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Abstract

Perfect bifurcational dissipative systems with trivial funda-
mental paths under follower loads in regions of divergence in-
stability, are considered. Such autonomous non-potential sys-
temns under certain conditions may exhibit limit cycles in critical
states of divergence. This is due to the coupling of divergence
and flutter instability occurring at a double zero eigenvalue. The
conditions for a double zero eigenvalue in critical states of diver-
gence are properly established. A 2-DOF and 3-DOF systems
are used as models to illustrate the new findings.

1 Introduction

Elastic instability of non-potential dissipative systems has been the sub-
ject of a large amount of work within the context of classical analysis,
either static or dynamic [1-4]. Interesting examples range from the
Takoma Narrows bridge wind-induced collapse, to offshore structures,
to aerospace structures under follower forces produced by jet and rocket
thrusts, to fluid-structure interaction, to shell-type "ovalling” [3], oscil-
lations of pipes conveying fluid, etc.
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84 A. KOUNADIS

In this work we study perfect bifurcational systems with trivial fun-
damental paths which are acted upon by partial follower loads with
given nonconservativeness parameter 7. Attentions is restricted to crit-
ical states in the region of divergence which are comprehensively dis-
cussed in the presence of viscous damping. Recent findings based on
numerical analyses [5.6] of a 2-DOF (Degree Of Freedom) model have
revealed interesting dynamic bifurcational phenomena. Conditions for
which a static bifurcation (at a zero eigenvalue) is transformed to a
dynamic bifurcation (at a double zero eigenvalue) are properly estab-
lished. Recall that in such a case the systems under discussion exhibit
a coupled flutter-dwergence instability (although the critical states [5]
are equilibria related to the 1°* branching point).

The new results are based on the stability analyses of a 2-DOF and
3-DOF models.

2 Basic considerations and problem
description

The analysis that follows treats structural systems which are discrete
or have been discretized by some approximation technigue. Thus, one
can consider a general N-DOF non-linear dissipative system under a
partial follower load A with nonconservativeness loading parameter 7.
Attention is focused on perfect bifurcational systems with trivial funda-
mental paths which due to the above type of loading are autonomous
non-potential systems [3]. Their response at any time t > 0 can be
described in terms of generalized displacements, ¢; = q; (t) and gener-
alized wvelocities, ¢; = ¢; (t), (i = 1,...,n), via Lagrange’s equations of
motion. These 2"¢ order differential equations, using the transforma-
tion of variables [5]

Yi = qi, Ynti = Qi (izl,,..,'n.), (1)
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can be written for a system initially (¢t = 0) at rest as follows [3]

v=Y(v;k;\;n), yeE" keE" \nekE,
(2)
subject to y° (t = 0) = 0.

where y = (41, ..., ygn)’r is the state vector in the Euclidean space E**,
being a continuous function of ¢ and A for fixed 5, with T denoting
transpose; Y = Y (Y}, ..., YQR}T is a nonlinear vector-function which by
assumption satisfies the Lipschitz conditions for all £, A and 7, at least in
the domain of interest; k = (kq, ..., ﬁ;ﬂ}"r is a stiffness parameter vector,
while A and 7 are the main control parameters for static and dynamic
bifurcations as well as for the stability of equilibria and limit cycles.

The existence of all possible equilibrium states y* can be established
by setting the L.H.S. of eq. (2) to zero, i.e.

Y (y5xn) =0. (3)

Since we are discussing with perfect. bifurcational systems with triv-
ial fundamental paths eq. (3) is satisfied by the trivial (zero) solution
y? = 0, regardless of the values of A and 7; i.e.

Y (0; A;9) = 0. (4)

At the critical state A = A° (depending on 7n), the system exhibits
also another solution different. from zero y* # 0 (postbuckling path);
namely it displays a bifurcation [6].

3 Local analysis

Using a local (linear) analysis one can discuss the nature of the eigen-
values of the Jacobian matrix evaluated at a known solution y*, being
either an equilibrium (singular) point y¥ or a non-equilibrium (regu-
lar) point y”. Setting y = y* + £ and employing a Taylor’s expansion
around y¥ = 0, after linearization, we get the following linear varia-
tional equation

bl (5)
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where Y = Y (0; \; n) is the Jacobian matrix [3] (evaluated at y* =
0). The last matrix has the following characteristic equation [4,6]

‘PE lais] + o ei) + [Vis]| = 0, (6)

where [a;;| is the positive definite function of the total kinetic energy:
[¢i5] is the non-negative definite dissipation matrix and [V;;] the asym-
metric stiffness matrix.

