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Abstract

In this paper the discrete concept in mathematical modeling
of non-symmetric multistory buildings under static and dynamic
lateral load is presented. Buildings with orthogonal configura-
tion of vertical structural elements are particularly considered.
The attempt of consistent approach to discrete analysis of build-
ings which includes the possibility of arbitrary configuration in
plan of the frame and shear wall elements is given. This work
is more concerned with formulation of the corresponding math-
ematical model then with the possibilities to solve the obtained
equations.

1 Introduction and basic assumptions

Buildings are one of the basic human needs. Therefore, buildings are
designed and built in a great variety of forms, so they are definitely
the most numerous civil engineering structures. Due to great possibil-
ities of their configurations and shapes, buildings are also among the
most complex structural systems with respect to their mechanical be-
haviour. Consequently, development of the appropriate mathematical

models related to mechanical behaviour of buildings is still a challenge
1
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to researches, even though the existing literature is quite numerous.
Some of it is given in [1] - [13].

The basic structural components of any building are the horizontal
slabs and vertical supporting elements. The slabs are dividing the space
within the building into separate stories and they are also connecting
the vertical elements into the unique structural entity the building rep-
resents. One of the basic assumptions in mathematical modeling of
buildings is the overall linearly elastic behaviour which allows the prin-
ciple of superposition, ie. the separation of gravitational and horizontal
load analysis. Consequently, the actual design of buildings consists of
two independent parts: gravitational (vertical) and lateral (horizontal)
load analysis. The former part represents the "routine” part of engi-
neering design, while the later analysis is the ”advanced” one, since the
lateral load analysis is a more complex one and usually is dominant in
the overall stability of buildings.

This work is related to horizontal load analysis of non-symmetric
buildings and at this stage it is more concerned with formulation of cor-
responding mathematical model then with the possibilities to solve ob-
tained equations. Also, the present analysis represents the discrete con-
cept in mathematical modeling, as opposed to continuous approaches,
see [12], [13]. Therefore, due to discrete approach, the analysis is nat-
urally oriented towards numerical solutions and use of computers.

The main assumptions in the present discrete horizontal load anal-
ysis of buildings, besides the usual assumptions of the linear theory of
structures (statical, geometrical and material linearity), are the follow-

ing:

e All horizontal slabs are considered as infinitely stiff in their planes:

Mass of the building is concentrated and contained in each slab
only;

Axial deformations of vertical supporting elements are neglected;

e Vertical elements are planar structural elements, ie. they have
finite stiffness in their plane and negligible out-of-plane stiffness.
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The last assumption is not necessary and sometimes is not adopted.
However, the usual structural concept of vertical elements is generally
consistent with such an assumption.

The consequence of the adopted assumptions is that the building
is visualized as a finite set of rigid laminae which are free to move in
parallel horizontal planes, while the vertical elements are treated as
(elastic) constrains for such a motion. Therefore, the building with N
stories, ie. with NN slabs, has 3N degrees of freedom. The generalized
coordinates of the system correspond to description of planar motion of
each slab, ie. they are the two independent coordinates of displacement
vector of the reference point of each slab and one coordinate of the
rotation vector of each slab. In static lateral load analysis the choice of
reference points is not so crucial, while in dynamic analysis it is rather
convenient to choose the centers of mass of each slab as a reference
points.

The literature related to the analysis of buildings is very substan-
tial, so the review of it would be rather consuming. However, one must
point out the famous TABS programme, see (2], as one of the best
and the most widely used commercial computer program devoted es-
pecially to buildings. The basic approach in TABS is that a building
is idealized by a system of independent planar frame and shear wall
elements interconnected by floor diaphragms which are rigid in their
planes. The TABS programme can simultaneously analyze three cases
of gravitational and two cases of lateral static loading conditions. Dy-
namic analysis in TABS is devoted primarily to earthquake analysis
and consists of the time history due to the given ground acceleration
or the response spectrum analysis.

Nonsymmetrical nonrectangular buildings which have frame and
shear walls located arbitrarily in plan can be also considered by TABS.
However, the use of TABS "for structures in which frames are not ar-
ranged in a reasonably rectangular fashion in plan is questionable”, see
2], p.7. This paper represents the analysis which is close to the ap-
proach used in TABS and also in some other work, see for example, [3] -
[7]. However, the main contribution of the present paper is the attempt
to give the consistent approach to discrete analysis of buildings which
includes the possibility of arbitrary configuration in plan of the frame
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and shear wall elements.

