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1. Introduction

Several flow phenomena in gas dynamics proceed followed by relatively
high temperatures. We will mention just a few, like flow phenomena arising
in various combustion processes (jet propulsion, internal combustion engines),
or in high-speed aerodynamics (re-entry problem). These problems cannot be
treated within the frames of classical gas dynamics, because the gas does not
behave as calorically perfect. At least its behaviour is one of a thermally perfect
gas in which vibrational energies are set up, and Cjp and C, - specific heats
at constant pressure and constant volume, respectively are not constants, but
depend on the temperature. For example, air at normal pressure behaves roughly
as a thermally perfect gas in the range from 600 K to 2500 K [1]. At higher
temperatures dissociation of the gas takes place, followed by ionization for even
higher temperatures, and C, and C, become dependent on the pressure too.

Although several important problems in the context of high-temperature
gas dynamics have been solved (s. [2]), this field of fluid flows, due to its
complexity, is not nearly as elaborated as the classical gas dynamics. This
is particularly true when stability characteristics of various gas flows at high
temperatures are concerned. In this paper we attempt to solve a problem of
hydrodynamic stability of a high-temperature gas flow. We analyse the linear
stability properties of an unbounded mixing layer of a thermally perfect gas. We
assume that both velocity and temperature basic profiles, generally independent
of each other, are present, so that the basic flow is a nonhomentropic one, and
that the gas is non-viscous and non-conductive.

The corresponding problem for the flow of a calorically perfect gas has
attracted some attention of researchers in the past. The first paper especially
concerned with the stability of compressible homentropic free-shear flows was the
one by Blumen [3], and its extension to nonhomentropic flows was performed
by Djordjevic and Redekopp [4]. The latter authors performed also a very
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complex weakly nonlinear stability analysis for viscous and conductive gases and
derived a Landau type equation describing the evolution of a neutrally stable
disturbances [5], [6]. Their results reveal the important consequences that the
Mach nurnber, the excess or the deficit of the temperature in the critical layer,
and the symmetry properties of the basic profiles may have upon the stability
characteristics of compressible mixing layers.

This paper represents a direct extension of the analysis given in [4] for a
thermally perfect gas. Although the single equation for the pressure amplitude,
governing stability characteristics, differs from the corresponding one in [4] in
that it contains explicitly the ratio Cp/Cy = (7o), which now depends in a
certain way on the basic temperature profile, the analysis shows that the effect
of established vibrational energies in a thermally perfect gas is not apparent,
except via the reference Mach number, whereby this effect is stabilizing,

2. Formulation of the problem

We consider linear stability characteristics of a compressible mixing layer
with the basic flow shown in Fig.1. Gas is supposed to be thermally perfect.
Writting the equations governing such a flow in nondimensional form by intro-
ducing the following scales: d - for lengths, V, - for velocities, d/V, - for time,
T, - for temperature and p, - for pressure, and eliminating the density via the
equation of state, we obtain:
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Fig.1. Basic velocity and temperature profiles
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Here, as in [4], 9, and M, are the ratio of specific heats and the Mach number
of the reference state, respectively, and V is the velocity vector with components
(u,v) in the coordinate directions (z,y). In contrast to [4], 7(T) - local ratio of
specific heats, is here a temperature dependent quantity. For its evaluation we
will use the following formula [1]:

YT)=1+ ;- + | .(2)

where 8, = hv/kT,, and h = 6.625 x 10-2% Js is Planck’s constant, & =
1.38 x 10-23 J/K is Boltzmann’s constant and v is the fundamental vibrational
frequency of the molecule (for example v = 7.06 x 10'® s™% for nitrogen). Vari-
ation of v with T for some values of the parameter 6, in the range of practical
importance is shown in Fig.2.
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Fig.2. Dependence of ¥ on T for a thermally perfect gas

For the purposes of linearizing the system (1) about the basic state ug(y), To(y)
and pg = 1 it is necessary to expand (T') into a Taylor series:
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W+ T)=(T)+ | T4, 3)
dt =T,

where T" is the temperature perturbation. At that, the first term only will
participate into a linear stability analysis and will be denoted for convenience
by vo(y), i.e. ¥(To) = y0(y). Owing to that, linearized versions of the first two
equations of (1) are independent of the temperature perturbation, which can be,
as in [4], simply evaluated from the third of equations (1), after the complete
stability analysis, based exclusively on the first two equations, is performed.

