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Abstract

The planar turbulent boundary layer is analyzed in the sense
of the well known phenomenologic semi-empiric boundary layer
theory. The analysis is based on an analogy with the rheological
power laws widely used in the study of non-linear viscous flows.
A simple "one layer method” to calculate the turbulent bound-
ary layer is first derived and after that tested on the sphere as
well as on the id. 2500 of P.Bradshow. Furthermore, an approx-
imate procedure is proposed to evaluate the evolution of the
velocity profile in a neighborhood of the separation point of the
turbulent boundary layer in the case of the Prandtl turbulence
model. Tt is assumed that the equations of the boundary layer
admit two solutions around the separation point. One of them
is upstream of the point and another one downstream of it. The
solutions are found in two variants - triangular and parabolic -
relative to the method used to approximate the Reynolds’ tur-
bulent stress. Besides, a comparison is made with respect to the
existing experimental results.
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1 Introduction

Ther® has existed since 1977 (Novozilov [1]) a new variant of the phe-
nomenologic semi-empiric turbulent bon indary layer theory that is foun-
ded on the analogy with the rheologic power laws largely utilized in the
study of non-newtonian non-linear flows and on the use of the Kirman
turbulence model. It is to note also that the viscous sublayer is ne-
glected as well as the layer situated over the zone for which the 1ini-
versal logarithmic law is usually used. It was also shown [1] that, by
utilizing just two empiric constants, n — 2/3 and k, = 0.55 for ex-
ample, the new variant of the phenomenologic theory of the planar
turbulent boundary layer permitted to recalculate and to reconfirm all
33 turbulent boundary layers, which were chosen as the reference at the
Stanford Conference [2].

It is also to be noted that we have recently extended ([5],[7]) the
phenomenologic theory by Novozilov to the case of axisymmetrical tur-
bulent boundary layer.

2 Planar turbulent boundary layer

It is practically impossible to obtain equations of the turbulent bound-
ary layer in a strict way, starting with the general Reynolds’ equations.
Therefore, we make use of an intuitive analogy with the laminar bound-
ary layer by considering lower longitudinal derivatives with respect to
those that are transversal and by replacing the second equation by a
condition for the smallness of the normal gradient of the pressiure rel-
ative to the longitudinal one. That is why the equations of the planar
turbulent boundary layer are in the following form:

'__8ﬂ+_aﬁ o okt 0ﬂ+31‘: 5 1)
I— + — = u.u, + ——, — + — =0,
E Oz Ay i p dy dr  dy

where:
(z,y) - usnal orthogonal curvilinear coordinates,

(@, ) - velocity components at (x,y) in the boundary layer,
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U, (x) - free-stream velocity,

O § - o 08 _
= ,ua = P Y R + 7 - global turbulent stress contaiming in

principle a viscous part as well as turbulent. one.

If the viscous part of the global stress is neglected then the system
of equations (1) reduces to:

18_-r ou _Ou ou Ov

—ueltl, + ti— + U, + — =0. (2)

;15‘3;: dx dy Oz 8_y—

Or, due to the rheological power law and the Prandtl turbulence model
chosen herein, it results that:

o ykn’r”@, (3)
p dy
2 —
o Y| 08
rSS 5] (4)

The system of equations (2) must be resolved for the following
boundary conditions:

90
o= =1 B—zj—hoo for g =1, (5)

8= W [E]y T=10 for =94{z),
as well as for the next initial condition:
=1, for i) (6)

where 6 (x) is the thickness of the boundary layer.

In order to calculate the turbulent boundary layer, we nse in practice
most. often an integral relation obtained from the system of equations
(2), called the momentum equation, in the following form:

d{‘Sg u;ﬁg A 1
E‘F U (2+H)—§Ch (7)
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where:
6 i 8 u u
bi@) =] (1-=)ay, bo@) == (1-2)dy,
0 Ue 0 Ue Ue
. y (8)
To 1
- . H=—
. p-u? b3

Finally, if the unknown variable © is eliminated from the system of
equations (2) by using:

i ou
LS e (9)
L]
then it results:
107 ,  .0u 0Ou rou
—— = —ut, i — = [ =—dy. 1
. U, + U = 3';!;‘0 Idy (10)

2.1 Generalization of the Falkner-Skan equation

Let the velocity u, (z) at the external frontier of the boundary layer be
given by:
et = Cllz —a, 1™, (11)

where C, x, and m are constants. If nondimensional coordinates are

imtroduced as: U I
a ' & W o'l
: j = : (12)
v v

T =

then the constant U, (having the dimension of the velocity) can be
determined by the relationship:

ue (2) =C(z = 2,)" =U,(x - 5,)™ (13)

where:

(14)



o

SIMPLIFIED TURBULENT BOUNDARY LAYER ...