2 Static lateral load analysis

2.1 Generalized coordinates and displacement of a
point

The representative slab which is free to move in the horizontal Ozy
plane, but whose motion is consistent with the small displacement as-
sumption, is presented in Fig. 1.

yam

Ky

Fig. 1. - Small displacements of a slab from its equilibrium position.

The inertial frame of reference Ozyz and material frame A£nC are
chosen to coincide when the slab is at rest (in equilibrium) in the ab-
sence of any horizontal forces. For such a case the vertical elements, not
shown in Fig. 1, are in unstressed configuration. The chosen generalized
coordinates describing small planar motion of the slab are components
of displacement vector of the reference point A : d4 = {u,v,0} and
rotation vector of the slab ¢ = {0,0, ¢}, see Fig.1.

The position vector of some point P after small motion of the slab
—

is given by rp = dg +pp where pp, = AP = {{,1,0} is expressed

relative to material frame A&n( and is a constant vector for a given
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point. Therefore, displacement vector of a point P is given by dp =
rp —rp, where rp, is the initial position vector of P. Since displacement
of the slab is generally small, so cos p ~ 1 and sin ¢ = ¢, displacement
vector of the point P, when expressed relative to inertial frame Ozyz
is obtained as

dp =rp—rp
= (u+£cos:,o—nsintp} i-I—(U-I-ESiIW?‘l‘T}CUSlP)j (1)

= (u —ne)i+(v + €p)j

In the initial position reference frames are coinciding, so { = z, n =y,
i = A, j= u, where A and g are unit vectors of axes £7.

2.2 Buildings with orthogonal configuration of ver-
tical elements

The usual structural configuration of a building is consistent with the
assumption that vertical elements are considered as planar structural
systems, see Fig. 2. The exception to this are the so-called "central
cores” of a building which represent the complex reinforced concrete
walls forming vertical communication space (elevator shafts) within a
building. If such complex walls do not have rather substantial dimen-
sions, eg. as in a case of several elevators in a row, then their horizontal
(ie. lateral) stiffness is usually smaller then the stiffness of other planar
vertical elements, Fig. 2.

Fig. 2. - Planar vertical elements: frames shearwalls and combinations.
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Also, buildings are usually regular in plan which means they are
approximately symmetrical with respect to two orthogonal horizontal
directions. Typical situation is the rectangular plan of a building as
shown in Fig. 1. However, the plan of a building is often of a more
complex shape, usually some combination of rectangular regions, see
Fig. 3. In all such cases the normal situation is that vertical structural
elements are mutually orthogonal, ie. vertical elements are parallel to
x and y directions.

A building is considered to be symmetrical in the structural sense
if the center of mass and shear center of each slab are coinciding, or
if they are relatively close together. Without further elaboration, the
shear center is defined as the unique point of the slab with the fol-
lowing property: if the resultant external horizontal force is acting
through such a point, then the corresponding motion of the slab is
translation without any rotation. Even though a building may seem
as geometrically symmetrical with respect to two vertical planes, the
actual structural properties, mass distribution and even configuration
of vertical elements are usually not completely symmetrical, so most
of the buildings are more or less non-symmetric. Of course, if a build-
Ing is non-symmetric in geometrical sense, then it is usually, but not
necessarily, non-symmetric in a structural sense, too.

Let us assume that there are n, vertical structural elements parallel
to x axis and n,, vertical elements parallel to y axis. Such planar vertical
elements are assumed to have only in-plane lateral stiffness. Vertical
elements are representing constraints for horizontal motion of slabs, so
it means that the influence of a vertical element on a motion of a slab
1s represented by internal concentrated constraint (restitutive) force in
horizontal direction of the vertical element. Since such reaction force
is of a restitutive nature, its sense is to oppose the motion of the slab
and to return it to its equilibrium position.

