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Abstract

We consider a coupled problem of deformation of porous
solid, with flow of compressible fluid. We transform the govern-
ing equations of the problem to the corresponding finite element
relations so that the nodal point variables in our general formu-
lation are displacements of solid, fluid pore pressure, and relative
velocity of fluid. According to this formulation we can include
general boundary conditions for solid, relative velocity of fluid
and fluid pressure. This is one of the main advantages of our for-
mulation with respect to others given in literature. Numerical
examples are solved by our general-purpose FE package PAK,
and are taken from geomechanics and biomechanics. The results
are compared with those available in the literature, demonstrat-
ing accuracy and generality of the presented procedure.
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1 Introduction

Formulation of finite element solution procedures of the coupled prob-
lems which include deformation of solid and fluid flow through the
porous medium, have been the subject of investigation of many an-
thors [1]-[5]. These methods has been implemented to geomechanics
and to biomechanics.

We give here a short description of various approach which start
basically from the same fundamental equations for flow through porous
deformable media. Some details are different in description of com-
pressibility of solid material. Here we follow approach of Lewis [1].
In FE formulation some authors use displacements of solid and fluid
pressure as the nodal point variables (u-p formulation), like Lewis [1].
and Siriwardane [2], leading to symmetric system of equations; Simon
3] proposes two formulations: (1) displacements of solid and relative
displacement of fluid - with symmetric system, and (2) u-p formulation
- with nonsymmetric system; Gajo [4] uses displacements of solid and
fluid, and pressure, with symmetric system of equations. In references
[1]-[4] are considered small displacements, with materially nonlinearity
of solid [1], [2], while in [5] a large displacement formulation is pre-
sented.

In our presentation we first give in some detail derivation of dynamic
FE equations for linear material behavior, following reference [3], and
reference [1] for the fluid continuity equation. This approach relies
on the balance of linear momentum of solid and fluid, and continuity
of fluid which takes into account compressibility of solid and of fluid.
The nodal point variables are displacements of solid, fluid pressure and
relative velocities of fluid.

The above formulation is suitable for general use, since we can im-
plement. all boundary conditions appearing in applications: boundary
conditions for solid, fluid pressure and relative fluid velocity.

FFinally, we generalize the linear dynamic system to materially non-
linear problems. This new system of equations have a standard incremen-
tal-iterative form. Further generalizations to include electrokinetic cou-
pling are given in reference [6].
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The paper is organized as follows. In the next section we summarize
the fundamental equations of the coupled problem described above,
and then, in Section 3 we derive the basic FE equations for linear and
nonlinear dynamics. In Section 4 some typical numerical examples from
geomechanics and biomechanics are presented, and finally we give some
concluding remarks in Section 5.

2 Fundamental equations of flow through
porous deformable medium

We present. here the fundamental equations, supposing that displace-
ments of solid are small, which represent the basis for the FE formula-
tion in Section 3. The assumptions are that the solid is linear elastic,
with compressible material of the skeleton , and that fluid is compress-
ible. Also, we consider dynamic problem and take into account inertial
forces of solid and fluid.

The balance equation of solid can be written in the form
(1-n)LT0, + (1 = n) p;b+k 'ng— (1 — n) psia = 0, (1)

where a, is stress in the solid phase, n is porosity, k is permeability
matrix, p, density of solid, b body force per unit mass, q is relative
velocity of fluid, and ii is acceleration of solid material. The operator
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Balance equation of the fluid phase is
—nVp+npsb —k 'ngq—np;vy =0 (3)

where p is pore fluid pressure, p; density of fluid and v/ is acceleration
of fluid. This equation is also known as generalized Darcy’s law. The
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both equilibrium equations are written per unit volume of the mixture.
Combining equations (1) and (3) we obtain

