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Abstract

This paper used a modified method suggested by J.W. Eis-
chen and G. Herrmann [4] to obtain the balance laws in the
theory of rods. In this way we were able to show that the J-
type balance laws can be deduced simply by this method, ap-
plying the analogue operators like gradient, curl and divergence,
by subjection to the Lagrangian function and ” Lagrangian mo-
ment”.

1 Introduction

The conservation laws for linear elastostatic without defects, based on
Noether’s theorem, were discussed in a more general form by Giinter
(1). Independently of Giinter, three types of conservation (or balance)
laws, both for linearized and finite elastostatics, were established by
Knowles and Sternberg [2].

Fletcher [4] extended the invariant integrals presented by Knowles
and Sternberg [2] to linear elastodynamics, again relying on manipula-
tions dictated by Noether’s [5] theorem.
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The paper by Eischen and Herrmann [5] was motivated primarily
by the interest generated by Rice’s J-integral, and a quest for its theo-
retical undergoing. Two additional laws were found which were subse-
quently associated with the L, and M integrals of defect mechanics by
Budianski and Rice [3].

The purpose of this paper is to apply the ideas of the papers men-
tioned above to the theory of rods [6]. It will be shown that balance
laws of the type described above can be deduced simply by subjecting
the Lagrangian density of familiar operations from vector calculus such
as gradient, divergence and curl.

The dynamics of a rod is equivalent to the two conservation laws
obtained below, that express the balance of linear and angular momen-
tum. If the rod is hyperelastic it implies a third conservation law that
expresses conservation of energy. The additional conservation laws that
are of primary concern here arise in the cases of a uniform, hyperelastic
rod, where the symmetry is translation in arc-length, and in a class
of transversely isotropic rods, where the symmetry is rotation about
the centerline of the rod. The last conservation law is obtained upon
considering the scale changes.

2 Conservation laws

The Lagrangian density L may be viewed as a function of the particle
velocity, total strain tensor, and coordinates. Accordingly, it is defined
by

L=H"—T=L(t,s,d},¢r,d}') (1)
where W and T represent the elastic strain and kinetic energy densities,
respectively. The ® = ®(®;) € R,,,i = 1,2, ..., m, are functions, which
describe the behavior of the material system under consideration. We
suppose that these fields are twice continuously differentiable. Here
@’ denotes the partial derivative with respect to arc-length s, while ®;
denotes the partial derivative with respect to .

Given the particular form of equation (1), the usual variation of
the Lagrangian will lead to the equations of motion, provided that the
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terms according for the work of the body forces and surface tractions
are included.

The desired results are obtained next by simple vector and tensor
calculus operations involving the Lagrangian.

1. According to Eischen, Herrmann [4], the first balance law is ob-
tained by considering the partial derivative of the Lagrangian, i.e.

dL. OL 6® 8L od OL o E}L‘
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ds 90 85 "ob 0s 0¥ 0s ' Os|,’ (2)

where dot denotes the inner product.

Relation (2) can be expressed in the form
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From (3) we obtain
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where we assumed that the Lagrange equations have been satisfied, i.e.
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Relation (3) can also be expressed in the form
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I1. The second balance law is obtained by differentiation with re-
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spect to parameter ¢ (time)
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Similarly, using the Lagrange equation, we obtain

d 8L - gatl . . S

(8)

ITI. The third balance law is obtained, by analogy in [5] (divergence
of "Lagrangian moment” ), as a derivative with respect to parameter s,
of the function (Ls).

d o(Ls)| , B(Ls)

ds L‘:‘) = P’ + (LS)(I}” a(LS)( J ; {Q]

od o’ od

Relation (9) can be transformed in the form of
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Using the Lagrange equations, the above relation becomes
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Further, if we assume that L is the homogenous function of the
second degree', than

oL
—@' = 2. 12
35 (12)
and from
o £ T A
—L+2W = % [Lt+t'1)<l>] —t{aﬁ-%@] : (13)
we finally obtain
d oL -
(14)
d |OL 4 : OL | ; .
L NV el P i P

Now, we will apply this relations in the theory of the rods.

3 Rod dynamics

The independent variables are two scalars, namely undeformed arc-
length s, and time t. The dependent variables are a vector function
r(s.t) € R® and an orthonormal frame directors di(s,t) € R® i =
1,2,3. The derivation of the equations of motion will only be outlined
here. as the rod model that will be adopted is a comparatively standard
one.

The kinematics of the rod are encapsulated in the relations [6]

r =v, (15)

d@'=u><di, {lﬁ')

Iwhich holds in the case of linear clastisity
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and

d; = w x d,. (17)
The densities of linear and angular momentum are, respectively,

P(s.t)=p(s)F, (18)

and .
(s, t) = I;; (s) wjp (s) d;. (19)

Here p(s) is the mass per unit arc-length associated with the mate-
rial cross-section at point s, which is determined entirely by the refer-
ence configuration. The quantities /;;(s) are components of the inertia
tensor of the material cross-section at s expressed with respect to the
triad {d;}. It will be assumed that these inertia coefficients are inde-
pendent of the strain w; and v;.