External horizontal forces which are causing the motion of slabs
are originating generally either from wind or from earthquake effects.
Even though both types of environmental effects are clearly of dynamic
nature, under certain conditions they may be considered as equivalent
static loading for building. For the purpose of the present static analy-
sis all external horizontal forces are assumed to be independent of time.
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Force components Fy, F, and the couple M, shown in Fig. 3 are the
result of reduction upon the reference point of all external horizontal
forces acting on a slab. Therefore, the considered slab is under the
action of external forces F};, F, and M,, which represent any given ex-
ternal loading acting on a slab, and internal constraint forces S;; and
Syi, (i = 1,2,...,ng, = 1,2,...,n,), which are acting in direction of
each vertical element. Having in mind the small displacement assump-
tion, the equilibrium conditions of forces are established on undeformed
configuration of a slab, as presented in Fig. 3.

W T; St R
1=1.,2, ﬂ,y [::l
% Vy [ i
S'yj SI’L Us
F | = o > | L
2 @ .yi IH

Fig. 3. - Orthogonal vertical elements and forces acting on a slab.

The equilibrium conditions of forces acting on a given slab may be
written as follows

Bots I 1ty o By I = 9, 2)
i=1 i=1
L Tiy
M, +) %Ss— ) _z;Sy; =0. (3)
i=1 i=1

If all N slabs of the building are considered, Eqgs. (2), (3) may be
presented in the matrix form as

F:r —ESE,- ='D, Fy _Z]SFJ :0, (4)
§=

i=1
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fx

M, +Y Y8 - Y X;8,; =0. (5)

" i=1 j=1

In Egs. (4), (5) F,, F, and M, are vectors whose elements are resultant
external forces acting on each slab, S;; and S,; are vectors with internal
restitutive forces between slabs and vertical structural elements in z and
y directions, while X; and Y, are diagonal matrices whose elements are
z; and y; coordinates of vertical elements with respect to Ozy system.
since vertical elements belong to a single vertical plane, all coordinates
z; or y; for a given vertical element are constant, so matrices X; and

Y; should normally be of a form z;I and y;I, where I is the unit matrix
of order N.

As mentioned in the Introduction, the global coordinates (ie. gen-
eralized coordinates) of the building are related to planar motion of
each slab. Each frame (ie. each vertical structural element) is treated
independently as the corresponding planar structure. Due to rigid floor
assumption, all columns of the frame have equal lateral displacements
of their end points at the same floor level. Therefore, local coordinates
of each frame are lateral (horizontal) displacements in the plane of the
frame at the level of each floor. Therefore, each frame, ie. each vertical
supporting element, has N local coordinates (or degrees of freedom),
where N is the number of floors. Local coordinates of each vertical
element are denoted by i; for elements in global x direction and by 7,
for elements in global y direction, see Fig. 3.

The necessary step is to determine, for each vertical element, the
corresponding lateral stiffness matrix. the lateral frame stifiness matrix,
or the local stiffness matrix, connects the local coordinates of the frame
ii; (or 7;) and the corresponding lateral (constraint) S;; (or Sy;). Lateral
stiffness matrix of each frame may be obtained in different ways, one of
them is by using the well known program STRESS or the equivalent.
Namely, for each frame with different properties and therefore with
different lateral stiffness, the corresponding STRESS model should be
prepared. In order to simulate the rigid floor assumption, artificially
high value for axial stiffness of each horizontal beam is adopted. Also,
at all floor levels at one side of the frame, the additional supports that
prevent only horizontal displacements of floors are adopted. Such a
model is then solved successively for N loading cases where each load
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case is defined as a unit horizontal displacement of a support at each
floor level. The elements of the corresponding frame lateral stiffness
matrix are obtained as reaction forces of artificial supports at floor
levels.

If the lateral stiffness matrices of vertical elements in x and y direc-
tions are denoted by K, and K,, then the vectors of internal restitutive
forces S,; and S,; may be expressed as

S:ci = Km'l_l,;, S!J';f = Kyj\_fj. (6)

In relations (6) vectors fi; and ¥, represent vectors whose elements
are displacement components in z and y directions of the points of
connections between slabs and vertical elements. Stiffness matrices
of vertical elements may be obtained as explained, for example, by
using the program STRESS. Also, very accurate values for stiffness
matrices may be obtained in an approximate way, through the concept
of storey stiffness, see [11]. Having in mind displacement vector given by
(1), displacement components @; and ¥; which are relevant for vertical
elements presented in Fig. 3, may be expressed as