Besides, (12) and (13) yield:

m 1
= T+m 15
L, u1+mC+ (15)

If a solution of the equation (10) is assumed in the form:
i="U, (- 1,)" " F' (n) (16)

where:

y
e | 17)
TR (
with a and 3 being constants with numerical values to be determined
in the sequel, then by replacing 7, T', u. and @ from (3), (4), (13) and
(16), respectively, into the equation (10), and after carrying out several
transformations, follows (18),

ke (& = 2P0 (e Ry =

o) P (o \g) PR R S (7~ )L

(18)
It is evident that the conditions for the separation of the variables zand
n in the equation (18) are given by (19),

=1

= (Z —

o— 0 = m, a(l+n)—308=2m -1, (19)
hence v and 3 are determined in terms of parameters n and m,

_1+m

_l—l—m
ST pE i

2—n

&

m. @)
For such values of a and 3, the equation (18) reduces to an ordinary
differential equation,

14+m
2—n

1 B s 1 g 280 (21)

where:
el WEF”, (22)
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which should be solved for the following boundary conditions:

Fo= Pl F'" - 00 for n =0,

(23)
F =1, i"F" =0 for n = n, = constant.

These conditions are derived by replacing (3), (4) and (16) into (5).

It is to be noted that for n = 0 and k, = 1, the equation (21)
becomes the well known one by Falkner-Skan in the case of the laminar
boundary layer. In other words, it is easy to verify that n = 0 and
k, = 1, the relationships (3) and (4) reduce to the newtonian laminar
linear rheological law:

T du

—_ = —

B o

By integrating the equation (21) from 7 = 0 to n = 7, we obtain
the next algebraic equation:

1+m xx o
c= ( 5 - m) n+mn, (24)
2—n

® *®k
where ¢, and 7 are coefficients dependent on m and n:

r

o BRI 4
H: ﬂ-e 1 =n (i' Gl u-.‘:ﬂ]%i——-: :
1/
{2 B8 gy Aok (25)
v
| ¢ =2¢(8 - 2,) ™.

These expressions should be completed with the relationship (26),

5 L)
Rs === =1, (2 - %)%, (26)

which determines the thickness of the boundary layer.

The generalized Falkner-Skan’s differential equation (21) was re-
cently resolved [7] numerically for various pairs of values of n and k.
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The following values are of the greatest significance for calculation of
the turbulent boundary layers with pressure gradients:

n = 2/3, k= 0.50,

n = 3/4,  k,=053.

It is to be noted finally that there exist also [7] tables of numerical

values of coefficients appearing in the formulas (25) and (26): ¢, 7,7, 7
that correspond to various pairs of values n and k,, and to various
values of m.

Figure 1 determines the coefficient ¢ used in the formula of the
parietal stress (25), as a function of m and for various values of n.

0.4 [

Resasd Nn=2/9:k=0.55
t goooe n=0,7:k=0.54
0.3 + mAARY ﬂ=3/4.'k='0.53

L Reses m=0,8:k=0,59
sesss n=084;k=0,7

m®
-t

Coz2f

0.1F

- | =g 1 2 3 4
m

wn L

Fig. 1. Variation of shearing stress factor.

Evidently, for every pair of values of n and k,, there exists a value
m = My, delimiting the existence domain of the solution of the con-
sidered case (called often the equilibrated boundary layer). Values of
Muin depend a little of n and vary over the interval:

~0.2235 < Mypin < —0.1905. (27)
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The intersection points of the curves ¢ = f(m) and the axis m yield
critical values of

m = Mg < 0,
for which the parietal stress vanish, which announces the separation of
the boundary layer.

Figure 2 shows that m,, varies over the interval;
—0.2220 < mgo < —0.1885. (28)

A detailed analysis of the zone of negative values of m (Fig. 2) demon-
strates that, over interval:

Mpin <M E2 M., (29)

there can exist, for a single value of m, two boundary layers called equi-
librated, which is a well known phenomenon discovered experimentally
by Clauser ([4], 1954) and reconfirmed by Novozilov ([1], 1977) in the
analog case but for the Karman turbulence model.

0.05

Lakisr Nn=2/3:k=0.55

0.04 gagoo n=0,7:k=0,54
? egoep n-..?/-f k:'ﬂ 33
vesee m=0,8:k=0,59
t wssss =0 84:k=07
0.03
C
0.02 K
F -
_ koot !
0.01 ; 4 : é
- o <
. ; H
ﬂ. __..m.ﬂ-u..LMu i ‘ 1.‘;-“' il i aih ks dl
-0.23 -0.22 -0.21 -0.20 —ﬂ 19 -{.'IIB -D IT -ﬂ 18 =-0.15

m

Fig. 2. Variation of shearing stress factor.
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2.2 Practical approximate computing method of
the turbulent boundary layer for arbitrary ex-
ternal velocity u. (z)

An additional parameter is to be introduced at first,

9(2) = —u.. (30)

After that, if we reconsider the case of the boundary layer called equili-

brated, which was studied above in 2.1. and characterized by (11) and
(14), then it is easy, by applying (30), to find out that

g(z) =m(z—z,)" "™, (31)

as well as, by taking into account (25):

* * I-n *k  k# ﬁ I—n
R=1 (E) . R=T (E) ey =2e (E) 3781l gy
g 9 m

If, like in the classical case (Buri, [3]), we now introduce the follow-
ing non-dimensional quantity:

Q(z)=g (E’.) i (33)

then, taking into account the relationships (31) and (32), the equation
(33) reduces to (34),

1

ew=g(K) "=y [‘ﬁ‘ (33) _} fnnth (M) e

- vl . . s
hence: N= (Q/m)? =, that is that 7 is function just of Q.