Using normal mode representation with o as wave number and ¢ = ¢, + ic;
as complex speed of waves propagating in z direction, linearized versions of the
first two equations of (1) can be combined to yield the following single eigenvalue
equation for the pressure amplitude P:

foD*P - 2fiDP — a*fy (1-&13%;5)1::3, (4)

where D = d/dy and fo = (up — ¢)//To. Due to explicit appearance of 7o(v)
in (4), the basic flow cannot be now comprised into a single function fy(y), in
contrast to [4]. This fact and the relatively complex dependence of v on Tp,
defined by (2), practically precludes us from getting any analytic solutions to
(4), so that the stability analysis based on (4) will be in what follows, with the
exception of general stability results, fully focused on the numerical treatment.
However, for neutrally stable disturbances, as in [4], the term M2y, f3/vo rep-
resents exactly the local, relative Mach number My(y) defined by the relative
speed by which disturbances propagate with respect to the flow, ie.

Moo) = My 2 uo — ] VT (5)

If uy and T decay exponentially for |y| — oo the dominant balance in (4) is
governed by the first and the third term, and obviously the pressure amplitude
for neutrally stable modes (¢; = 0) will decay exponentially for |y| — co too, if
the relative Mach number My(+co) is subsonic. This decay:

P - exp {?a' [l — My {:too]]l"r:ry} , y— oo (6)

will be used as the boundary condition for numerical integration of (4) and the
cases in which Mg(+o0o) < 1 will be treated in the paper only.

3. General stability characteristics

In spite of the fact that equation (4) differs from the corresponding equation
describing stability characteristics of flow of a calorically perfect gas, it is shown
that general stability results obtained in [4] hold for a thermally perfect gas also.
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That is why we will just quote a couple of them which are the most important,
without the detailed proofs.

If fo is nowhere zero (i.e. ¢; #0, or, if ¢; = O, there are no critical layers)

we can divide equation (4) by f3, multiply it by P - complex conjugate of P and
integrate it over [—0o,00]. Then, the integrated term vanishes, since transverse
velocity component, and consequently DP vanishes for |y| — oo, and we obtain:

[Py st [7 5 (1-MEg) Pav=0. O

-— fﬂ - E

For ¢; = 0 this relation, if the definition (5) of My(y) is taken into account, can
be written in the form:

/m = (1-M3)|P[ dy < 0.
— e fﬂ-

It follows from here that, since the flow at |y| — oo is subsonic, it must be
locally supersonic in some portion of the layer.

For unstable disturbances (c; # 0) the relation (7) is conveniently written

oo 2 2 2, oo
f BB +?; L fgzdy—aszf T-—r[Plz dy = 0.
—o |fol

Examining the imaginary part of that one finds that there must be at least one
critical level in the flow, say y. so that ug(y.) = ¢, for the amplified waves
to exist. Combining the real and imaginary parts, one can show that Howard’s
semicircle theorem [7] applies without modification for this flow. Finally, one can
show that Lees-Lin criterion [8] holds without modification for this flow also, i.e.

d [ug
Sl Bt =0 8
dy <Tu)y=yc { )

is both a necessary and a sufficient condition for the existence of instabilities.