‘l'_.-!'ri = u — Y; P, ﬁj =v+ :Ejlp. (7)

Therefore, considering relations (7) for all slabs for a given vertical
element 7 and j, one obtains

‘l-l,_': b t'¢1 \_fj= V+Xj¢, (8}

where u, v and ¢ are vectors whose elements are the generalized coor-
dinates u, v and ¢ for all slabs. Relations (7) or (8) may be considered
as transformation relations between the local and global coordinates.
When substituting relations (6) and (8) into equilibrium equations (4),
(5) one obtains

Ny TNz Ty Ny
F;: = Z Nafus z; KziYi¢a Fﬂ e Z Ky.fv-l_ Z Kyij¢1 (9)
= =1 =1

i=1 j

Mg Tig Ny Ty
M, = -5 YiKau+) YK Yip+) XK,;v+) XK,;X;¢. (10)
i=1 J=1 i=1

i=1
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Obtained three sets of N equations (9), (10) may be also written as
a single matrix equation

| 0 Kﬂp u |
0 Ky Ky Y™ b Xa 2 (11)
Kep Kyp Kyp ¢ M.

or in compact form with obvious notation
Ké = 1. (12)

The matrix K given by (11) is the global stiffness matrix of a building.
Submatrices of the global stiffness matrix K are given by

K:r:l: = ZKzij Kyy = ZKw, {13)
: i
KI? — K$I = — ZIYiK;n (: - iKziyi) ; (14}
=1 i=1
Ny
. KT ZX K,; (= ZKyjIj ; (15)

KWP: iY:ﬁKzinl- Z XjKijj (= ZKI,yf" + E Ky_... ) (16}

i1 j=1
The expressions given in brackets correspond to the normal case when
matrices X, and Y; are given as z;I and y;1. Therefore, the static prob-
lem of a non-symmetric building with orthogonal vertical elements is
given by the system (12) of 3N linear algebraic equations.

The solution of the system (12) is easily obtained as
8=K 1 (17)

With generalized coordinates determined by (17), displacement vectors
for each vertical element are given by (8), so the internal constraint
forces between the slabs and vertical elements are given by (6), or by

S.’ri - K:I:iu_KxiYi(:bm (I = 112: seny n:r}s (18)
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S,; = K,;v—K,;X;0, (i =1.2;..:04) (19)

Obtained internal constraint forces S;; and S,; are now considered as
the given external forces in the independent analysis of each vertical
element, which should naturally follow. The analysis of each frame of
shear wall subjected to forces S;; or S; is of course the necessary step
in order to establish if each vertical element is capable to resist the
loading which is being distributed to it through overall behaviour of
the building.

It is possible to introduce the notion of the mentioned shear centers
and also similarly defined torsion centers of the building. The pur-
pose of that would be to apply then the appropriate transformation of
generalized coordinates in order to obtain three independent sets of N
equations each, instead of previous set of 3N coupled equations (12),
see for example [5]. However, it will not be pursued here, since, gener-
ally speaking, the solution of the coupled set of equations (12) is not
hard to obtain, because the number of stories N is usually relatively

low (N < 30). Therefore, the total number of equations is normally less
then 100.

2.3 Buildings with arbitrary configuration of
vertical elements

Let us consider a building with non-symmetric (or even symmetric)
geometry in plan and with total number of n, vertical elements whose
configuration is arbitrary. The term arbitrary configuration of vertical
elements means that vertical elements are not all parallel to inertial x
or y axes, as presented in Fig. 4. As in the case of orthogonal vertical
elements, only planar vertical elements are considered, as shown in Fig.

2.

Let us define the location the of each vertical element by the position
of the centroid of the element C; (z;,y;) and by oriented direction of
the element given by the angle o; = £ (x,Z;), where Z; is the local
horizontal axis in direction of the element, see Fig. 4.
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¥H

Fig. 4. - Arbitrary configuration of vertical elements and
displacement of a point.