In a rod model the stresses acting across each material cross-section
are reduced to a net force n(s,t) and moment m(s,t). Then, the bal-
ance of linear and angular momentum yield the equations

p=n, (20)

and
#=m'+r xn (21)

The system is closed by specification of a constitutive law relating
the stresses n and m to the strains u and v. However, it may imme-
diately be observed that, trivially and independent of the constitutive
relations, (20) is in the form with density p and flux n. Moreover, using
(18) and (20), equation (21) can be rewritten in the conservation form

(r+rxp),=(m+rxn),. (22)

We next demonstrated that, for a hyperelastic rod, the equations
of motion (20) and (21) imply a third (well-known) conservative law,
namely conservation of the total energy.

A rod is said to be hyperelastic if there exists a scalar valued strain
energy density function W (v;, u;, s), dependent. upon the six strains and



THE CONSERVATION LAWS IN THEORY OF RODS 161

arc-length, with the property that the components of stress n; and m;
identically satisfy the constitutive relations

W
n; = Hfl,’ T ?3—1:, (23)
and S/
mi=W,, = —. (24)
aui

Here W,,, and W,, denotes the partial derivative of W with respect
to the argument v; and u;, respectively.

The conservation laws for rods

I. If the material is homogeneous and is free of any defects so that
the Lagrangian density does not depend explicitly on the parameter s,
then (9L/0s).,, = 0, and in absence of body force, the equation (6)
becomes a statement of the conservation law

(m-u+n-v—L") :(ﬂ”u-‘l—p-v)

(25)
where
oL i dW & oL oW o
o¥ ~ ov T 1l B " on
(26)
oL " oW oL K

1
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Note that the above relations are valid for uniform hyperelastic (if
the coefficients p and I;; are constants) rods.

This relation represents Eshelby energy - momentum tensor type,

which arises in a conservation law for elastostatics of a homogeneous
elastic material in multispace dimensions.

I1. In a special case, when Lagrangian is not a function of parameter
t, and in absence of body force, from (8) we obtain

SRR ,
(W+§p-1"+§ﬂ'-u)=(n~i‘+m+w), (27)
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This relation represents the conservation of energy.

II1. Similarly, by substituting (26) into (14) we obtained

[Ls —m- (vs+ rt) —m- (us + wt)]’ =
(28)

=[Lt -1 (vs+Tt) —w - (us +wt)] .

This relation represents the conservation law obtained upon consid-
eration of the family of scale changes.

4 Isotropic rods

We assume that the rod is transversely isotropic. Full isotropics is not
physically justified for rods.

In the paper [6] (see also [Antman]), demonstrating that the hy-
potesis of isotropic elastic response is equivalent to the specialized con-
stitutive relations

n = N,v+ Nyu+ Nidj, (29)
m = MIV -+ Jﬂl’fgu+ ial’f_;dd [30)

where the N; and M;, 1 = 1,2, 3, are scalar function each. Isotropy of
the dynamics properties of the rod follows for the angular momentum,
have the special form

™= Ilw+ (Ig—ir[) L;Jgd;], (31}

where d3 is a principal axis of inertia with associated principal inertia
I3. Also, we suppose that is I} = Is.

With constitutive relations (23)-(24), and additional restriction M,; —
N,, it. is easily shown that the conservation law (25) reduces to the form
6]
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5 Strings, inextensible rods, and planar
dynamics

In this section we shall consider the conservation laws that arise in a
certain degenerate case of the rod model described in Section 2.

A model of a string is obtained if the strain v is declared to satisfy
v = v = 0, so that (6) reduces to

v = v3ds. (33)

The balance laws in this case have the forms

7 =m, (34)
rxp=rxn, (35)
because the constitutive laws for the force and moment are taken to be
n=n3=0, n3=Nj, ~ (36)

and
my =mg =0, mg= Ms. (37)

Here N3 and M3 are scalar functions.

In this special case the conservative law (20), (22) is reduced to

rxp=rxn. (38)

This string is uniform and hyperelastic if there is a strain energy
density function in the form of W(wvs, u3), such that N3 = W,, and
M; = W,, (W must be independent of u;, i = 1,2, to be consistent with
the requirements n; = 0, © = 1,2,). For such a string the conservation
law (25) takes the form

(m-u + p - V)= (mgug + nzvz — Ly . (39)
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Zakoni odrzanja u teoriji Stapova

U radu se prikazuje metod, koji su predlozili J.W. Eischen i G. Her-
rmann [4] kao metod za dobijanje zakona balanasa u teoriji Stapova.
Pokazuje se da se zakoni balansa J-tipa mogu da dobiju koristeci ovaj
metod primenom operatora: gradijent, divergencija i rotor na takoz-
vani " Lagranzev moment”. Na kraju se razmatraju neki od specijalnih
slucajeva.



