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Abstract

Complex potential of the flow around airfoil is split into
part which corresponds to steady constant circulation flow and
part for unsteady flow. Steady potential flow is further divided
into three component each proportional to lagging, flapping and
pitching motion. Unsteady potential is used to simulate free
vortex generation and free vortex convection.

Computation is performed by the conformal mapping of the
exterior of airfoil contour to the interior of the circle, while trail-
ing edge of the airfoil is mapped to the intersection of the map-
ping circle and real axis in the transformed plane. Unsteady
flow around circle with presence of the singnlarities is solved in
the circle plane and mapped back in the airfoil plane. Thom-
son’s reflection principle is used to preserve circular shape in the
transformed plane. :

Newly generated free vortices are set in the vicinity of the
airfoil trailing edge, while their intensity had to satisly Kelvin
theorem and unsteady form of Kutta-Jukovsky condition. Un-
steady forces are determined by the integration of unsteady form
of Bernoulli equation. Obtained results are compared with avail-
able wind tunnel tests.
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1 Introduction

Conformal mapping is well developed technique for the solution of po-
tential flow problems [1] - [4]. In this paper we developed procedure
motivated by the works [2], [3] and by the book from Sedov [7]. Map-
ping of the points outside of the circle is done by the same series by
which mapping to the circle is done. There are many procedures by
which is possible to calculate corresponding points outside airfoil con-
tour and circle. Accuracy of these procedures is not greater than direct
application of power series. Coordinates are chosen fixed to airfoil con-
tour, so that only one mapping to the unit circle is necessary.

Changed circulation around the airfoil should be compensated by
the immediate vortex shedding from the trailing edge in order to keep
total circulation unchanged according to Kelvin theorem. Position and
the strength of the shaded vortex is essential question. Some motiva-
tions about this question can be found in [5] or [6].

Unsteady Kutta condition is basically connected to viscous flow,
but, for the inviscid flow it is demanded that loading of the trailing edge
is equal on the upper and on the lower side. That connects tangential
velocity difference at the trailing edge with circulation changes.

Once generated free vortices travel with surrounding fluid velocity
without changing its strength. During calculation number of free vor-
tices is increased, so suitable data structure is needed to support such
needs.

Unsteady force is calculated by the integration of the unsteady
Bernoulli equation in the form derived as in [7], which is also called
generalized Blasius theorem.

2 Problem statement

For the inviscid and incompressible flow continuity equation is the same
for steady and unsteady flows
o

ﬁ-l_W:D’ (1}
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where ¢ is velocity potential, and = and y are coordinates of the arbi-
trary point in the flow field. We are not going to solve this equation
directly. Instead of that we shall map known solution for the circle
to the specified airfoil shape. Impermeability of the airfoil contour is
expressed in the form

VR-HIU,

(2)
VH. i VA Fidi VTt

where Vg is the velocity in the body fixed coordinate system, Vi
the absolute velocity of the fluid flow, and Vr is the transport velocity
of the body fixed coordinate system. With n is assigned normal to the
arbitrary point of the airfoil contour. Transport velocity of the point
m on the airfoil contour is expressed with

Vi = (U, (t) — Q) ym) i+ (Vo (t) + () Tm) J, (3)

where U, and V, are linear velocities of the body fixed coordinate system
origin, and ) is angular velocity of the body fixed coordinate system.
Unsteady Kutta condition can be expressed in the form
R

where V;, and V;, are tangential velocities at the lower and upper side
at the trailing edge of the airfoil, and T" is the circulation around airfoil
contour. This equation is nonlinear because unknown strength, free
vortex influence quantities on both side of this equations, and hence
whole problem is nonlinear. The only way to solve such problem is
to iterate over the unknown free vortex strength until Eq. (4) is not
approximately satisfied, at each time instance.

We have to satisfy one equation more. That’s Kelvin theorem which
for unchanged quantity of fluid states that circulation for the inviscid
ideal flow doesn’t change with time

ar
B Tt (5)
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3 Conformal mapping

The mapping is conformal when the angles between lines are preserved
during mapping. More interesting mappings are those for which exists
some points at which mapping function isn’t conformal. Using of such
mappings allow us to map circle to the cuspid shapes. Mapping of the
airfoil contour will be performed in few steps.