-co 70

The fact that general stability characteristics for the flow of a thermally
perfect gas considered here remain unchanged when compared with the cor-
responding flow of a calorically perfect gas, and also the fact that the ratio
v /70 experiences a relatively small variation over the flow, as revealed by Fig.2,
imply that the effect of established vibrational energies in a thermally perfect
gas, in the problem considered here, will not be pronounced, and this will be
clearly shown in what follows. Consequently, the numerical results obtained can
be practically equally used for both calorically and thermally perfect gas. In
this regard they represent a substantial extension of the results obtained in [4],
because there the attention was focused almost exclusively on the problems which
allow exact solutions for neutrally stable waves.
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4. Numerical treatment of the problem

In order to reduce the range of integration of equation (4) to a finite one, we
will as in [3] introduce new independent and dependent variables, respectwe!y

bpr
z=tanh y, F(z)=

to obtain the following nonlinear first order dlf&:rcnual equation for F:

or o’ (1 _ Mf%f&) — F?
= fu o j : {g)

with the boundary conditions for neutral modes:

F[:tl)_—.q:cz\/l M2 {il}fﬂ{ilj

Two classes of basic flow will be treated by numerical integration of (9):
- with symmetric temperature profile:

up =tanh y, To=1+b sinh™y, b>—-1, m>0,

and

- with asymmetric temperature variation:
ug = /Totanh v To=a+btanh y, a+4+b=1, a>0b.

For both, Lees-Lin criterion (8) holds at y = 0, so that ¢, = 0. If the temperature
prifile is symmetric, F°(z) is an odd function and the integration ought to be
performed in the range —1 < 2 < 0, with F(0) = 0, while for asymmetric tem-
perature distribution F(z) is neithcr odd nor even and the range of integration
1n this case 1s —1 <z < |.

However, the second term on the right of (9) is not determined at z = +1,
so that some prolems arise when one starts the integration at, say z = —1. In
order to overcome this problem the L'Hospital’s rule may be used. This rule
can be straightforwardly applied for asymmetric temperature variations for any
values of parameters a and b, and for symmetric temperature profiles for any
b and m > 2. For m < 2, F’(—1) is infinite so that an expansion of F near
z = —1 should be developed for the same purpose. The details of the numerical
integration are given in [9] and will not be reproduced here, but simply stated
and discussed. As implied earlier, parameter 8, has minor effects on the stability
characteristics, and all results will be presented for #, = 1 only.

In the symmetric case the influence of parameters b and m upon stability
boundaries is very pronounced, as evidenced from Fig.3. If the critical layer is
heated (b > 0), increase of m stabilizes the flow because the unstable region is
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considerably suppressed with m. On the contrary, if the critical layer is cooled
(b < 0), increase of m destabilizes the flow, and the unstable region is extended.
We cannot find any rational physical explanation for this switch-over. On the
other hand, if m is fixed, increase of b stabilizes the flow, so that a heated
critical layer is always more stable than a cooled one.
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Fig.3. Neutral curves for different values of the governing
parameters, for a symmetric temperature profile

In the asymmetric case the effect of parameters a and b upon stability

boundary turned out to be much less pronounced. For any combinations of



78 Milanovié, L., Djordjevi¢, V.D.

them in the range of physical interest, the neutral curve is very close to the
quarter of a circle, as seen in Fig.4.
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Fig.4. Neutral curve for asymmetric temperature profile

Instability modes with ¢, = 0 are touched upon to some extent in this
paper too (for more details, s. [9] ), and will be presented here for the case
of symmetric temperature profile. Interestingly enough parameter m has only
munor eftects on the growth rates of unstable waves. In Fig.5 for m = 2 growth
rates ac; versus unstable wave numbers o are presented for various values of b
and M. Increase of both & and M, considerably lessens the growth rates, as
implied also from stability diagrams in Fig.3.

In [4] a special case of stability of nonhomentropic compressible mixing layers
for which m = M? is treated. This case is an artificial one in that the basic
temperature profile changes with Af, - the artifact being tolerated for the sake
of taking advantage of an exact solution of (4):

e ,ﬁiu.".‘.a:y, a’ + ﬂ.’ff =1

In this case a switch-over in the eflect of b on the growth rates ae; was noticed
at M, = 0.74. For lower values of M,, ac; increases with b, while for higher
values of M, it decreases with b. Here ae; decreases with b for all values of M..
The switch—over noticed in [4] 1s obviously attributed to an unnaturally chosen
temperature profile.
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Fig.5. Growth rates curves for m = 2 and various b and M,

