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Introduction

An inclusive survey of the research on the problem of the plain stress state
and plain strain state can be find in the paper [25] by P. P. Tedorescu. The
application of the complex variable function first time appears in solving the
problems of the plain elasticity theory in the papers of G. V. Kolosov (1909
). N. L. Mushelishvili has given fundamental contribution in the field of the
systematic development and application of the complex variable function to the
theory of elasticity problems. These contributions are summarized in the well-
known monograph [4] of the mathematical theory of elasticity. This monograph
republished in 1966. gives a short survey of the papers and authors who have
given further contributions to the application of the complex variable function
method to the theory of elasticity problems. Among the listed authors we would
like to emphasize the papers of D. I. Sherman in the period from 1949. to 1959.
He dealt with the boundary condition problems for double-connected areas and
gave an important contribution to the complex variable function and to the study
of stress state of the multi-holed plates.

The paper of Hedrih, Jecié and Jovanovié [15] and [17] give an analysis of
the principal stresses state at the points of the elliptical-annular plate contour
stressed by one and two pairs of the concentrated forces. In this analysis the
photoelastic experimental method is used by which the isiochromatic and isoclinic
families are obtained for three cases of stresses included either by a pair or by
pairs of concentrated forces. By these isochromatic and isoclinic families the
principal stress distribution is determinated at the points of the external and
internal contours of the elliptical-annular plate and respective graphic displays
are made.

In our expose [16] at the congress of the Yugioslav Society of Mechanics
held in 1990. we gave our contribution to the application of the complex vari-
‘able function and of the conformal mapping to the study of the stress state
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of the plain stressed plates whose contours can be expressed by means of the
confocal ellipses and arches of the hyperbolas from the respective families of the
orthogonal curves. The strain tensor components are derived in the system of the
hyperbolic-elliptical coordinates with analytical functions of the complex variable
z in the conformally mapped plane (. By means of these expressions in the paper
we derived the expressins for the strain tensor components and displacement
vector in the system of hypelrbolic-elliptical coordinates at the points of the
elliptical-annular plate segmentally stressed by the stress distributed along the
external and internal contour.

1. Definition of the problems of the plain stressed elliptical-annular plate

The subject of our analysis here is the strain state of the elliptical-annular
plate segmentally stressed along the external and internal contour by the stress
distributed in the middle plane in the form of pressure perpendicular to the
contours of the plate as it is shown in the Fig.1. Let p,(¥) and p.(y) denote
the pressures on the external and internal contour and @ and § parameters by
which in the hyperbolic-elliptical coordinates we give the contour segments along
which these pressures are normally distributed. Let’s use the hyperbolic-elliptical
coordinate system with the coordinates p and ¢, where their relations with the
Descartes coordinates are given in the form:

) s =t (1)

therefore for p = const. we obtain ellipses and for ¢ = const. we obtain a
hyperbole from the orthogonal curves family. Along the hyperbole the parameter
p changes, whereas along the ellipse the parameter ¢ changes. For p = p,
the internal ellipse contour is defined. By using thus adopted coordinates of
hyperbolic-elliptical coordinate system and according to the Fig.1. the boundary
conditions can be written in the form:

a) for the points on the internal contour

( ]*{_pu, for (-a)<p<(5+a)A(F -a)<p< (¥ +a)
op(P1,0) =\ for p€(0,5-a)U(3+ a3 - a)UCRE+a,2n)
Top(P1,¢) = 0 for ¢ € (0,27) (2)
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b) for the points on the external contour

[ =ps, for 2n=B)<p < (+BA(m-PB) <p < (7+h)
7oz 9) = { 0, for o€ (8,5 +B)U(r+p, 27— f)
Tﬂv(Pﬂi':P):ﬂ for {F'E{EI:?“—) (3)

Fig.1.