Eq. (6) after expansion yields
Fp)=p" +ap™ "+ @p™ 2 ¥ K age 1p Faz =0, " (7)

where
n n
=Y &= p, e =detY, =det[V}] = Hp“ (8)
i=1 =1

with [&;] = [a]™ [ey], [Vis] = o] [Vij] and pi (i = 1,...,2n) the
Jacobian eigenvalues. All coefficients a;, (i =1,...,2n) can be deter-
mined by means of Bocher’s recurrence formulas [7]. It can be shown
that a, is a function only of damping coefficients ¢;;, while ay,, and as,_,
of k;, A and 7, and k;, ¢;, A and n respectively, i.e.

Qo = aira(kt’-)‘w”)n
(9)

An-1 = Qn-1 (ki cij, A n), bigo B Lgm.

Note that ag, leads to a n-degree algebraic polynomial in A°, while
agn-1 to an (n — 1)-degree polynomial in A°. If there is no damping
(unrealistic case) all odd terms in eq. (7) are zero, i.e. a; = a3 = ... =
as,—1 = 0. Then, eq. (7) has antomatically a double zero eigenvalue at
the critical state (obtained via as, = 0).

The characteristic eq. (7) can also be written as follows

T

fe)=1 (ﬂ2 + Hp + C‘t-) =1} (10)

=1
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where

Zﬂfth: i{j’ﬁ, ﬁ C;'=U—::n(k¢'.)\1‘f})f
i=1

1=1 1=1

and
aon-1 = B1C2C5...C, + C,B.Cs...C, + C1CyB3Cy...Ch+

st C]CQ..,CH_an.
(11)

As is known the precritical state for a dissipative (viscous type)
system is asymptotically stable, which implies [6]

B EY'S0, =1y s (12)

4 Conditions for a double zero eigenvalue

The structural systems under discussion may lose their stability either
through static (divergence) instability or through dynamic (flutter) in-
stability depending on the value of the nonconservativeness parameter
n varying from 1 = 0 (tangential load) to = 1 (conservative load).
The boundary between ezistence and non-ezistence of adjacent equilib-
ria corresponds to a certain value of 7, say 1 = 7,, which can be conve-
niently established according to a procedure presented by Kounadis [2].
This implies the solution of the following nonlinear algebraic equations

agn (A, m; ki) = % (A m; ki) =0, (13)
with respect to A¢ (critical divergence load) and 7 for given values of
the stiffness parameters k; (i = 1,...,n). Clearly, since ay, = 0 yields
an algebraic polynomial of n-degree in X%, eqs. (13) constitute the
necessary conditions for a double root in A°.

Let A be the smallest positive value of A° (obtained from eqs. (13))
for which 7 (A; ki) = 1, (> 0). It is clear that 7, (being a double or
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compound branching point) is either a mazmum or a minwmum of the
function (curve) n = 5 (A% k;), provided that dasg, (AS; ki) JON* # 0.
The boundary between ezistence and non-existence of adjacent equilib-
ria corresponds to the tangent at the double critical point (AS;1,) for
given k; of the curve n vs A°. A typical plot in which (AS; n,) may be a
maximum or a minimum in the curve n vs A¢is given in Fig. 1.

] b 5 :
Jl.: Region adjacent jRegion of non-existance of
equilibria i adjacent equilibria
< : |
y, A (7y -1nd buckling load : Limitepelns
A - e i {Hopfl bifurcation)
- i I i at least a plair af
it Al Ctn'nul } pure imaginary
siaie =
One zero cigenvalue 4 | cigenvalues
lc along ADB 10
B e s
{static bifurcation) Compound
branching point
1
1
]
|
B I
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[y |
0
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v i
Limit eycles I J'-.['!} -2nd buckling load
{Hopf bilurcation) s \ L —==A
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|
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F (b) 1

Fig. 1. The compound branching point 0 (AS;7,) boundary between
the regions of existence and nonexistence of adjacent. equilibria. Point
0 in the curve AOB may be either a maximum (a) or a minimum (b).
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In what follows we discuss critical states only in regions of existence
of adjacent equilibria (region of divergence). Without restricting the
generality we may consider that the point (A¢;7,) for given k; corre-
sponds to a minimum in the curve n = n (A k;) as shown in Fig. 2.
We can also assume that this point is obtained by the coincidence of
the 1* and 2™ buckling loads A{1y and Af,; since the coincidence of the
2" and 3™ buckling loads Alg) and Afy, is rather unusual [1].