Finally, in Fig.6 for b =1 and m = 2, ac; versus a is presented for various
M,. The diagram clearly illustrates the suppressing influence of increasing M,
on the growth rates oc;

5. Conclusions

The main objective of the paper was a study of linear stability characteristics
of compressible mixing layers at high temperatures at which gas behaves as
thermally perfect, and consequently ¥ = C,/C, is a function of temperature - the
effect that enters the governing equation via the nondimensional parameter 6,.
Both, the general stability characteristics and the numerical results did not show
any appreciable influences of #, upon stability properties of compressible mixing
layers. However, this statement is to be accepted with some caution, because the
effect of temperatures enters the stability analysis also via the reference Mach
number M,. Since 7, for a thermally perfect gas is always less than that for
a calorically perfect one (s. Fig.2), the corresponding value of M, for the same
velocity and temperature at y — +oo will be greater for a thermally perfect gas.
The increase of M,, as clearly shown in the paper, stabilizes the flow because it
shrinks the instability region on one hand and lessens the growth rates on the
other. Consequently, the main conclusion of the paper is that the effect of high
temperatures is stabilizing. This is physically acceptable since the vibrational
energies excited at high temperatures are capable of absorbing some energy from
the basic flow. In a possible higher order theory - a weakly nonlinear one, as
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performed for a calorically perfect gas in [5] and [6], it is to be expected that,

i . " =40 - .
equation governing the nonlinear evolution of neutrally stable disturbances, and

that the effect of high temperatures will be more pronounced.

not only ¥(Tg), but also g%| will be explicitly present in the Landau type

Mr = D
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Fig.6. Growth rates curves for m = 2, b =1 and various M.

In addition, the influence of the parameter m for a symmetric temperature
profile, that actually defines the thickness of the temperature layer (it decreases
with m), was numerically investigated in details. Thickening of the layer desta-
bilizes the flow if we have excess of the temperature in the critical layer, and
stabilizes 1t 1f we have a temperature deficit. It is difficult to find a physical
explanation for such a switch-over.
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LINEARE STABIZITATSANALYSE DER KOMPRESSIBLEN
TEMPERATURHOHEN VERMISCHUNGSSCHICHTEN

In vorliegender Arbeit wurde die lineare hydrodynamische Stabilitatstheorie
der unbegrenzten kompressiblen vermischenden Schichten bei hohen Tempera-
turen behandelt, bei denen sich das Gas als thermisch ideal verhalt. Die Grund-
stromung ist nicht homentrop, so dass die Geschwindigkeits- und Temperatur-
profile voneinander unabhangig sind, wobei auf den Einfluss der Symmetrie bzw.
Unsymmetrie dieser Profile auf die Stabilitdtseigenschaften naher eingegangen
wird. Es wurden die allgemeinen Stabilitatskriterien abgeleitet und einige Prob-
leme numerisch gelost. Der Einfluss der Grundparameter, zum Beispiel, der
Machzahl, der Vermischungsschichtdicke, des Uberschusses oder des Defizits der
Temperatur in kritischer Schicht und anderes, auf die Lage der Neutralgrenze
und auf den Zuwachsfaktor instabiler Moden wurde untersucht.

LINEARNA ANALIZA STABILNOSTI STISLJIVIH, VISOKO-
- TEMPERATURSKIH MESAJUCIH SLOJEVA

U radu je obradjena linearne teorija hidrodinamicke stabilnosti neogranicenih
stigljivih mesajuéih slojeva na visokim temperaturama, na kojima se gas pon-
asa kao termicki idealan. Osnovno strujanje je nehomentropsko, tako da su
profili brzine i temperature medjusobno nezavisni, pri ¢emu je posebna paznja
posvoéena uticaju simetri¢nosti, odnosno nesimetriénosti ovih profila na osobine
stabilnosti. Formirani su opéti kriterijumi stabilnosti i numericki je reseno mz
primera. Analiziran je uticaj osnovnih parametara, kao sto su Mahov broj,
debljina mesajuéeg sloja, visak ili manjak temperature u kriticnom sloju, 1 dr.
na polozaj neutralnih krivih i faktor rasta nestabilnih modova.
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