It is now suitable to note that the following two quantities are also
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functions only of

( 3 l—n

L R 1—i a1y \ 2-n o l—nt
e (B~ =2 (L) 7| (i) (%) =2 (i) "=c (@)

4
e
H=2=2=H(Q.
\ 02 7

(35)

Both equations (35) are exactly valid only for the equilibrated bound-
ary layers considered in 2.1, but they may be accepted as approximately
valid for a more general case for which wu, (x) is arbitrary function. It
is to be noted that in the case of the local Reynolds nunber of the
Karman form, the same hypothesis is very well justified [1].

In this case, the parameters d,, ¢y and H will be therefore expressed
in terms of two quantities: a parameter g given by (30) and another
unknown parameter Q. Or, a differential equation for the determination
of the parameter () can be obtained by replacing the expressions (39)
in the integral equation of the momentum gquantity (7), which is at first
transformed into the next form:

1 ! i’ 2= . - e 2= J_._!_‘ . L o :
e (n) +{1+H)”I—/_” (.’?) Pl 0 (R) . (36)

2—ndr 2 p

Hence, a differential equation resulis for caleulating (Q, taking into ac-
count the arbitrariness of the form of the function u, (z):
d u! ul w
QL EQ) g =g, (37)
dzx 10, u!,

e €

where:

E(Q) :(2—-;1.}{[1+H{Q)]Q—%G(Q}}+2Q. (38)

It is to be noticed that the function £ (()) depends on n, not only
explicitly, but also throngh functions G (Q)and H (Q), the formns of
which depend on n and can be determined with help of mumerical tables
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of equilibrated boundary layers. In this sense, it. is possible to ascertain
that for every particular value of n, there is "its proper equation” (37)
and "its proper formula” (38).

As mimerous caleulations of plane turbulent, boundary layers, which
are verified experimentally, demonstrated lately [1] in the case of the
Kiarman turbulence model, the best agreement was obtained with the
experimental results in the case n which n = 2/3 and k,, = 0.50 are
taken to determine E(Q). That is why, just to be able to compare
owr results, we are going to consider, in the sequel, the same case. In
this particular case (n = 2/3,k, = 0.55) and for the Prandtl turbu-
lence model (4), we carried out detailed computations of the function
E(Q).G(Q) and H(Q) with approximare analytical expressions of the
next forms:

( E(Q) = —0.063 + 4.097Q — 23.163Q°,

! G(Q) = 0.0938 + 2.1143Q + 36.1035Q* + 084.7318QQ°, (39)

H(Q) = 1.6529 — 2.17Q.

So, by inserting (39) into (37), or an approximate calculation of the
turbulent boundary layer, in the case of n = 2/3, we obtain a Riceati
like differential equation:

I : ' "
‘:—J + (—[).UGS + 4.097Q — 23. 163{)‘1\ i ”—'fg (10)
. : : / U e

Nonetheless. this equation is not always very convenient for the cal-
culation becanse of possible singularity due to the funiction u;, through
ze10. Moreover. in the equation (40) there is also u), the determination
of which demands a double differeatiation of the exporimental curve
u.(x), which causes very often significant errors. In order to avoid it,
the unknown function in the equation (40) should be changed in the
following way:

e ”
e

z (11)
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where:

:(0) = (R)" = (ﬂ)” (42)

[

With the new unknown function z () the equation (40) reduces to
another Riccati like equation:

d i : ;
¥ lusgd 163— (ul)? 22 + 2.0972¢ 2 = 0.063%<, (43)
dx u? U v

but this one is deprived of the mentioned inconveniencies. That is why
the equation (43) is much more convenient. for integration and used in
the practice than (40).

It is to be noted finally that this method can be easily extended also
[5] to the case of axially symmetric turbulent boundary layer on a body
revolution, with the analogous differential equation for the function z(z)
as follows:

1 A A 1 U, .
= - 28163 (u) 2% # | 209758 +oie fin S 0.06F w2104 (48)
dx ul 8 3 v

‘where r(z) denotes the radius of the sections taken at right angles to
the axis.

As a consequence, the practical approximate method of computing
the turbulent. boundary layer proposed herein consists of the following
steps to be done:

- At first, for a given distribution of the external velocity u,(x), the
differential equations (43) or (44) are to be integrated, with a prescribed
initial condition &, for z = ay:

Ul
z = ( - 2') = 3 for g (45)

15

- After finding z(x), determine the momentum thickness by using
(46).
8y (z) = — P14, (46)
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as well as the parameter Q(z) given by (30) and (41), i.c.