DOUBLE Buckling Load
BPANCHING
POINT N

-
0 DOUBLE ZERO EIGENMVALUE
._._....:,Kd / 5 Buckling Load

Fig. 2. Typical plot of A° vs 1 showing a double zero eigenvalue at
point. d.

In view of the above we are inferesting in critical states associ-
ated with the first branching point in the region 1 > n,. The (static)
buckling loads Af), for which ay, = 0 (curve AOB in Fig. 2) render
the Jacobian matrix singular with one zero eigenvalue, Hence, a point
(Ati7er) on the curve AOB corresponds to a double zero eigenvalue if
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it satisfies both equations

aon (}'E‘rr Ners k‘i) = G2pn-1 (‘)igr Ners k’"” E'i".}') - D"
(14)
such that Agr < }Ig or Tler > Mo

Recall that, as was shown (8], a double zero eigenvalue corresponds to
the intersection of the locus of Hopf bifurcations with the curve of the
first buckling load (i.e. of the curve n vs Af},) as shown in Fig. 2.
Thus, at a double zero eigenvalue we have an interaction of flutter and
divergence.

From eqs. (11) it is clear that ap, vanishes if one C;’s becomes
zero, say C; = 0. This implies the vanishing of the (n — 1) terms of
as,—1 which becomes zero if the damping coefficient B; is also zero; i.e.
if B; = C; =0, then ay, = ag,—1 = 0. The solution of the last system
of equations must also satisfy inequality (14).

Thus, we have established the important result that a double zero
eigenvalue occurs if some of the damping coefficients B; (i =1,...,n)
is zero. However, the impact of this effect on the dissipation matriz
is not known. Moreover, other cases for a double zero eigenvalue may
exist. This can be answered if the structure of the dissipation matrix is
a priori known. A common type of external damping, associated with
so-called Rayleigh dissipation function, will be subsequently considered.

Rayleigh dissipation function

The Rayleigh dissipation function is a non-negative definite function
of the form

F = (1/2) ¢i;4:4;, (15)

where the elements ¢;; are functions of the damping coefficients of the
members c;, i.e. ¢ = ¢i;(ci), where i,j5 = 1,...,n. The Rayleigh
dissipation matriz of an N-DOF cantilevered model [6,8-10] is of the
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following tri-diagonal form

Ci+C —0Cs 0 0 0 0
—Co Ca+C3 —0C3 0 0 0
0 =y ' i+ pl 0 0
[clj] : wew sas ses s .
0 0 —Cn—1 Cae1+Cn —Cn
| 0 0 —Cp Cn

(16)
It can be shown that the determinant of the above dissipation matrix

is given by

det [c;;] = |cijl = [] &,

=1

(17)

where¢; > 0foralli=1,...,n.

Hence, if one ¢; is zero the matrix I[ct-j] becomes positive semi-
definite. Then, the matrix [¢;] = [o;]” [ci;] becomes also singular.
However, from the first of relations (11) one cannot conclude whether
the vanishing of one ¢; implies also the vanishing of some B;. Never-
theless, it is easy to prove that if any ¢;, (i = 1,...,n) vanishes one can
find acceptable values of the control parameters A° and n which render
as,-1 = 0 (evaluated at the critical state of divergence). One could
also discuss whether a double zero eigenvalue may be associated with
a positive definite matrix [c;;] (i.e. forc; > 0foralli =1,..,n) and a
singular matrix [V;;|; namely if there are acceptable values of A\° and 7
which satisfy both these conditions.

The above will be established for cantilevered models with n = 2
and 3 degrees of freedom, as shown below. However, one could extend
the present study to models with more than three degrees of freedom.
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2-DOF model

This model shown in Fig. 3 is associated with the following matrices

[aij]zli }], [cij]:{(jcjf:i ;czl

I:[ld—fc—}l —l—i—}u(l—n)]

V.
[ o | 1-An

i)

where k = ki /k; (> 0) and ¢, (i = 1,2) non-negative damping coeffi-
clents.

Fig. 3. Ziegler’s two-degree-of-freedom model under partial follower
load.