2. Essentials of the complex variable function method with interpretation
within hyperbolic-elliptical coordinate system

For determining the stress tensor components in the hyperbolic-elliptical
system, that is the normal stresses o5, and o, at the points of plate for the
sections with the normals in the direction of the tangent lines to the orthogonal
family of hyperbolas, that is, the ellipses and shear stresses 7., that is, 7.5
respective to these planes, we use the complex variable function method requiring
that the stress biharmonic function ¢(z,y), should be expressed by means of the
complex variable analytical function (7], [4], [2], [12] in the form:

¢ = Re(zF(z) + X(z)) (4)

where z 1s a complex argument. Since the elliptical-annular plate contours in
the plane z can be mapped in two concentric circles in ¢ plane by means of
mapping function:
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a+b a-»>

dm= 5
2 MM LE 5)
in which then by means of the same mapping function the hyperbolic-elliptical
coordinate system, coordinate lines - confocal ellipses and hyperbolas orthogonal

to them, map in the concentric circles family and beam of straight lines.

r=w(Q)=RC+7)  R=

We use following transformation formulas (15), (16) and (17) given in the
paper of Hedrih and Jovanovié [16]:

P 4ﬁﬂ{m} =2 [F{(C} + Fl@)‘ (6)

w'(€) w'(z) © @'(()
% E

7 O op POFOW(Q -TOFW O+

+ X710’ (€) — X1 (Ow"(€)) (7)
m({3 p 1+ p u(ﬁ} FO + 1@]} (8)

Oy — Tp+ 2T =

U, +1uy, /(O] 2 I3 1( ) i } ""(ﬁ}

which are in this paper derived by means of conformal mapping of the z plane
into the plane { by given function (5). These formula give the relation between
the siress tensor components in the hyperbolic-elliptical coordinate system and
analytical functions Fy(¢), and X;(¢), complex variable {, and the mapping
function w(().

In the previous expressions (6), (7) and (8) the most prominent are the
functions F1({) = F(w(¢)) and X,(¢) = X(w({)) can be directly represented in
the mapping plane ¢ in the form of the Laurent series along the complex variable
¢ = pe'¥ with the unknown coefficients A, and B,. The unknown coefficients
of these series are determined from the boundary conditinns (2) and (3), along
the elliptical-annular plate whose stress state is being studied. By the reason
of an infinite number of coefficients the reduction of the number of the order
members to the finite number in concrete calculations is defined with a desired
approximate accuracy of the boundary conditions.

3. Determination of the boundary conditions development coefficients

Using the boundary conditions (2) and (3) for the sake of the comfortable
application of the expressions (6), (7) and (8) let’s write the boundary conditions
by introducing the series:

(nn]

(05 = iTpelo=p, = D CVE™ = —pu(p) 9)
m .
[0p = iTpplp=ps = Z Cf]ﬁmﬁp = —ps(¥) (10)

— o0
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with the development coefficients c{ and €7 in the form:

1. L
. 11
73! ) pu()dy (11)
@__ L [ 19
ot =—E/u pa(p)dep (12)

After calculating the integral in the expressions (11) and (12) according to the
boundary conditions (2) for these development coefficients we obtain:

1 2py
Cy) ==
1 (_l)kpu i Pu ikx .
GrEu.-} = - " sin 2ka = —ﬁe sin 2ka
i =0 ov)
2ps
c® = psf
T
Cgi} = ?1:1 sin 2k 3
2 7
Cgkjﬁ-l i (12

By analyzing we conclude that all coefficients Can and Cgijﬂ with odd indexes

are equal to zero, except C,E}n} and an} with even indexes which are different
then zero.

4. Determination of the coefficients A, and B,
of the development of the analytical functions

Fi(¢) and X;(¢) in the Laurent series

Let’s present the functions Fy({) and X;({) in the form of their derivations
along the complex variable { as the Laurent series:

Fl CJ Zflnf

2
F(Q) =) nAn""

— 0o
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ly= ZBnc

o0

Fi(Q)=A+A ¢+ Y

An('""'l

+ 0

n=—cong-1.0 n+l
o Bﬂcn+l
Xi(¢) = Bo(+ B_1In¢ + > 1 T (13)

n=—oo,ng-1,0

with unknown coefficients A, and B, which would be determined from the
boundary conditions by means of the relation between the stress at the points
on the stressed elliptical-annular plate contour and assumed analytical functions
of the complex variable. Therefore the expressions (6), (7) or (8) are written
for the points on the external and internal contours by means of the series (13)
and made equal with the expressions on the right side of the relations (9) and
(10) in which the development coefficients CL* and C'¥ are known by using
the expressions (12). By transforming the expressions - sums according to the
indexes n and by making equal the coeficients on the left and on the right sides
with the equal degrees of the complex unit €™¥ we obtain the desired relations
between the coefficients A,, A,., B,, B, with the coefficients C\" and Gﬂﬂ
as well as p;, and p; defining contours. In order to simplify these relations
according to the concrete defined stress problem of the elliptical-annular plate
we carry the following a- ‘ysis.