Qlz)=glz}z(z). (47)
- The next step is to determine the functions G(Q) and H(Q) by
using the relationships (39).
- The formmlas:
H(x)=H(Q), .clz)=2z""CQ), (48)
offer two particnlarly important characteristics of the turbulent. bound-
ary layer.

- Finally, by using the well known simplest idea, it will be possible
to calculate an improved approximation. of the mean velocity in the
turbulent boundary layer by (49).

dey [y H-1 r"”_”

ue |6 H(H+1) (49)

(T

where the functions & (z) and H (z) were determined beforehand by
the formulas (46) and (48).

3 Application of the method

The practical approximate method developed above has been recently
directly applied ([6], [7]) to several particular cases of the turbulent
boundary layer. In order to illustrate the method, we are choosing
herein just two examples.

3.1 The id. 2500 by P. Bradshow,
Variant B (u, < 0)

In the case of the id. 2500 by P. Bradshow, variant B, the external
velocity can be presented [2] by: '

u, (2} =159.3z%'° - ft/s. (50)
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Taking into account (50), we obtain the general solution of the dif-
ferential equation of the Riccati type (43) in the next form:

10* 1.17848 + U.U?{}&C:xﬂ-ﬁ 085
0.0051 2.53164 + C'®39%4 ;

which, after determining the integration constant in accordance with
the initial condition (45): C' = —84.37263, reduces to:

rie) =

= I
z\@) 43.032939 — 1.290

(51)

With the function z(z) found in this way, the other characteristics
of the boundary layer should be now calculated such as:
- at first, the momentum thickness (46):

mﬂ.lﬁ

T 102.115

b () i b o (52)

- then, with regard to (30) and (47), the next two parameters:

0.0147 . 0.0147z (z) . .
g(z) = ——55 10 i Q(z) = tor s 1ol

- finally, the formulas (39) and (48) offer ¢s(x) and H(z).

The three characteristics particularly important for the turbulent
boundary layer, which are so obtained and compared with experimen-
tally found values [2] in deviation percentage are given in the Table
1.

Table 1: Turbulent boundary layer characteristics and their
comparison with experimental values.

z [ft] | @lz) | GG ] =2 62 (x) /inches/ | bzexp | %
2.0 -0.0177 | 0.0625 | 216445.48 | 0.131 0.131 | O
4.0 -0.0183 | 0.0611 | 404618.32 | 0.232 0.223 | 4
9.9 -0.0185 | 0.0607 | 537385.80 | 0.301 0.288 | 5
.0 -0.0187 | 0.0604 | 665416.02 | 0.367 0.353 | 4




Table 1: (Continuation)
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z [ft/[c;(x) | crexp | %0 | H(T) | Hexp %
(2.0 0.0026 | 0.0022 | 18 [ 1.691 | 1.43 | 18
4.0 0.0024 | 0.0021 | 14 | 1.693 | 1.39 | 21
5.5 0.0022 1 0.0020 | 10 ] 1.693 | 1.39 | 21
(7.0 0.0021 | 0.0019 | 11 | 1.694 | 1.40 | 20

We calculate also the profile of the mean velocity and the distribu-
tion of the turbulent stress in the boundary layer at the point z =7 I
with the aid of the formulas (3), (4) and (16):

5w (2.005%) , (53)
: 1[]3 4/3 ; 2/3
%—? — 28.86 (%) F (2.005%) [F“ (21005%” 042 (54)

hence the Table 2 and the corresponding figures 3 and 4.

Table 2: Mean velocity profile and turbulent stress distribution in the
boundary layer.

y/6 TTREE ¥ T R I T W T
i 048 | 064 |0.75 |0.83 [0.89
_103
T | 1.437 | 1.625 | 1.589 | 1.402 | 1.121
_p'ttp
Table 2: (Continmation)

y/b OB eT 1UE 09 Ty |
F 093 | 096 [0.98 [099 [1.0
i 3 I
4 1[1 0.807 | 0.509 | 0.261 | 0.089 | 0.01

pu, |
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—
o

0.5

(s % v/§ 1

Fig. 3. Mean velocity protfile.

] 2]
Lud
¢ .10’
2
iy 2 =
0.5
0 "'""u._
.2 0.5 v/& 1
Fig. 4. Turbulent stress distribution.
3.2  Turbulent boundary layer on a sphere
[ the casé of a sphere of the radius R (Fig. 5), we have:
} .')’.E, Jali g (5% = T x 55)
Ax) = =U, 8in —, () = Hsinfs . :
e 1T 5 ] 7 rila S 7 (D0

To integrate the differential equation (44), we should prescribe the
mitial condition (45). first of all, using the well known formula for
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laminar momentum thickness:

T

Ue? & 0.47 f'r"‘-uid:r

v g 7
0

and taking account of (55), we calculate:

x 25
86\° 0235 | 32 1 1 o W (““ﬁﬁ)
(5) T THe 0D (Sing)ﬁ s (S,m 3)*‘ 105 (Sin 5)3

R R R

Fig. 5. Flow past a sphere.