It is easy to verify, see Fig. 4, that displacement component of the
point C; of the slab in direction of the local axis I; is given by

i; = dx; cos a; + dy; sin o, (20)

where dz; and dy; are components of displacement vector d; of the point
C, in direction of x and y axes and are given by

dx; = u — Y, dy; = v + x;. (21)

Therefore, displacement component @; in direction of the vertical ele-
ment i may be expressed as

il; = ucos &; + vsina; + hip, (22)
where
h; = x; sin o; — Y; COS @, (23)

and represents the normal distance of the local axis ; from the origin

0.
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Instead of notation K;; and K,; for the lateral stiffness matrices of
mutually orthogonal vertical elements, it is more convenient to denote
now the lateral stiffness matrix of any vertical element by Kgz,. There-
fore, instead of relations (6), the corresponding force - displacement
relations are now written as

Si‘i = K.’f.; ﬁi: (?:‘ = 1: 2! '"!ﬂ“u) . (24)

The vector @i; represents displacements #; in direction of the local axis of
a given vertical element for all slabs. This vector, considering relations
(22), may be expressed as

{i,= u cos a;+V sin a; +Ph;, (25)

where u, v and ¢ are the vectors whose elements are the generalized
coordinates of the problem. For a given vertical element, coordinates
of its centroid C; and direction angle «; are normally constant for all
slabs.

Like mentioned before, due to small displacement assumption, equi-
librium conditions of all forces acting on each slab are considered on
undeformed configuration. Fig. 5 represents an isolated slab under
action of an arbitrary set of external horizontal forces, and the corre-
sponding set of internal reaction forces.

Fig. 5. - Equilibrium of external and internal forces.
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Arbitrary external forces are represented by F;, F, and M., while
corresponding set of reactive forces are given by Sz, and represent the
influence of vertical elements upon considered slab. The equilibrium
equations of forces acting upon the isolated slab are given by

Fr—Y Sscosa; =0, F,—) Sjsino;=0, (26)

i=1 i=1
M, =3 Sgh; =0. (27)
i=1

When considering equilibrium equations for all slabs, Egs. (26),
(27) become matrix equations

F,— ;SE‘. cosoy = 0, Ky~ Z,Sﬂi sina; = 0, (28)
M, — Zsm hig =4 (29)

i=1
If relations (24) and (25) are introduced into equations (28), (29) global
equations of equilibrium may be written as

K Ki2 Kz u Fg
Kg] Kz-;g Kz;; v = Fy 5 (30)
KSI K:ﬂ KS:! d-’ Mz

or in compact form as

K6 = f, (31)

with obvious notation. Submatrices K;; =Kj; of the symmetric global
stiffness matrix K are given by

Ki =Y Kz, cos’a;, (32)
i=1
Ty
K2 =K, = ZKE‘. COS (; SIn 0y, (33)

i=1

Ty
K13 = KE] = Z Kiihi CcOs (¢4, (34)

i=1
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Kj‘l = E K:rt- 5in2 ¥y, (35)
i=1

Koz = Y Kg hisina, (36)
i=1

Ka = 3 Ka, 1. (37)

=1

The solution of equations of equilibrium (31) is easily obtained as
& =K 'f. With obtained generalized coordinates 67 = {u,v,¢}, local
displacement vector @; of the particular vertical element is obtained
by (25) and the corresponding constraint forces Sz, are then given by
(24). After that, the classical analysis of each vertical element (frame
or shear wall) is performed with Sz, as the given external forces acting
on each floor of the frame.

3 Dynamic lateral load analysis

31 Translation of generalized coordinates

In dynamic analysis it is more convenient to choose the center of mass S
of each slab as a reference point, instead of some other point A, so gen-
eralized coordinates are displacement components of centers of mass:
ug. vs, and of course, rotation of each slab ps = . The consequence
of such a choice is that the mass matrix of a building is obtained as a
diagonal matrix.

If only dynamic analysis of a building is going to be performed, then
it is more convenient to determine the position of the center of mass
of each slab at the beginning and to choose them as reference points
in the first place. However, for the statical analysis only, it is usually
more practical to use a corner point A, as in Figs. 1 and 3, because
centers of mass of each slab do not have to be at the same vertical
axis, so determination of geometry would have been more complicated
then in the case of point A as the reference point. So, if generalized
coordinates u, v and ¢ related to point A are already being used, it
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is easy to perform simple transformation of coordinates introducing
translated coordinate systems located in centers of mass S (zg,ys) of
each slab. Representative slab is presented in Fig. 6.