First step is to map airfoil shape to a near circle by the application
of the Karman-Treftz transformation

1
<= Zp c‘l i ,B <o A
" ¥ ( ; (6)
z— 2z 61 = Bz
where z is the coordinate in the airfoil plane, 2, is the coordinate of
the leading edge singular point, chosen to be halfway from the leading

edge to the center of curvature, 2, is the coordinate of the trailing edge

singular point, (; is the coordinate of the airfoil shape in the near circle
plane, and 3 is defined by

1
B=—=7F,
J—
n

where 7 is the trailing edge angle of the airfoil. One can obtain from
Eq. (6) the following

(2= 2) =z (2 - 2,)°
Ga=F (z—zl)ﬂ— (2 =2)°

: (7)

A 2o (G — Ba1) j ~ Z1ils — ﬁzf}?s | -
(Gt —Bz1)? — (G — Bz,)?
@ = B¢ o (2 "z:)ﬁ ; =2 (z—;:o}ﬁ" b (z - z,)‘”“ vl (z_zﬂ)ﬁ—l
5 stead] Zo(z—zl}‘ﬂ—zl(z—zo}ﬂ (z‘zl)ﬁ—(z—za)ﬂ

(9)
When the formulae (7) is applied to NACA 4412 airfoil it is obtained
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the shape shown on the Fig. 1.

S

Fig. 1. - Transformation of the airfoil shape to a near circle plane.

Next step is to translate center of gravity of the near circle to the
coordinate origin. center of gravity of the near circle in the ¢; plane
can be found by the application of the following expression

7 (Grenn + 61) s = G

G = . : (10)
2 ?:11 |C1i+l i CL'I
Coordinates of the near circle after translation can be found
Cﬂi e Cli. n Cf‘ (11)

Now remains to map near circle to circle in (3 plane. We have applied
the following series

G2 = Gaexp (Z z—;;) : (12)

by which we actually map the circle to near circle. With (3 are given
coordinates in the circle plane, and ¢, = a, + bl,. If the coordinates
(o = exp (¢ + i0) and (3 = exp (1 + i) are written into polar form we
get

exp (1 +1i0) = exp (Y + i.g) X
exp (¥ (@, cos ng + by sinng) (13)
+i (b, cosng — an sinng)) ,



S0 Z. PETROVIC, S. STUPAR AND M. SIMONOVIC
where a, = a;,/R" and b, = b, /R", or

Y =1, + Z (an cosng + by, sinng) (14)

= ¢+Z(bﬂcosn¢—ansinn¢), (15)

where R = exp (1),) is the radius of the circle. By Eqs. (14) and (15) are
defined conjugated functions. Coefficients a,, and b, can be determined
in iterative manner. It is necessary to divide circle onto 2™ equally
spaced points and to find corresponding points in (3 plane. This can
be done iteratively.

1. Suppose a, = b, = 0, then ; = ¢; from Eq. (15).

2. Left side of Eq. (14) is now known, ¢ (0;) . Coefficients a,, and b,
can be determined by the application of the fast Fourier transfor-
mation analysis.

3. Fourier synthesis step should be performed in Eq. (15) to obtain
new estimate of angle 0 (¢). Steps 2. and 3. should be repeated
until convergence is reached.

We have now defined mapping functions, but it is necessary to know
on which point trailing edge of the airfoil is mapped into circle plane.
Angle g of the trailing edge in the near circle plane is known. The
closest 0; to 07 should be found. Taylor series of angle  (¢) near angle
¢; 1s given by

df
Ore = 0 (¢:) + s (B—d)+..., (16)
from which 3 = ¢pg can be found
Rt OrE _dff (@f'i). (17)
de

Derivative df/d¢ can be calculated from Eq. (15)

gg = ] £ Zn(aﬂ cosng + by, sinng) . (18)
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Exterior of the circle can be mapped onto interior of the unit circle
by the mapping

=2, (19)
G3
where (3,.,. is the complex coordinate of the trailing edge in the (3 plane.
With such mapping trailing edge is mapped to the point ¢4 = +1.

4 Modulus of transformation

If the complex potential W (z) is known, than it holds

W (2) =W(2(G)) =... = W (2 (G (¢(G5)))) - (20)

Conjugate complex velocity in the z—plane can be found by differenti-
ating former equation with respect to 2

dW  dW d(s d, d¢,

Vo= = : 21
dz d(:-:; dgg dgl dz { }

With dW/d(; is defined conjugate complex velocity in the (3-plane,
while rest of expression on the right side of Eq. (21) is modulus of
transformation d(s/dz. Let us find all components of that modulus.