If we suppose that the point of flow transition corresponds
approximately to the point of pressure minimum: xz/R = 6 = 75°
experimentally (# = 90 theoretically) then from (45), taking account
of (56), we obtain:

=Tr20eRe/? | | for | St 750 (57)

In the particular case: D = 2R = 0.5 m, U = S m/s,v = 1.52.
10-% m*/s, the differential equation (44), presented in the form:

oy
dz  123.536 (mt E) 2 " &

Gl : e +13?2(‘ t—) :U-ISD-H:“I- e J
- = Sin% > co B 2 , 8111 B (58)
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was integrated numerically, for the initial condition resulted from (57):
2 = 2 =81 108 for ¥ ot

with

Uil

v

R, = = 1.6447 - 10°.

This numerical solution z(xz), together with the parameter g(x) ob-
tained from (30) in the following form:

@) = 3 (cos %) (sng)
z] = cos—= | (sin=] ,
I 3R, R/A\TVR

give then the parameter Q)(x) given by (47), as well as other turbulent
boundary layer characteristics on a sphere according to (46) and (48):

X
4 COS—
Q(T) = 4 R zz(;{;), 09 (;g) — _u,_.fzﬂ,fd?
o U sin —
4 (sm E) oo I (59)
H(z)=16520—217Q, c¢s(z)=2""4G(Q).

.

The enclosed Fig. 6 and the Table 3 give the results of the corre-
sponding numerical analysis.

0.2 F 1} I 1 | [
M '. : S Lt
1 |
L 'ﬁ'“""_\,,_..:,——-r"" " :
] 1 == |
1 .
0, : ! # 1 Il I
| [ 1 I 1
X -__..-IF 1 [ 1
Y i | | i |
|
75° 80° 85° 90° 95° 100° x/R  106°

Fie. 6. Dimensionless momentum thickness on a sphere.
g
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Table 3: Turbulent boundary layer characteristics on a sphere.

19

z/R(°) | z(z) (“f“) 104 =R 104 | H(z) |¢f ()

76 1129.726 0.01949 1.64779 | 0.01783
30 3148.645 0.04203 1.64298 | 0.01451
85 5674.332 0.06538 1.64413 | 0.01237
90 8209.815 0.08696 1.65290 | 0.01029
95 11146.680 0.10848 1.67012 | 0.00810
100 14395.666 0.13142 1.69824 | 0.00055
105 18366.398 0.15777 1.74253 | 0.00026
106 19294.721 0.16371 1.75415 | -0.00186

It. will be particularly noticed that, according to the Table 3, the
turbulent. boundary layer separation (G (Q) = 0) on a sphere occurs
at # = 106° . what corresponds well to the known experimental value
= 110").

4 The evolution of the velocity profile in
the neighborhood of the separation point

[t is known that the situation is the following in the neighborhood of
the separation point:

- upstream the separation point D, the mean velocity profile has
the typical form of parietal flows (Fig. 3 or the curve 1 in the Fig. 7);

- downstream the separation point D, the velocity profile takes on
rapidly the typical form of free flows (Fig. 7 - the curve 2),

- while the turbulent stress conserves practically the same pace,
withont nndergoing great changes (Fig. 8 - full curve, analogously to
the eurve from Fig. 4) in the neighborhood of the separation point. of
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the boundary layer.

1

ol

o Y 1

Fig. 7. Velocity profile evolution.

5,5 Tiey i

Fig. 8. Typical turbulent stress distribution.

We are going to study, and to compare with experimental results,
the velocity profile at the boundary layer in two sections: Section I
BEFORE D and Section II AFTER D - in two approximate variants:
triangular (pointed segments in the Fig. 8) and parabolic variant (two
parabolic segments in the Fig. 8).
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4.1 Section I - UPSTREAM D

4.1.1 Triangular variant

If the maximum value of the Reynolds turbulent stress is designated by
r... then the equations of two pointed straight segments (Fig. 8) are:

ok 2T% 0<y<é/2, (60)

g (1— %) : PERAE e (61)

By combining the chosen power law (3). in the case of the Prandtl
turbulent model (4) and for the next values of two constants: n = 2/3

ana k., = 10.5&
5/3

: T dﬁ'
T = pkuulf.iy-’l;d i
dy

with the expressions (60) and (61), it is found:

e du A m | :
b YRR RANAIGTR S I T g < 8/4, (62)
dy p o
diiy s 2 ]
Jii,', 137 = Z_IE (1 i _.) —4',".'5‘ 5/2 < “ 5 .
e < 2k [2<y<é.  (63)

The boundary conditions for the differential equations (62) and (63),
in the concerning domains, are the following:

) =0 for y=10;
! iy = iy, dii, /dy = dus/dy for =012 (64)
g = Uy for y.=0.

.

By introducing now dimensionless quantities:

- u - T Y 5
= —, o =2 = n==, (65)
Ala pous o
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the equations (62) and (63) can be reduced to:

dii .
S _ A5 g<p</e, (66)
dn
dii i i
_d% i gD (sl B ] ol jrascint, (67)
where:
2 : -
A S Bl gnd . AR i (68)
K. v

The boundary layer conditions (64) become:

( i =0 for yj =0
$ Uy = 1, duy /dn = duy/dn for n=1/13 (69)
uz =1 for n=1.