Let’s now consider the fact that some of coefficients are equal to zero on the
basis of the defined boundary conditions, the characteristics of the symmetry of
the elliptical-annular plate and form the symmetry of the given stress, as well
as from the limited value of the plate points displacements.

Since the displacements area in the hyperbolic-elliptical coordinates is given
in the form:

1 oo A 2k+1
u, + fug = = {(3 _H}EL_
.

- 2k+1
E By 2k _ 1_21;
s [ e ma E“’"‘ZL+IC " ,;( 32]
— {1+ ) o Y AuC + >
l—c-—z_m R{l-c—g |1—‘:2 (14)

and in the order to define unanimously the displacement vector from the previous
expression (14) it follows that the coefficient next to the denoted member would
be equal to zero, hence we conclude that A_; =0 and B_; = 0.

From the condition that the elliptical-annular plate as well as the given
external stress are with two symmetry axes, we conclude that A_, = A,, and

Bl
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If we use the previous conclusions, and since the coefficients ¢ and C¥
are real, we can assume that the coeficients A, = A, are real, then from the
boundary conditions we obtain the following relation:

R(1- &) R(1+ 87 e
= § et nAnCﬂ—l]R(l— E“—t) [, Ax¢"] 2B zmﬂ
R+ 2 3 a5
C w(1-7)

(57 51 A1 8)  [poinc+ £ 3]

' 3

R (1-2)

CPR(1- 3) e i
PRI-B)| _, _26’* e (15)

If we use the relation (15) then the relations between unknown and known

coefficients can only be written in the function of six unknown and eight known

coefficients A,, Any2, An-2, Ants, Bn—2, B, and C,El}, C{z} C'Eﬂg, CEE?. C,E];lz,

2 2
Grtij?l CE;]:EAI: Cf‘.l.-&"

{A n+2+{3+n]m2 n— 2+P—-[n—?]]+

mAnyo [(n + 3)p"+? — 2;:1_'[“"“2)] —

m(n — 1)p" 2 Ay + m?p~ ("4, 4 — %ﬂ”B 2+ %nﬁ "Bn}

P=@s

i
R [p (1 + 2—) Ccl) 4+ m (2 + “;—) sz e o 0524 - mcfgs_jz]
=P
= 1.2 (16)

If we introduce the following notations in the previous equations:

2
L™(p) = R [,o‘f“'“ (1+ 2:—) c)4

il
mp (2 + —-) C,E_‘_; + *“C,{:L —mp™" Cf,ﬁz]

P=ps (1?]

and 1f the expressions (16) and (17) are divided by p} and p';. respectively then
we write them in the following form:
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2
{An [{1 —-n)p’ + (3 +ﬂ)?—2+p‘2‘:"‘”l +

mAn42 {{ﬂ +3)p? - EP"?[“H}] —m(n—1)p *An_2+

m?p=2"+3) 4, L, — an-? sl + - Bn = L (p) (18)
R Rn g
y P=py
If we introduce the following notation:
En(p1,p2) = LiP(p2) = LV (p1) (19)

and the we make subtract of the equations (18) we obtain the following equations
along An_2, An, Any2, Anya in the following form:

m(l )72 = p5 ) Anort
An [(1=n)(052 = p7%) + (n+ 3)m?(p5? = p7%) + 95 27 — 201 4

’ -2 =2n
Anyam?(p; e P x HJ) = En(p1,p2)
=00y iyt =l ds B 00 (20)
If we introduce n = —4, —2,0 and 2 and if take into consideration that A, = A_,,

so that we can obtain non-homogeneous algebraic equations with only unknowns

Ag, Az, A4, Ag In the form:

D{A}=E (21)
where
Ay E_4(p1,p2) I
A, E_2(p1,p2) I
= F = = 22
{4} As [ Eo(p1,p2) I3 22)
Ag Es(p1, p2) la

a1 dz1 az;n a4
@z 232 d3zz 442
iz daz3 G433z 0q43
fl14 O24 Qa3zq 044

o 5 2

ajy = m” (p3 — Fl)

az) = —m [(Pg o Pf) +2 (PE - Pl)]
1 1

asy =5 (p3 - pi) - mi(—z ) (p3° = p1°)