Modulus of transformation between planes z and (;, d(; /dz is given
by Eq. (9). Modulus d(;/d(; is equal to 1. Modulus d(3/d(; can be
given in the following form

dis 4 ( yoris
aG o L =) (22)
dGs ﬁ? i (Ew+m] ’
de d¢
. o SR e (23)
d':ﬂ C‘Z @ " E£+
-

Let us consider now transformation of points outside circle line.
Point in the circle plane is defined by (3 = r exp (i¢) or (3 = expIn (7 + i¢).
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Eq. (12), after substitution of expression for (3, now looks

G2 = rexp (i) exp [Z c./ (T“Effﬁ)] ’ (24)

or
Y=Inr+ Z (g) (@, cos ng + by, sinng) , (25)
R\" y
0=¢+) (-;.—) (bn cosng — a, sinng). (26)
Differentiating Eq. (24) with respect to (3 one obtains
dGz G ( ne,
st B e ) (I, T 27
d¢a G 2 Ca ar
or

ci‘
dCs e gt
o 5o il (28)
G
Further transformation is eased by the fact that transformation between
(2 and z-plane is analytic. Correspondent lines in (» and z-plane are

shown in Fig. 2.

Fig. 2. - Near circle and airfoil contours.

Transformation modulus between (3 and (4 plane is easily found as

gg_*l b _g3'rr::
e G

(29)
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5 Thomson’s theorem

Let here be no rigid boundaries, and let the complex potential of the
flow is given by f(z), where the singularities of the f (z) are at the
distance greater then a from the origin. Circular cylinder |z]| = R can
be introduced in the flow by the following complex potential

- ( R?
W= f(2)+] (F) , (30)
Eq. (30) is called Thomson’s theorem, [8]. Complex potential of the
stream inclined at angle « to z-axis is f (2) = Voo exp (—ia) z. Circular
cylinder, with origin at the 2, is introduced in the flow field by the
application of Eq. (30)

R‘EVT it'rx
B conl (31)

L

Complex potential of the vortex is given by the following equation

e = zE- In (2 — 2y), (32)

27
where z, is the coordinate of the center of vortex. Introduction of solid
circle into flow field is done again by the application of Thomson’s
theorem

27 5 o2

T T R?
W’(z):Lln(z—“ —zq,)—}—t—ln( —El,). (33)
Former equation can be rearranged into following form

il il 14 R?
W (z) - = g In [2’ = (2.-_; + EU)]"—E In {2 i $0)+§ In [; — (;:O + ?):l :
(34)

where constant In (—Z,) is dropped from the expression for W (z) . Two
last terms in the expression for complex potential do not contribute
to circulation inside cylinder because they cancel each other. Complex
potential for the circular cylinder of the radius R, with center at z, for
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complex potential f(z) is introduced together with vortex with center
at z, by the formula

o il’
Wiz) = — Zo —1 - 2,). 5
(2) = F1z z)+f(z_za)+2?rn(z Za) (35)
We can determine magnitude of the vortex I' for which point z = z; is

stagnation point on the circle. If we differentiate (35) with respect to
z, and equalize obtained expression with zero, we get

) | i G i
[ (21— 2) — mf (z 3 Zn) + T e e 0.

Former equation can be solved for I’

RS T R f’(zf_{zg)' (36)

271 4] (zl 7 zﬂ)z

If f(2) = Vo exp(—ia)z and z; = Rexp(iff), expression for I" becomes

[' =47 RV sin (a — 3). (37)
Lift coefficient ¢, can be found from the equation
Wl =p¥or.S,

where S is the wing surface, in our case S = [ - 1 namely

2I’ i
G, &= T BHT sin (e — 3) . (38)

Conjugated complex velocity @ for the flow around cylinder is given
by the equation

¥ 11
L S

= 2ie " [sin (¢ — a) + sin (a — B)]. (39)

Velocity obtained by Eq. (39) can be easily transformed to airfoil plane
according to Eq. (21). Pressure coefficient C,, is defined by

U
G=1- 7

2

(40)
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Fig. 3 show distribution of pressure coefficient for the airfoil NACA
4412 and a = 4.

EAE:OA 4412, a=4

Fig. 3. - Airfoil NACA 4412, a = 4°.