At first, it is easy to conclude by comparing (66) and (67) that:

di, /dn = duy/dn for n=1/2.
Afterwards, by integrating the differential equation (66):
L0 ey
U = 4,4 A 88

with the integration constant, according to (69), equals zero: €, = (),
the solution is obtained as:

5

i = 5,43”573”5, 0<n<1/2. (70)

At last, from (67) it results that:

iy = A3 f (1 - _”)1?‘*;’5 ’.’,1_4"]5(]!'!] + Cs.
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But, by the Tchebichef theorem, the last integral of the differential
binomial cannot be expressed by elementary functions, and we are going
to find it, for a moment, in an approximate form of a serial expansion:

;9 DAt the: g 7
Po— A3/5 (5 ¥ A e TS 11/5 _ 16!5) o §. 71
ya el BE S % 100" b

The integration constant will be calculated by using (69), that is that:
ity = 1 for n = 1, in the form:

19483
Ok o 15—t
. 4400
so that (71) reduces to:
cowloaRs | 7 3 g 1
- et I_AJI."._: ( 16/5 NS 005 . 5 lfﬁ) Ly, gt 5 B
e B e et ETonha S B
(72)

If the last condition (69) is utilized: @, = tuy for 7 = 1/2, taking
into account (70) and (72), then the value of the parameter A results:

A = 0.96038, (73)

or, in view of the relationship (68):

Fm - Ry'® = 0.264. (74)

Hence, by combining (73), (70) and (72), the final formulas of the
velocity profile will be obtained over the concerned domains:

g'=1229Y° | 0i<g <i1/3; (75)

i, = 4.88n"/5 —0.017087"%/5 —0.053247'"/° —0.488n°/° — 3.32168, (76)
e 6

If it is chosen, in order to test the procedure, a typical case of the
pre-separation of the boundary layer - the last section (z = 4.926 ft)
of the id. 3500 of B.G. Newman ([2], 1968), with u, < 0, then, as the
Table 4 and Fig. 9 show, sufficiently satisfactory results are obtained
since the deviation is not larger than about 17%.
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Table 4: Velocity profile compared with the experiment.

0.000.05 |0.10 |0.20 |0.30 |0.40
According to (70) 0.00 | 0.111 | 0.193 | 0.337 [ 0.466 | 0.586
Newman's experiment | 0.00 | 0.115 | 0.210 | 0.300 | 0.400 | 0.500
Deviation (%) 0 3.5 8 12 16 17
Table 4: (continuation)
090 060 |0.70 080 |090 |1.00
According to (71) 0.701 | 0.799 | 0.874 [ 0.931 | 0.972 | 1.00
Newman’s experiment | 0.610 | 0.710 | 0.810 | 0.900 | 0.960 | 1.00
Deviation (%) 15 12 8 3 1 0
1
0.5
# |
s -"/
/‘//
0 e YR, s
Fig. 9. Velocity profile upstream D,
An experimental verification of the formula:
! 1/3 1 .
T+ I =(:rm.st.=§kﬂ/1=[}.2?d;4 (77)
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is highly difficult in the case of the boundary layers with separation, so
that almost nobody measured the turbulent stress in the section. The
unique exception presents the id. 2100 by Schubaner and Klebanoft
([21. 1968). where the separation point appears at:

o= WR.TY JT,

with the next parameter values which are necessary to calculate the
left-hand side of the relationship (77):

8l = FI2%t)s, & = 8il inch,

T = 0.008, v=16-10"* ft*/s.

As a consequence, it is obtained that:

1/3 1/3
5.0 112 8.1 0.0833
F Ry = T (“ 6) =o.m)5( 16110}—“‘ ) = 0.389,
[ .0

Then from (77) results that:
A = 1.41454, (78)

which makes a difference of 33% with respect to the theoretical solution
(73), found above. It is possible to say that such an agreement is even
acceptable in spite of the deficiency of the experimental results to enable
general conclusions.

4.1.2 Parabolic variant

The results obtained above by using a triangular approximate schemati-
zation of the Reynolds stress being satisfactory, should be nevertheless
improved by using the shapes closer to experimental ones, which are
the following (Fig. 8):

filn) =5n(1-125n), 0<7n<04,

P 10 5 (79)
i fﬂ{”]: 3 (1—?” [l_a(l—”)]‘ ”‘4{_:”E1
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Repeating the same type of the reasoning as in 4.1.1., the problem.
which we are studying - reduces to the next differential equations:

11 , ’ dt
% ] 065’9?544”5” -4 /5 [fl [”)]-5;"0 ’ 0 5: " E: {}4’ (8”)
di. |

—{f— = 0.65975A4% 545 £, ))]*/®, 04<n<1, (81)

with the boundary conditions, respectively:

i

iy =0 Tor. g=40

§ U1 =1, du,/dn=dis/dyn for n=0,4; (82)

e-=1 lop w=1

4.2 Section IT - DOWNSTREAM D

"The evolution of the velocity profile around the separation point of the
boundary layer with respect to the Figure 7: the curve 1 - before D,
and the curve 2 - after D, the turbulent stress conserving practically
the same shape, in fact, is such an evolution of the velocity profile that
leads to an idea that the boundary layer equations admit two solutions
in the neighborhood of the separation point: one before and another
after the point.