Fig. 6. - Translation of generalized coordinates.

Transformation relations between generalized coordinates located in
reference points A, as the original one, and S, as the new one, are given

by

Us . Gl u u 1 0 ys us
ve N =it 11 Vg piokid it o =01 B P Vg
¥s Q 0 i} P v B feand ¥s

(38

where g and ys are coordinates of center of mass S with respect to
inertial reference frame Ozy. Introducing diagonal matrices whose ele-
ments are locations of centers of mass of each slab as

Xg = diag (J:};,mﬁ, ,..,Ig) o ande Ye=diag (y};,yg, ,yg’) ;

transformation relations (38) are written for all slabs as



DISCRETE ANALYSIS OF NON-SYMMETRIC BUILDINGS 17

u R 1 G Ug
v =|0 1 —XS Vg " or 6 :Tis._g, (39)
¢ ¢ b 7 s

where T is the transformation matrix of the order 3N. It is easy to
verify that relation (31) may be transformed into

Kgbs =13, (40)

where
Ks = TTKT, (41)
fo = T7F. (42)

The matrix K is the global stiffness matrix of a building which corre-
sponds to generalized coordinates 8¢ related to centers of mass, while fs
is the global force vector obtained after reduction of all external forces
upon centers of mass.

3.2 Differential equations of motion

Differential equations of motion of the building may be derived in var-
ious mutually equivalent ways. One way is to consider isolated slabs
and to apply for each slab the laws of momentum and moment of mo-
mentum

dD®)
masg = FR, FrE M‘}f]. (43)
dt
In scalar form Eqs. (43) are obtained as
VESNCREY TBENPTY VR AR O Y (44)

where m and Js are total mass and mass moment of inertia of a slab
with respect to central axis perpendicular to the slab. The right hand
side of Egs. (44) are the components of all external and internal forces
after their reduction upon the center of mass. External forces are the
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given forces which are some functions of time, and are arising, for exam-
ple, from the wind loading, while the internal forces are restoring forces
which are representing influences of vertical elements upon a slab.

If Eqs. (44) are considered for all slabs and if the following di-
agonal matrices, which contain masses and mass moments of iner-
tia of all slabs, are introduced: m = diag (my,my,...,my) and J =
diag (Js1, Js2, .-, Jsn), then Egs. (44), written for all slabs, become

Még =g — Ksbs. (45)

The usual form of obtained equations is

Més + Ksbs = fs (t), (46)
where M is the global mass matrix of the building given by

m
P e : (47)
Js

Of course, it is possible to include the viscous damping forces in the
usual way, by adopting the global viscous matrix in the proportional
form as Cs = aM +3Kg. In that case, equations of motion are given
as

Més + Csb+Kgbs = fs (t), (48)

The solution of differential equations (46) or (48) is obtained by the
usual methods of structural dynamics. Generally, there are two basic
approaches: either the modal analysis, or direct numerical integration.
In both cases it is very convenient that the mass matrix is a diagonal
one. Therefore, the additional effort to transform initial stiffness ma-
trix K into the new one Kg according to (41) and also to transform
the initially defined loading f into fg is definitely the worth-while ef-
fort. When the generalized displacements as the function of time are
obtained, 65 = 83 (t), the in-plane displacements of each vertical ele-
ment are determined according to relations (25) and (39), so reaction
forces transmitted to each vertical element are then given by (24). The
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final step is the separate analysis of each vertical frame or shear wall in
order to determine its local behaviour and consequently to determine
the overall behaviour of the whole building.
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Diskretna analiza nesimetricnih zgrada

U radu se prikazuje diskretni matematicki model za opis mehanickog
ponasanja nesimetri¢nih visespratnih zgrada pod dejstvom statickih i
dinamiékih horizontalnih sila. Posebno je razmatran verovatno najceséi
sluéaj konfiguracije zgrada kada su vertikalni noseci elenmenti ras-
poredjeni u medjusobno ortogonalnim ravnima. Takodje je razma-
trana i proizvoljna konfiguracija vertikalnih elemenata i oblika tavan-
ica. Teziste rada je u matematickoj formulaciji statickog i dinamickog
ponasanja nesimetricnih zgrada, a ne u nacinu resavanja dobijenih
jednaéina ravnoteze ili kretanja.