One can readily find that ag = a4 = 0 imply

e (1= ) + ¢z (k — 29X°) =0, (19)
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n(A) —n(k+2) X +k=0. (20)

The smaller root of eq. (20) is

i ped Le P R
g k+2-¢(h+ﬂ ol (21)

Since the double branching point is defined by

42 4k
AC _— B T"D — _—_"-E‘
(ﬁ: i+ 2)

g 2
for a double zero eigenvalue according to inequality (14) we must also
have

(22)

b % 2. 4k
k+2—J(k+2)z”) < AL Ner > Moo (23)

One can readily show that if both damping coefficients ¢; and ¢,
are arbitrary but different from zero (i.e. ¢; + ¢2 # 0) a double zero
eigenvalue is excluded. Indeed, in such a case eq. (19) yields

Fe=pAl, and k= 2n\°, (24)

which are not (:onsist.eﬁt unless k = 2. However, even in this case (i.e.
k = 2), eq. (20) due to the 1°* of egs. (24) leads to

which does not satisfy inequality (23) since the point corresponding to
a double zero eigenvalue (7, = 0.5, A, = 2) obviously coincides with
the double branching point (n, = 0.5, A = 2) obtained from eqs. (22).

However, as was shown [4,5,8-10] a double zero eigenvalue may occur
if either ¢, or ¢ is zero. In such a case the dissipation matrix becomes
singular (i.e. positive semidefinite), since det [c;;] = ¢;c; = 0. Namely, a
double zero eigenvalue occurs when both matrices, i.e. the asymmetric
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stiffness matrix [V;;] and the symmetric dissipation matrix [c;;] become
simultaneously singular. However, a double zero eigenvalue may also
oceur in case of a singular matrix [V;;] and positive definite matrix [¢;;]
(l.e. ¢1,ca # 0). In this case one has to find positive values of ¢;and
¢ which, when combined with acceptable value of k, A° and 7, satisfy
eq. (19). Indeed, if ¢;/c; = 0.27511602, n = 0.33, k = 0.5 (implying
Mo = 0.32, A7 = 1.25) and Af}, = 1.03240293. then eq. (19) is obviously
satisfied. In Fig. 4 one can see the corresponding phase-plane portrait
(H] VS Hl) associated with a limit cycle response.

1 Limit cycles

(double zero eigenvalues)

rne.:r.EI =+0.1431

Fig. 4. Phase-plane portrait (6’1 Vs 91) showing a limit cycle response
for k =0.5, 5, =0.33 > n, = 0.3, c; = 0.027511602, ¢, = 0.01,
Ao = 1.03240293 < A = 1.25.

Finally, one can find the limiting value of n for the occurrence of
a double zero eigenvalue. Solving eq. (20) for k and introducing its
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expression into eq. (19) we obtain

e1 (1= 7292 + eop (X)% (29— 1) = 0. (26)

Since, 1 — nA° # 0 and ¢;, (i =1,2), n, A are posifive quantities, eq.
(20) is satisfied only if n < 0.5.

3-DOF model

The following matrices correspond to the 3-DOF model [8-10] shown

in Fig. 5

1+ﬁ11+ﬁ12 1+ﬁ32 1

Crit Duiro il 0
[ai] = | 1+my 1+my 1|, [a]=| —C2 Oyt ey —6a i,
1 1 1 0 Oad s + o
(27)
f_ﬁ_-i- ky — A —;sz A(l—n)
Vi;] = | =k l+ka—X =14+X(1-n)
0 -1 1 -7\
where det [a;;] = mimy and det[c;] = €663 with m; = m;/ma,

My = mg/ms, ki = ki/ks, ka = ky/ks and ¢;, (i = 1,2,3) non-negative
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damping coefficients.

Fig. 5. 3-DOF cantilever model ABC'D under a partial follower
compressive load at its tip.

One can show that a; = ag = 0 yield [8]

& [ka+n(X)? = xep (k2 +2)] + & [k + 20 (A9)* = Ay (k1 +3)] +

+03 [Erlfc.z + Il xe) — A%y ('31'1 + 3E’2)] =1,
i (28)
ke ko

{Nl):i i (f_u + 2ky + 2) {)\r')j b (2#1 + 3ky + .‘.lﬁz) Af — T = 0. (29)

Since the signs of the terms are alternately positive and negative, eq.
(29) has three positive roots.