According to the relationships (66) and (67) (based evidently on a
triangular approximate schematization), the expressions characterizing
the curvature of the velocity profile in the concerned domains are the
following:

VAN

d*1 |
(7 i _:Ad,"’.r”—{r,"’.r. U

, f
dn? §) -

ol

d? i,

g _9 : :
_ _FA.az'a [3(1 — 1) 2/5 n 45 1 4(] — ”)dz’ﬁ ”—ﬁ;’ﬁ] :

; <n %l
dn? 8 i ot

o e

Now, taking into account that, in the Section I - BEFORE D, d*a,/dn*
preserves practically its sign in the whole interval 0 < 5 < 1, while
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in the Section II - AFTER D, d*iiy/dn?* changes its sign into 1 = 1/2,
so that the above equations should be readapted for every of the two
sections in the following way:

d?i, 1 3/5 _6/5 1

i i = < o 8

dn? ¢5‘4[ ! ; g )

d*ii. 1 - 3/5 - :

d?;j 5 At [3 (1—mn) il ??4’;5 +4(1 Tr')ﬂ‘ 1 WE] )+ snsl
(84)

The upper signs of the second terms correspond to Section I - BE-
FORE D, which has been already treated in the 4.1; the lower signs are
attributed to the Section Il - AFTER D.

As a consequence, it still remains to explore solutions of the equa-
tions (83) and (84) concerning the lower signs, namely:

o _A.ifﬁ —6/5 0< P E
dgﬂg | B R 3/5 E 1
AP Py LA - ] <nsd

o : [3(1—n)""n (1 —n)*° =] 5 =1 _(86)
with the following boundary conditions:

( i =0 for n =0,

1
{ @y =1y, diy/dn=dus/dn for n= 5 (87)
| g for ye=1L

After the first integration of the equations (85) and (86), it is ob-

tained: 1o
Uy 43/5 o =175
Favb (Cr=n711%), (88)



28 R. ASKOVIC

s _ [y 4 1 3], ®
dn)

from which by using the corresponding condition (87), namely:
da, /dny = diy/dy for n=1/2,
follows the relationship between the integration constants:

O 2@ (90)

The fact that the turbulent stress preserves practically the same
shape before and after the separation point D has a consequence that
the parameter A is conserving effectively after D the same value as
before it, that is the value already found (73): A = 0.96038. By placing
this value of A, as well as (90), in (88) and (89), it results that:

Y _ 97604 (Cr+ 280 n—”ﬁ] : (91)
dn

e

=2 = 0.97604 [C, (1 - n)® ). (92)
dn

Carrying out, now, the second integration, at first of the differential
equation (91):

i, = 0.97604 {(c2 1 Qﬁf"") n— g?ff-"} + Cu, (93)

with C'1y = 0 by taking into account that according to (87): @; = 0 for
n = 0; then of the equation (92):

up = 0.97604 [(CQT} + jg) -+ ng] . (94)

where: ;
)= [ (1= )y Voun, (95)

Calculating this integral once more in an approximate way, it is possible
to deduce that:

1
g(l]:l?ﬂ and J, (E

= 4.12134,
4400 ) . )
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so that from the next condition: i, = 1 for n = 1, follows that:
Cy = —Cy — Jo (1) + 1.02455 = —C, — 3.4034, (97)
and (94) reduces to:
ity = 0.97604 [Cy (1 — n) + J2 () — 3.4034] . (98)
Finally, the last of the conditions (87), that is: u; = uy for-q-= 1/2,
taking into account the expressions (93) and (98), offers:

1
Pl (5) _ 3.83416 = 0.28718, (99)

as well as, due to (97):

Cop = —3.69058. (100)

As a consequence, by placing (99) and (100) into (93) and (98), the
final solutions will be obtained in the domains concerned:

i, = 2.52265n — 1.220057*°, 0<n<1/2; (101)

i = 0.2803n + 4.8802n'/% — 0.488027%/° — 0.05324n/5—
(102)
—(0,0170851%/5 - 3.60215,, 1/2.< ps:d.

The Figure 10 shows three profiles of the velocity in the boundary
layer of the id. 3800 [2] of H.L. Moses (MIT Gas Turbine Laboratory,
1964; u’. < 0) corresponding to points: z; = 1.198 ft, 2, = 1.604 ft
and 24-=2.083 fi.

