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1. Introduction

The Hamilton’s equations of relative motion of a dynamical system are
deduced in this paper on the same way as it was done in the case of absolute
motion in [1]. It means that we start from the first form of the Hamilton’s
principle for relative motion (see, e.g.,[2]), and introduce the relative generalized
momenta components instead of the genaralized velocities into the integrand of
the Hamiltonian action. In such a way we obtain the constrained variational
problem, with the relations between generalized velocities and relative general-
ized momenta components as the equations of constraints, which leads to the
Hamilton’s equations for relative motion of our system. We further establish
the relations between some of the quantities defined for the relative motion and
the corresponding absolute quantities, what gives the possibility to compare the
method of deriving the Hamilton’s equations proposed in this paper with the one
exposed in [3], which is based on the theory of the canonical transformations.

2. Hamilton’s equations

We consider a holonomic system of N particles M;, with masses m;, acted
on by the potential forces only. The position of the particles M; at time ¢ with
respect to the moving rectangular frame of reference A£#n¢ (further: the frame F)
is determined by their coordinates &, 7:, (i, but we shall immediately introduce,
supposing that our system of particles 1s scleronomous with respect to F, the
independent Lagrangian coordinates ¢® as the coordinates which we shall unse
further to determine its position. Throughout the paper the indices a, 3, v take
the values 1,2,...,n, with summation over this range of values in the case of
repeated index. The index i, which has not tensorial meaning, runs from 1 to
N. The motion of the frame F is prescribed by its angular velocity W = W'(t)
and the velocity T4 = v a(t) of its origin A.

The relative velocities of M; are
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where a5 denotes the relative differentiation with respect to time and where

(0% 1) = AM; = &)X + (%) F + G(g®) 7, (2)

with A = T{t}, W= W(t) and ¥ = T(t) as the unit vectors of the moving
frame F'. We notice that &, 5 and ¢; do not depend on time explicitly, since
the constraints to which the system of particles is subject are scleronomous with
respect to F'. So, t appears in p; as a consequence of the rotation of the frame
F only.

Having in mind (1), the apparent kinetic energy of the system, given by

R
T = 5 Z:rﬂ,,-v;"’1
i=1
can be written in the form
1 |
T = 'Q_Auﬁg q, (3)
where
L2 dpi 09
. 1 .2 fiy gt e s s
Al ol st = ;_Tm, 905 GeP (4)

The potential energy function of our system we denote by

V =V(g% ). (5}

Let us now start from the Hamilton’s principle for relative motion, expressed

by ([2])

s [ ade =0, (6)

Jig
where A 1s the apparent Lagrangian function of the system, and where t; and
ty are fixed instants corresponding to the fixed terminal points in ¢-space. The
function A has the form (see, e.g.,[d], p.171)
m——p
A=r—a4 7w Ly, (7)

where
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N
La=Y 7 xm¥ (8)
i=1
and
r — — 1 2
ﬂ:p +mﬂA'Pc 'EIAU 1

(9)

N
— —
mpe = E I,W"fpl':
i=1

@7 being the acceleration of the origin A of the moving frame and [, the moment
of inertia of our system at the instant considered about a line through A in the
direction of @. We note that (9) can be accepted as the apparent potential
energy function of the system ([3], [4]).

Having in mind (2) and (8), we find

W La = Aag®, (10)
where '
N a7
- W o
Ax(gt ) =w gm,p, X 5g="
while from (9) we conclude that
7 =m(q",1). (11)
Thus, using (3), (10) and (11), we can write (7) in the form
a o 1 o e o
(g™, 4%,t) = 5Aapd®d” + Aad” = (g ). (12)

Let us define, further, the relative generalized momenta components by

Pop= = An i -"q-a
9 a8l + Aa, (13)

from where, denoting by A%? the conjugate tensor of A,p, we obtain

qlﬁ = J"jla'ﬁ(-ilj‘n:l' == Aa) [:1*1'_}

In virtue of (14), from (12) we have

A =7+ A A% (Pg — Ag) — m, (15)

where
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o 1
= gfaf'ﬁpapﬂ — AP P, Ag + E‘qﬂﬁﬂaaﬂ (16)

and where the symbol ” « ” above the letter denotes that the generalized
velocities are eliminated by means of the equations (14).

Introducing now the generalized momenta components (13) into the inte-
grand in (6) and keeping in mind relations (14), we obtain the constrained
variational problem given by

T :
a] [A(a%, Past) + 2a (4 — 427 4% 4g)| dr =0, (17)
L)

where the multipliers A, are functions of { to be determined. We note that the
coordinates ¢ have fixed values at the end-points in (17), while the values of
P, are free.

Writing the Euler’s equations for ¢* and P,, which are

d f of 0 d af  9f

did¢e " 9" T doP, P,
where
[ =R Payt)+ da (4 = AP By = 4°7 Ag) (18)
we obtain
. 8 4 _
A= &:r:rﬁ ("*‘ = A AW Py 4 2, A7 Aﬂ) =0 (19)
and
& A
A APS — 55 = 0. (20)

The end-condition

1=t;
=)
I=tp

daf af )
((}q" 1 ﬁ'F& 3E

is fulfilled 1dentically, since dq¢“(tg) = éq®(¢1) =0, and f does not contain P®°.