L"o + pb—pii — prq =0, (4)

where o is total stress which can be expressed in terms of o, and p as

o= (1-n)o, — nmp, (5)
and p = (1 —n) p, + npy is density of mixture. Here m is a constant
vector defined as m” = {11100 0} to take into account that the
pressure contributes to normal stresses only. Also, we have taken into
account that the pressure has the compressive character. In further
analysis we will use the effective stress o’defined as

o' = o+ mp, (6)

which is relevant for the constitutive relations of solid. Using definition
of relative velocity q as volume of solid passing in unit time through
unit. area of the mixture, i.e.

q=n(vy—u), (7)

we transform (3) in a form

~Vp+pb—k'q - pri-2g =0 (8)

The next fundamental equation is constitutive relation of solid,
E
o =0 (e—@,), (9)

where CF.is elastic constitutive matrix of the solid skeleton, e is total
strain, and e, is deformation of solid material due pressure 1],

m

9= F 1
3P (10)

ey =
Here K is the bulk modulus of the solid skeleton which can be expressed
in terms of the Young’s modulus £ and Poisson’s ratio v as K, =

E/[3(1 - 2v)].
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Now we write the continuity equation for fluid [1]
Qu+Qp+Qp+ Qs + V' (pgq) = 0. (11)

The partial contributions in this equation are as follows:

a) due to total volumetric strain rate:

de, —~oe
Qu=pf ot =ﬂ_fmia, (12)

b) due to compressibility of grain volume:

1—ndp
Qp = py K ot (13)
¢) due to compressibility of fluid:
2 DOrOP
%= o (14)

where K represents the fluid bulk modulus,

d) due to compressibility of solid skeleton under action of the effec-

tive stress o: 9o’
pf o

= - 111 1!.'

_QS 3 i S

Using the elastic constitutive law and expressions (12)-(15). we can
write the continuity equation (11) in the form

mTCE) i (1 —“n n mTCEm)
.

K. + K, 9K? p=0. (16)

v'q (mT -

3 Finite element equations

In this section we transform the fundamental relations of Section 2 into
the finite element equations.



-]
b

M. KOJIC, N. FILIPOVIC and S. MIJAILOVIC

First, by employing principle of virtual work we can write the equa-
tion (4) as

f e’ odV + f su” plidV + / pru’ prgdV = f b ade f fu S
Vv Vv Vv v &

(17)
where de and éu are strain and displacements variations,t is traction
on the boundary A, and V is finite element volume. Supposing that
material is elastic and using (6), (9) and (10) we write (17) in a form

C:m

3K,

[6eTCEedV + [ beT ( — m) pdV + [ éul padV +
v v - v
+ [6uTp;qdV = [éulpbdV + [butdA.
v v A
(18)

Next, we multiply equation (8) by the interpolation matrix H, for
the relative velocity of fluid q and integrate over the finite element
volume according to the Galerkin method. The resulting equation is

—JHE‘G’pdV +JH§p;de —I{Hgk"lqu—

(19)
_ [HTpsidV — [HT2Lgqav = 0.
G 1 Vv T n

Finally, we multiply the continuity equation (16) by the interpola-
tion matrix H? for pressure (which is vector-column) and obtain

3T T T T nF O™
JHV"adV + [ H] (m — = )erﬂ/’+
(20)
| e T
HY - dV = 0.
. P(Ks % )p ;

We note that (usually) in practical applications interpolation func-
tions for displacements H, and for relative velocities H, are quadratic,

while H, for pressure is linear.
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We employ the standard procedure of integration over the element
volume in equations (18)-(20) and use of the Gauss theorem. The
resulting FE system equations is

e B D u o SR e u
B, B DI T ey p b+
Me 0 0 q [ - q
(21)

kﬂﬂ. kup 0 u fu

o o e | s | SR P =35

U qu qu H fq
The matrices and vectors in this equation are

m, = [HIpHAV,  mg = [H]p/H.dV,
i v
. TE
Cug = mT, = f H p/H,dV, cp=— / H’ (mT i 1113 ; ) BdV
v v .
g gt PO s p
e T i
Sait B ( S g, O ) H,dV, fH H,dV,
V 5
k.- [mnkBy, i ~grevger(CE H,dV.
AL T up"cpu— SKS =
Vv v
(22)

fo H,dV, kqp_fHTHNdV
e f H bk 'HdV, f, = f H’ pbdV + / HtdA,
Vv
£ - / H'nTqdA, f,= / HY p;bdV.
A

In these expression n is the normal vector to the boundary and B
is the strain-displacement transformation matrix.