6 Generation of free vortices

Transformation modulus between (3 and z plane is singular at the trail-
ing edge of the airfoil. That means that velocity in the circle plane
should be divided by zero. To avoid infinite velocities at the trailing
edge Kutta-Jukowsky condition should be applied, which states thus
velocity in the circle plane, at the corresponding point of the trail-
ing edge, should be also zero in order to obtain finite velocities at the
trailing edge in the airfoil, z plane,. Change of the incidence angle of
the airfoil cause change of the circulation of the airfoil which must be
compensated by the free vortex to satisfy Kelvin’s condition

o 0 (41)
-

Let us consider usual situation when there are number of already
generated vortices. Complex potential in the circle plane is given by
the following equation

2
W () = Viee s + Vioe® ‘E— +52InG
3

+Z(“F"’)[inc:a A mf;am(c—?—:ﬂ (42)
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where (3, is the position of the k-th free vortex in the circle plane.
Position of the newly generated free vortex is specified in advance,
according to the trailing edge surrounding fluid velocity. Strength of

the generated free vortex should satisfy unsteady Kutta condition [9] -
[11).

7 Calculation of aerodynamic force

Let us suppose that the mapping from the interior of the unit circle to
the exterior of the airfoil is done by the following series

z=f(z}=%+ko+k1g+kg§2+..., (43)

where coefficients k; are determined as it is previously explained. Ac-
cording to [7] complex potential of the flow can be expressed as a three
component function

w, (2) = Uywn (2) + Vows (2) + Qus (2), (44)

where index , means regular part of the complex potential. In [7] it is
shown that

Usn (€) + Vows () = &f (€) - —} Cal

¢' +¢d¢’
ws ( %f ( ) —Cd

While the force on arbitrary moving contour can be calculated from

X +1iY = zpzM zp f (dw) P [ tpfz—dz] :

(46)
where z)s is the coordinate of the arbitrary point M.

(43)
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8 Calculated examples

Variation of the lift coefficient with angle of attack for the a = 2.5 +
4sin (0.3) is shown on the Fig. 4. Comparison with experiments [12]
shows good agreement with calculated dependence for the case when
viscous effects do not dominate through flow field. When separation
occurs comparisons are mining less. Fig. 5 shows lift coefficient vari-
ation with combined plane and pitch motion. Fig. 6 shows variation
of the lift coefficient for simultaneous oscillation of the airfoil in the =

and y direction.

k =046

{NACA 0012
{a=3+10cos(2t)

..................

‘:: vﬂnﬁ;ﬁi.n et_'._%)........ .........
E |
f i /

2 ]

Fig. 5. - Normal coefficient variation for combined

pitch and plane motion.




88 Z. PETROVIC, S. STUPAR AND M. SIMONOVIC

{NADK D01
da=3+410e :—!ft

+]v0=0,3gin(2t400) g
ul=0,3cod(2t+90)

5“ 7

-0 =5 [ [ 10 is

Fig. 6. - Variation of C;, for simultaneous variation of pitching
angle, flapping and lagging motion.

9 Conclusion

Calculation procedure for unsteady force calculations is developed based
on conformal mapping technique. For the unseparated flow results rea-
sonably well agree with experiments. Mapping from the airfoil plane
to the unit circle plane is done in consecutive steps. Calculations are
accelerated by the application of fast Fourier transformation for de-
termination of the mapping coefficients. Few examples are presented
which illustrate calculation procedure.
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“Varijacija koeficijenta uzgona proizvoljnog oscilirajuéeg
aerodinamickog profila

Kompleksni potencijal strujanja oko aeroprofila je podeljen na deo
koji odgovara stacionarnom kruznom strujanju i deo koji odgovara
nestacionarnom strujanju. Stacionarno potencijalno strujanje je dalje
podeljeno na tri komponente. Nestacionarni potencijal je upotrebljen
za simulaciju slobodnog stvaranja vrtloga i njihovo prenosenje. Racun
je sproveden pomocu konformnog preslikavanja spoljasnjs konture aero-
profila u krug, dok je trag aeroprofila preslikan u presek tog kruga i
realne ose u transformisanoj ravni. Nestacionarno strujanje oko kruga
u prisustvu singulariteta je reseno u ravni kruga i preslikano nazad
u ravan aeroprofila. Uporebljen je Thomson-ov princip odbijanja da
bi se ocuvao kruzni oblik u transformisanoj ravni. Novo proizvedeni
slobodni vrtlozi su postavljeni u blizinu traga aeroprofila, dok njihov
intenzitet mora da zadovolji teoremu Kelvin-a i nestacionarni uslov
Kutta-Jukovsky. Nestacionarne sile su odredjene integracijom nesta-
cionarne jednacine Bernoulli-ja. Dobijeni rezultati su uporedjeni sa
rezultatima ispitivanja u vazdusnom tunelu.





