of the ve-
locities at various horizontal planes (solid lines) could be compared with
the experimental results (symbols) for Ra = 364000 (temperature dif-
ference 55.3-20.1°C'). To note is that the numerically obtained velocity
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profiles are not. symmetrical (as they would have been if the Boussinesq
approximation had been applied) and that they are in agreement with
the experimental results.

The maxima of the velocities in the cooler half of the enclosure are
smaller and boundary layers are thicker due to the higher viscosity.
In each half of the enclosure the vertical velocity profiles have their
maxima in the middle of the enclosure height. The thickness of the
velocity boundary lavers near the hot and cold walls tends to grow in
the direction of the flow (upwards and downwards).

From Figure 7 it could be seen that the thickness of the boundary
layers near the vertical partitions are almost the same for all of the three
horizontal cross sections. The variable temperature of the partition
surfaces could be an explanation for almost the same distance of the
maximum vertical velocities from the partition. The maximum vertical
components of the velocities occur at the middle horizontal cross section
while the velocity and temperature gradients in the boundary layers
near the partition side are the highest at the center of the partition.

4 Conclusions

In the most of the previous natural convection studies the working fluids
were air or water and the application of the Boussinesq approximation
produced no difference between the mumerical and experimental results.

This is, however, not the case if the thermophysical properties of the
working fluids vary drastically and nonlinearly inside the temperature
range of interest. To reduce the discrepancy between the numerical and
experimental results, for such fluids, a numerical procedure has been
developed taking into account the variable nonlinear thermophysical
properties of the working fluid.

The details of the developed numerical procedure are presented in
the paper. The verification of the procedure has been performed by
comparing the results obtained with the available natural convection
numerical bench mark solutions (for air as a working fluid) as well as
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with the experimental results (for glycerol as a working fluid).

The results for air are in a good agreement with the bench mark
solutions. The maximum discrepancy between the calculated average
Nusselt numbers is not greater than 2.7% for the highest Rayleigh num-
ber (Ra = 10%). It might be based on the inability to apply a com-
plete second order central difference scheme for the convective terms
in the energy equation or on the effects of the varying thermophysi-
cal properties which were not taken into account with the Boussinesq
approximation models.

For smaller temperature differences (Ra = 10° and Ra = 10%) the
discrepancy is less than 0.6%. The ability to apply a complete second
order central difference scheme for the convective terms in the energy
equation and the fact that for smaller temperature differences the mod-
els based on the Boussinesq approximation are supposed to produce the
results closer to the ones developed in this paper could be an explana-
tion for the better agreement obtained.

As another example the conjugate heat transfer in an enclosure with
a complete vertical conducting partition and laminar natural convec-
tion on both sides was investigated numerically. The working fluid was
glycerol. Thus, the dynamic viscosity of the glycerol varies nonlinearly
and by one order of magnitude between the temperatures used in this
paper (60 - 20°C'). Numerically obtained velocity profiles for the en-
closure with a complete conductive vertical partition and glycerol as
working fluid are in a close agreement with the experimental ones. The
maxima of the velocity profiles and thickness of the boundary layers
are also in agreement with the experiments. The numerically obtained
temperature fields are qualitatively (shapes of isotherms) in agreement
with the experiments.

Sumrﬁarizing, the developed numerical model taking into account
varying thermophysical properties of the fluid can in some cases reduce
the discrepancy between the numerical and experimental results and
thus produce more accurate results than models based on the Boussi-
nesq approximation.
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Nomenclature

¢y - specific heat of the fluid [J/kgK],

g - acceleration due to gravity [m/s?],

H- high of the enclosure (H = W) [m?],

ks - thermal conductivity of the fluid [W/mK],

k, - thermal conductivity of the partition [W/mK],
p - pressure [N/m2],

Pr = s Prandt]l number,

a

9B(Th — T)W*
va

T - temperature [°C],

Ra. —

Rayleigh number,

V' - velocity vector [m/s],
u - velocity along x [m/s],
v - velocity along y [m/s],

U or V(p,w,Esn,s) - velocities at the centers of the control volume
cells,

U or V(ysemys) - velocities at the faces of the control volume cells,

U or V (5w sesnwime) - velocities at the corners of the control volume
cells (for example V. = (Vp + VE + Vv + Vvg)/4),

W - width of the enclosure [m)],

N.B.: physical properties , and were taken for mean fluid tempera-
ture in the enclosure (T, = (T) + T..) /2) to calculate Ra and Pr.
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Greek symbols

a- thermal diffusivity [m?/s],

Q(uvp.1) - UInderrelaxation factors,

3 - thermal expansion coefficient of the fluid [1/K],
p - density of the fluid [kg/m?],

p - dynamics viscosity of the fluid [kg/ms],

v-cinematics viscosity of the fluid [m?/s].
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Matematicki model i numericko reSenje za konjugovani
prenos toplote u izdeljenom okruzenju za fluide sa

promenljivim nelinearnim termodinamickim svojstvima

Lamilarna prirodna konvekeija u okruzenju izdeljenom kompletnim
vertikalnim provodnim particijama je studirana numericki pomoéu sta-
cionarnog dvodimenzijskog modela. Koriséene su jednacine za fluide ra-
zlicite gustine i razlicitih termofizickih svojstava. Razvijena numericka
procedura je verifikovana uporedjivanjem rezultata za vazduh i glicerin.
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Kako procedura u obzir uzima nelinearnu zavisnost termofizickih svojs-
tava glicerina (posebno viskoznosti) dobijeno je bolje slaganje sa eksper-
imentalnim rezultatima.