74 M. KOJIC, N. FILIPOVIC and S. MIJAILOVIC

As we can see from (22) the nodal point variables are: displacements
of selid u, relative velocities q and pressures p. Boundary conditions
include: general boundary conditions for the solid, relative velocities
and surface pressures.

The system of equations (21) is nonsymmetric in general. In case
when inertial forces are neglected the system becomes symmetric. A
standard Newmark’s method can be employed for time integration of
the system (22), as it is done in [8].

In case of nonlinear behavior, as we have in case of elastic-plastic
deformation, matrix k,, and vector f, must be corrected. In the expres-
sion for k,, the elastic matrix CF should be replaced by the tangent
constitutive matrix Ct~ Y, where 77" is the equilibrium iteration num-
ber [9]. The force vector f, is

f, =1f,(eq.22) — fBTrT':‘_”dV. (23)
v

Therefore we have now a nonlinear dynamic system of equations
(22), which can be transformed into linear algebraic system with nn-
knowns u,p,q, at end of time step, by a standard procedure [9],[10].

4 Numerical examples

We give several typical examples from geomechanics and from biome-
chanics demonstrate that our results agree with those available in cited
references.

Example 1. One-dimensional elastic-plastic consolidation.
We consider one-dimensional consolidation of Cam-clay elastic-plastic
material, according to data given in references [1] and [2], Fig. 1la. The
material is subjected to constant pressure p,, which is also taken to be



A GENERAL FORMULATION FOR FINITE ELEMENT ...

the initial pore pressure.
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Fig. 1. One dimensional consolidation: a) Material and geometrical

data, b) Dissipation of pore water pressure with time at depth

z/h = 0.3, ¢) Settlement at depth z/h = 0.5.
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We solve the example by using incremental procedure and implicit
stress integration of the Cam-clay material model [9], [11] within our FE
package PAK [8]. Change of ratio p/p, with time at depth z/h = 0.3
is shown in Fig. 1b, which agrees with results given in [1] and [2]. We
also give solution for elastic material, with elastic constant given in the
figure. In Fig. lc is given settlement at depth z/h = 0.5 which is the
some as reported in references [1] and [2].

Example 2. Wave propagation in a soil column. The problem
is defined according to data given in reference [4]. Solid material is
elastic and fluid is compressible. with material constants (SI Units)
given in Fig. 2a. Geometrical data are shown the same figure. The free
surface is loaded by a step load o = o,l(t). Solution is obtained using
9-node plane strain solid element [16].

Displacement along the column in non-dimensional form at time
T =t/ (pk) = 20 is shown in Fig. 2b. For the same time 7, distribution
of non-dimensional pore pressure is given in Fig. 2c. Advantage of our
formulation is in introducing a boundary condition p = 0 at the top
surface without using a penalty formulation. We also do not neglected
relative velocity q of fluid like in u-p formulation [4].

Displacement and pressure distributions agree with those reported
in reference [4].

x=0

e M i =3000 pe=0.2977 K=w
o
No lateral displacements v=0.2 k=0.004883 K&
p=0.306 n=0.333
- . - .f"/l/
Rigid impervious base

Fig. 2. Dynamic response of saturated porous media: a) Geometrical
and material data,
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Fig. 2. Dynamic response of saturated porous media: b) Spatial
variation in solid displacement, ¢) Spatial variation in pore fluid

pressure.
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Example 3. Dynamic behavior of a cartilage model under
cyclic compressive loading. Cylindrical plug of articular cartilage is
constrained in a confining chamber and is subjected to a cyclic com-
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pressive load via a porous filter, as shown in Fig. 3a. The initial and
boundary conditions are shown in the same figure.