Differentiation of the last equation yields
S (E-l + 2k, + 2) AC + 2ky + 3Ky + KKy = 0. (30)

It can be proven [8] that the smaller root Afyy of eq. (30)-being a double
root of eq. (29)-corresponds to the double branching point (coincidence



DOUBLE ZERO EIGENVALUES IN REGIONS OF ... 97

of the 1% and 2" buckling loads Afy) = Aly))- Hence

1
X =3 (A- VA =3B),
and due to eq. (28)
o L (31)

T X [P - A+ B’

where ¥ .
A=k1+2k2+2, B:2k1+3k2+k1k2

For a double zero eigenvalue, in addition to eqs. (28) and (29), one
must also have
RIS DR (32)

One can show that if no one from ¢;, ¢s or c3 is zero a double zero
eigenvalue cannot occur. Indeed, if ¢; + ¢; + ¢3 # 0, then eq. (28) is
satisfied if the following equations are satisfied

n(A)? = X (kx +2) + k2 = 0,
21 ()% = A (I;l & 3) +k =0, (33)
21 (X)* = X (2K, + 3ks) + Fuky = 0,

where k; (i = 1,2) and \° are taken positive values, while 0 < 7 < 1.
Under the circumstances, one can prove that there is no set of such
alues of k;, A° and n satisfying the system of eqs. (29) and (33). Indeed,
from these equations one can obtain

k1ko
xe[(x)* — Axe + B’

n:

n=—r ks , (35)
e (kg de Af)
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Ky

T e (k8- 22e)’ Lo

kiks

n= % L : (37)
Xe (2ky + 3k, — 2))
From egs. (34) and (36) it follows that
(X)? = (k1 +2) A + 2k; =0, (38)
from which we obtain
e l /- 1.

Namely, either A] = ky or A = 2. Both these values are rejected.
Indeed, if A{ = k; # 0 from eqgs. (36) and (37) we find respectively

(40)
ke kg (for ky # 0).

However, the last relations are not consistent for ky # 0. If X§ = 2 from
eqgs. (35) and (36) we find respectively

E 1 X
= — = — for ko # 0
n 2;62 31‘ (Dr '2?9 )'.'
£ (41)
: 2(ky—1)

Clearly, the last relations are not consistent and thus the value A§ = 2
is also rejected.

The conclusion which is drawn from the above discussion is similar
‘to that valid for the 2-DOF model. Namely, if det [c;;] = ¢,62¢5 # 0,
then as # 0 which ezcludes the case of a double zero eigenvalue.
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However, a double zero eigenvalue may occur if either ¢; or ¢z or
¢3 is zero. More specifically, if for given values of k;, (i = 1,2) one can
find acceptable values for the control parameters A and 7 for which the
asymmetric stiffness matrix [V;;] becomes singular and the dissipation
matrix [¢;;] positive semi-definite, i.e. when

det [H}] = U,
(42)
det [cij] = (C1C9C3 = 0,
then the conditions for a double zero eigenvalue are satisfied. The
solution A = A, > 0, obtained from egs. (42), is acceptable, if
;o (43)
where \¢ corresponds to the double branching point (coincidence of the
1°* and 2" buckling loads Af;, and A{,)).

For instance, if det [c;;] = 0, due to & = 0 (while ¢,é # 0) and
det [V;;] = 0, from egs. (34), (35) and (37) one can find acceptable
value of 17, A° and k,, as functions of the parameter ks (> 0). Indeed,
from eqs. (34) and (35) we find that

(X)? =2 (R + 1) X + 3k, = 0, (44)
from which we obtain
MNo=1+k+ E—F+1. (45)
On the other hand from eqs. (35) and (37) we get
ky (3 — Kk
A = 253_ - ) i (46)
[f
=1t ha— ikl =0 (47)
then egs. (35) and (46) yield
1
¢ g ] = - )
2T+ =k 1
5 (48)
ky=2- i

1-\/-k+1
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Apparently, if ko > 1 then k; > 1. For instance if k, = 4, then egs.
(47) and (48) give

XS = Ao = 1.394488725,
Ner = 0.62283903, (49)
ky = 3.535183759,

T (50)

then A, is acceptable, since it implies a double zero eigenvalue at. the
1°* branching point. Indeed, setting

A =k + 2k; + 2 = 13.53518359,

(51)
B = 33.21110188,
we obtain 1
X=3 (A — VA2 = 3B) = 1.464545428, (52)

which due to eq. (49) satisfies inequality (50). Note also that
5 k1 ks
A [{Ag)2 — AX; + B

Mo = 0.621599832 < ...