Finding, further,

A o7 -
dP; ~ 0P i des 410k, (21)

we get from (20)

ajia — PQ-, (22)
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after what (19) reads

P“+é%(ﬁﬂﬂﬁh-ﬂﬂﬁﬁm—ﬂ)=&

The function

K(q%, Payt) = A% Po Py — A®P Py Ap — A,

appearing in (23), which can be written in the form

B

R =5

sl =g

we recognize as the apparent Hamiltonian function of our system.

* function, we can write (23) in the form

Pl O
dg
Further, as
K oA
el i O | g s SRR | o I G e
dPg ey T AP’

we get, keeping in mind (21),

OK s
— = A" Pc!_‘*'qﬂ‘:
3P A% )

which, comparing with (14), leads to

0K
T =8Py

oL e |
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(24)

(25)

Using this

(26)

(27)

Equations (26) and (27) exhibits the Hamilton’s equations for the relative

motion of our dynamical system.

3. The use of the canonical transformations

We next establish the relation between the two Hamiltonian functions of our
system - the function H corresponding to its absolute motion and the apparent
Hamiltonian function K, given by (25). We can derive this starting {from the

kinetic energy T of the system expressed in the form ([3],[4])

2 2

—

1 1 d
T=r1+gmv} + 514w’ + & - La+ — (i - 52) —maz - 7,

what allows, using (7) and (9), to write the Lagrangian function of the system,

given by
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L ==V
in the form
N SN
L=A+ —(mvg pl)+ -mvy. (28)
dt 2
Now, since
H = aL {jﬂ o Lr
dq~
from (28) we easily obtain
B o o penee B o
H=K- —(muvy-pl)— =mvs, (29)
dt 2
where (25) was taken into account. We notify that the term mvy may be

ommited in (25), as well as in (28), since it is a function of ¢ only. Thus, we
may write

a — - 3
H:K—E[mvﬁ-pc). (29%)

Using (28) ve can also find the relations between the generalized momenta
components corresponding to absolute motion, defined by

ar dL
= = —, 30
e dg*  dge (30)
and the relative generalized momenta components (13). These relations are
_, Opc
Py = pa — mv, - 5:13_ (31)

Denoting further by @ the generalized coordinates ¢® when they describe
the relative motion, and keeping the denotations ¢ for the coordinates used in
the case of absolute motion, we may write, since there is no difference between
them,

Q% = q°. (32)

Let us return now to the equations (26) and (27). It is interesting to notice
that they have Licen obtained n [3] in a way which differs from the one exposed
here. Namely, the quantities P, were defined by the relations (31) as quantities
without any physical meaning, then it was proved that (31) and (32) are the
canonical transformations from the variables q., p, to the variables Q,, P,. and
the generating function
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W(qnlpl:!:t) = Ijﬂ'qa + mu—z‘; ; E: (33)

was introduced, what made it possible to construct the Hamiltonian function
K(q®, Pa,t) in the form (24), and then to write the equations (26), (27). Intro-
ducing the quantities P, by the relations (31), instead by (13), however, does not
give the possibility to recognize immediately P, as the relative generalized mo-
menta components. On the contrary, from (13), which is analogous to (30), valid
for the absolute motion, it is natural to accept P, as the momenta components
for the relative motion. '

At the end, we shall demonstrate that the generating function (33) can be
obtained starting from (297), (31) and (32) and having in mind the formulae
wellknown from the theory of canonical transformations ([3]):

oW
Pa = E}"&' (34)
. OW
Q" = 35, (35)
and
aw
e (H + “51‘) | (36)
Po ,g":}PnIQ“'
Namely, comparing (36) and (29’), we obtain
L (mv3 - 77)
TR
which leads to
W{qa:‘pﬂ}t]:ﬂlﬁ E':'I' I[‘jvl (qarFa) {37}

Further, finding from (37)

90 = muy - @ + 3g°
and using (34) and (31), we have
awy =
dq=

from where

Wl [qar Pa-) . -'il:lluz:--ql:ll + Wy (Pa} 3
Then (37) reads
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W (0%, Payt) = miZ - . + Pag® + Wy (Pa). (38)
Finally, as from (38)
aW E}l’t’rz

RN |

ap, 1 T ap,

(35) and (32) lead to

aw,
4Py

=

1.e. to

Wa =G, G=const;
and (38) takes the form

W (9%, Payt) = Pag® + mid - p + C, (39)

which coincides with (33), since the constant term may be omitted.

4. Conclusion

Although somewhat extensive, the method of deducing the Hamilton’s equa-
tions for relative motion presented here brings, by our opinion, an advantage in
comparison with the other well-known methods. Namely, an expression which
can be recognized as the apparent Hamiltonian function of the system arises in
the very process of deducing (see equation (23)), and there is no need to start
from such a function as a given one.

Further, the relative generalized momenta components, P,, we introduce by
the relations (13). 1t must be born in mind that these quantities, which include
the effects of the inexorable motion of the frame F, differ from the quantities

: ar _ : : . :
given by P; = Hia which are considered in [3] as the relative generalized

i

momenta components. Having 1 mind that P, are introduced in [3] by (31), and
not by (13), 1t 1s easy to understand why an adventage is ascribed to P! as the
generalized momenta components, in comparison with P,. But the considerations
exposed in this paper offer, we suppose, an argument in favor of the opposite
standpoint, too.
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