As it can be seen from Fig. 3b, dilatation varies significantly with
changes in loading frequency. History of interstitial hydrostatic pressure
and velocity of fluid also vary with changes in loading frequency (Fig.
3b and Fig. 3c¢). The numerical results agree with those given in
reference [7]. Solutions are obtained for various frequencies of load, by
using 10 time steps per load period.

a)

F(t)=-pa(l-cos wt)

E=0.537 MPa, v=0.1,

po=1 MPa

T ” w(z,0=0,0<z<h:
u(0,t)=0, t=0;

p(h.ty=0

Point A

Fig. 4. Confined compression problem of articular cartilage: a)
geometrical and material data and initial and boundary conditions.



A GENERAL FORMULATION FOR FINITE ELEMENT ... 79

b)
l.'!l]—-
.zn:u:r'—- %~
A0e10
&000™ -
g B0
E _1u.._-||:|"-.
42:10“-:
A 40 S
A Bo? ¥ T T T T T T T
oo 20k 40k B0k B0k
Time
c) d)
mﬂ JE——
o wenl], 01 FLE oo w01 Mz
2 Db S T T
GO0t ™
1 st - i
11 - T S A iltl ..“ %
LS FRErE If'-l 1 s &« a 2 :_1. )& 1 gm
Palral 4 B3 3 8 £ MR R ERMM
A P $ “*‘“"*."-"-j‘."-:ﬁ‘: ﬁ lu'?:.""-, F.'-.fr:r
L J& § o R %1 10 JELE gt dik b
P w ﬂ_ﬂ{;fi‘ Yi Hjﬂ i H H."L'r.'lr?,t.-*"v,.‘-,f%!'l?
& ] ; ':f ..f: -‘ q.: - el \ -r-" -'i‘F -w \
i e IR Ty K U u b! J P
oo 2 unt? wa | o wanet 'm"u‘un T i PP
Thme Tane

Fig. 4. Confined compression problem of articular cartilage: b)
Temporal changes in the dilatation of the cartilage (point A of Fig
3a), ¢) Temporal changes in hydrostatic pressure (point A of Fig 3a),
d) Temporal changes relative fluid velocity (point A of Fig 3a).
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5 Conclusions

A general formulation of finite element procedure for solution of defor-
mation of porous medium with flow of compressible fluid, is presented
in the paper. The coupling between fluid and solid relies on the gener-
alized Darcy’s law which represents a balance of forces acting on fluid,
including inertial effects of fluid.

The presented approach is general, with displacements of solid, rel-
ative velocity of fluid and fluid pressure as nodal point variables. The
basic FE equations are derived for linear dynamic problems and then
generalized to conditions when the solid material is nonlinear (for ex-
ample elastic-plastic). The derived numerical procedure is suitable for
general analyses because all boundary conditions appearing in practice
can be implemented.

The numerical solutions are obtained by our FE program PAK-P
[16] as a part of general-purpose FE package PAK for linear and nonlin-
ear structural analysis, heat conduction, fluid flow, coupled problems of
solids and fluids, and biomechanics. The solutions agree with those in
the cited references, demonstrating correctness and accuracy the pro-
posed numerical procedure.
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Opsta formulacija za analizu metodom konaénih

elemenata problema stujanja fluida kroz poroznu

deformabilnu sredinu

Posmatramo spregnuti problem deformisanja poroznog solida, sa
strujanjem stisljivog fluida. Osnovne jednacine transformisemo na odgo-
varajuce relacije metode konacnih elemenata, tako da su velicine u
¢vorovima, 1 nasoj opstoj formulaciji, pomeranja solida, pritisak fluida
i relativna brzina fluida. Prema ovoj formulaciji mozemo da uklju¢imo
opSte granicne uslove za solid, relativne brzine i pritisak fluida. Ova
mogucnost predstavlja glavnu prednost nase u odnosu na druge formu-
lacije u literaturi. Numericki primeri su reseni koris¢enjem naseg MKE
paketa opste namene PAK, a uzeti su iz oblasti geomehanike i biome-
hanike. Rezultati su poredjeni sa raspolozivim iz literature, pokazujuéi
tacnost i opStost izloZenog postupka.