The curve i vs A¢ for the above values of k; and k; is given in Fig.
2.

A double zero eigenvalue may also occur in a divergence critical
state (i.e. det[V;;] = 0) with a positive definite dissipation matrix
[cij](i.e. when ¢; # 0 for i = 1,2,3). Indeed, for ky = 2, ky = 0.5,
(implying A = 5 and B = 6.5) the curve 1 vsA® exhibits a minimum at
AS = 0.884930706 and 7, = 0.395330493. For any divergence (critical)
state in the vicinity of the point (AS,7n,) we can find suitable values of
¢; > 0, (for i = 1,2,3) for which both eqgs. (28) and (29) are satisfied.
For instance, if A = 0.80 < A then 7, = 0.398089172 > 7,. In
this case one can choose ¢, = ¢3 and cy/c; = 0.309027776. Clearly.,
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both eqgs. (28) and (29) are satisfied for the above numerical values of
ki, k2, Aer,Mer, €1/€3 = 1 and ¢/ c;.

In view of the above, a double zero eigenvalue may be associated
with a singular [V;;] and a dissipation matrix [¢;;] which is either positive-
definite or positive semi-definite.

It is worth noticing that the results in both models are also valid for
vanishing but non zero damping; namely for practically non-dissipative
systems. For instance, if ¢; = 0 and ¢; — 0 the 2-DOF model exhibits
a double zero eigenvalue under the conditions presented above. This
is also true for the 3-DOF model, if é& = ¢ = 0 and ¢, = 0.01. For
instance, if k; = 6, ky = 0.5 (implying A = 9, B = 16.5) we find that
a double zero eigenvalue occurs at A\, = 0.63397 (< AS = 1.12917)
and 1o = 0.42265 (> 7, = 0.3490). The corresponding phase-plane
portrait is shown in Fig. 6.

n=0.42265, k ,=6.0, E:=ﬂ.5, mn,=m,=1,
0.0015 _ T =12=T3=ﬂ. EI=EIEE!:[]' v.=ﬂ.m| » v1=vl=l]

Phase Plane

£, =6,=6,=0, ¢, =0.01, 2,=2,=0, 1=0.633974
double zero eigenvalues
0.0010
Limit cycles . i
; -|, RN
MRS (1 s
00005 | - \f— ; T
5 - | I
D
0.0000
e e S - S AL R s Y -
" i r i ] i ] | i 1 i
-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

0,(t)

Fig. 6. The critical (divergence) state (. = 0.42265, A., = 0.633974)
associated with a periodic attractor (due to a double zero eigenvalue).
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5 Conclusions

Using a 2-DOF and a 3-DOF nonlinear dissipative models under partial
follower load A with non conservativeness parameter 7, critical states
of divergence associated with a double zero eigenvalue, are discussed in
detail. The most important results for models with Rayleigh dissipation
matrix are the following:

1. The conditions for the occurrence of a double zero eigenvalue
(implying a coupled divergence-flutter instability) are properly estab-
lished.

2. The case of a double zero eigenvalue is excluded for arbitrary
different from zero damping coefficients (implying a positive definite
dissipation matrix).

3. A double zero eigenvalue may also occur if one of the damping
coefficients is zero which renders the dissipation matrix [e;5] positive
semi-definite.

4. However, a double zero eigenvalue at a divergence (critical) state
may occur in case of a positive definite dissipation matrix with suitable
values of damping coefficients.

5. The above finding are also valid for damping coefficients which
tend to zero; namely for practically non-dissipative systems.
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Dvostruka nulta sopstvena vrednost u oblasti divergencije

autonomnih nepotencijalnih sistema

Posmatra se perfektna bifurkacija za disipativne sisteme sa trivi-
jalnom fundamentalnom granom pod dsejstvom prateceg opterecenja.
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Ovakvi autonomni nepotencijalni sistemi, pod odredjenim uslovima,
mogh pokazati oscilatorno kretanje u kriticnom stanju divergencije.
Ovo je rezultat interakcije dva tipa nestabilnost! koji se javlja na dvos-
trukoj nultoj sopstvenoj vrednosti. Uslovi za pojavu ovog fenomena
su detaljno ispitani. Za ilustraciju posmatrani su modeli kako sa dva i
tako i sa tri stepena slobode.