It is evident that between the points z; and z; there is separation of
the turbulent boundary layer, despite it is not mentioned in [6]. Hence,
it is sure that point 3 is in the separation zone. It is still to be noted
that the probable shape of the velocity profile is sketched in Fig. 10
quite nearly to the wall at the points z, and z3 where a revised flow
exists ([1], [2]).
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u
Ue
70 e &
o L 3
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0.9 7,0 7,9 2,0 y/inch/

Fig. 10. Boundary layer velocity profiles, as measured by H. L. Moses.

The Table 5 and Fig. 11 present the results obtained by using the
solutions (101) and (102) for one Section II - AFTER D, as well as the
existing experimental results at the point x5 of the id. 3800.

Table 5: Velocity profile compared with the experiment.

n 00001 |0.01 0.025 | 0.0375
According to (101) | 0 [ -0.0023 | -0.0054 | -0.007 | -0.0064
Experience by Moses | No experim. results
Deviation (%)
Table 5: (continuation)
n 0.10 0.20 0.30 | 0.40
According to (101) 0.0589 | 0.1679 | 0.291 | 0.422
Experience by Moses | 0.075 | 0.180 | 0.280 | 0.420
Deviation (%) 20 7 4 1
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Table 5: (continuation)

31

/) 0.50 0.60 0.70 0.80 0.90 1.0
According to (102) 0.5606 | 0.6873 | 0.7904 | 0.8750 | 0.9441 | 1.0
' Experience by Moses | 0.520 | 0.650 | 0.770 | 0.850 | 0.930 | 1.0
Deviation (%) 8 6 3 3 1.5 0
1,9
?*
0,5
o 0,5 T I,0

Fig. 11. Calculated velocity profile compared to the experimental
results.

The Fig. 12 lays stress, in particular, on the numerical results of the

Table 5 in the zone quite nearly to the wall. From there the minimum
negative velocity quotient @ = i/u, is about the order of —0.005. Since
for the id. 3800: u, = 40 ft/s at the point x3 = 2.083 ft, the negative
return velocities in the separation zone are therefore lower than (0.005 -

40 = 0.2 ft/s, which is compatible with indication of the Fig. 10.

It is to be remarked, finally, that it is possible to envisage, of course,

an improved solution, called a parabolic variant, by the analogy with
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4.1.2, what we intend to do in the future.

u 0,05

Fig. 12. Calculated velocity profile quite nearly to the wall.

5 Conclusion

As 1t 1s well known, the principle of the integral methods of the bound-
ary layer computation, starting with the first such a method by Karman-
Polhausen, is contained in an idea that it is not necessary to know the
behavior of the velocity profile in details in order to get satisfactory
practical results such as: the distribution of the displacement thickness
0, of the momentum thickness 6, (H = 6;/6,) or of the wall friction
coeflicient ¢y,

Just those quantities are interrelated in the Von Karman equation,
which expresses the global force and momentum balance. Thus, in order
to arrive to a relatively simple computation method, it is reasonable to
begin not with the equation of the local momentum that describes the
velocity change @ itself, but with its integral form. In return, we must
be satistied with a certain approximation degree.
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The same appears in this paper, by beginning with the integral
equation of the momentum and with the analogy with the rheological
power law, which is effectively used to study flows of non-newtonian
liquids with nonlinear viscosities, a simple "one layer” practical method
is obtained for an approximate computation of the turbulent boundary
layer in the case of the Prandtl model of turbulence, where for the
process ending it is necessary to know only two empirical constants
(for example, n = 2/3 and k, = 0.55).

The method gives relatively good results for global characteristics
02, H and ¢y, and particularly 4,, of the turbulent boundary layer.
As expected, the velocity profiles are of the lower quality, relatively
schematized (without inflexion, which are characteristic for positive
pressure gradients) and give precedence to those obtained, for example,
by the D.E. Coles method [2].

Although, in return for this drawback, the method enables a satis-
factory evolution evaluation of the flow velocity profile just upstream
and downstream tlie separation point of the turbulent boundary layer.

Finally, the method shows that, in a specified interval of the expo-
nent m values, the solution of the turbulent boundary layer is double,
which is usually considered as an experimental data, without a theo-
retical background.
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O transformaciji profila brzine u okolini tacke

odvajanja turbulentnog granicnog sloja

U radu se, najpre, razvija jedna priblizna metoda za proracun ra-
vanskog turbulentnog granicnog sloja, u smislu poznate fenomenoloske
poluempirijske teorije turbulentnih strujanja, zasnovane na analogiji
sa strujanjima nenjutnovskih fluida nelinearnih stepenih reoloskih za-
kona viskoznosti. Metoda je, potom, uporedjena sa poznatim i eksper-
imentalno proverenim resenjem P. Bradshow-a (ident. 2500). Najzad,
u radu se predlaze i jedan priblizan postupak za odredjivanje profila
brzine u okolini tacke odvajanja turbulentnog granicnog sloja, u sluc¢aju
Prandtl-ovog modela turbulencije. Izvrseno je, takodje, poredjenje
dobijenih resenja sa postojecim eksperimentalnim rezultatima (H.L.
Moses - ident. 3800), sa zadovoljavajuc¢im slaganjem.