P3P
1 1
g1 — 5”‘1 )
3 7
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a12 = —m (p — p})

az2 =3 (p3 — p}) +2m” (p3* — p7%) + (03 — £9)
azy = 3m (p3" — pi”")

agr =0

a3 = 2 (p3 — pi) +3m* (p3” — p1”)

azs =m[3(p3 —pi) = (p2" = p17)]

azs = m* (p3° — p1°)
aq3 =

_ = -2
ag=-m(p;° —p77)

aze =~ (p3 = p3) + (5m* +1) (p3* = 1)

aza =m [5(p3 — p}) —2(p7° — p7°)]

PRI, | (P;m p710)
(23’)
2
Eq(pr,p2) =R [C',Eﬂpg'" (l — 21) Gt 2=n (1 + gn%) _
FE 2
mpy (2 + P_) Cﬂzz +mp; (2 F ) C‘Elfﬁ
2 1
2 2
m -~r1. 2 m- _4 = i
=5 Pa CEI-E‘l — A Cﬂq—mg C{ }g+mp1 C',E}}
p3 1 (24)
b= En(p1, p2)lne-g = R{m?(p3C5" - piC{V)-

2m 2
e (1 +— ) + C$Pp8 (1 = Qi)
m[ﬁ§(2+P—)C(E)+pl(2 )c ]
m (p302 + stctM))

2
la = En(p1,p2)|p=—n = {C":” 3 (1+ 3p ) ciVpi (1+ 3_”“_.) ”
2

Pl

o) o))
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2
m (p30? + i) }

2m? 9
s = Ea(p1, p2)lymg = {ng}p§(1+‘ui4) c“]?(1+Pi),_
2 1

(04 55) o+ (o 5p) ]+

m? ( 1 Cr(ﬂ] o icfli)}
F’Q F’l

2 2m?
la = En(pr, p2)lyey = R{Cm ( = ) ciM (1+ ) -
Pa P

2
m (2 e ) lepy (2 + ) ic“}]
P2/ P3 Pl J P

2
( c®_ L Cm) " ( e _ 1 Cm)
P; Py F‘z P] 24°)

Then the solution of the system of equations (21) according to the unknown
coefficients Ag, As, A4, and Ag are obtained in the form

Dy D, D5 Dy
Ape=mnt. gllpes 58 et geaaatd 9
BT GA= s S pe st (25)
in which for the sake of simplification the following notation is introduced

4

D = |an] = Zﬂ:’kK:'j

i=1

4
= N G (26)

of the system determinant (21) and of the determinant cofactors.

By means of these constants expressed in the function Cf'[” Cm Cm

C{ZJ C“] C“]', {T':U C{ ) and m and R, p1 and p3, we express all the other
coefficients An and B, from the equations (20), (16) and (18) by writing them
further for n = 2k, k = 2,3,4,5,6,... so that we always obtain another new
equation with another new unknown Ajp 4 or Bap determined by the four or five
previously determined coefficients. The coefficients determined by the following
recursion formulas:

1

m? (P; i P

_ (2) — 7(1)
An+‘i = p_E{ﬂ_‘-E}) {[Ln (F’?} Ln (Pl) +
1

m(n — 1) (p - Py ) An_o—
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An [—(ﬂ —1) (23 - p2) + (n+ 3)m? (p3% — p72) + 93 "7V - p;”“‘”] _

—2n41 —2(n+1
mAnp42 [(“4-3]' (P2 = p1) _Z(PE ) pr* })]} 0
R L] 3 -
0 T —3 {5’“55 '(p) +3L5” (p) — mAo [106” + 3(5m* ~ 1)p™*] -

A [3(5m® — 1) p? + (10m? + 3)p™?] — mA4 [(5m® — 6)p™° + 15p°] -
3m®p~1%4;) (28)
R ) 3mLS") 2A0p®—

2—5m2_1{n(ﬂ)+mz(ﬂ)- 0P

—mAx(2+ 15m2)p~2 — m2(15p> — 5p %) Aq —3m3p~ %4}  (29)
R(n+1) { [ -2 m? -2(n-1
PO i e 9 55 L) W T [ 3+4+n)— (n=1)f _

m(n+3) .n(P) ( n)P +{ +H)P2 +'ﬂ

mAn 192 [(n + 3)p? = Zp_zi"“'”] + m(n — l)pEAn_g—
Y 1

m'ﬂn+4}?—2{"+3} 4 i n-—‘z} (30)

Thus we have formally solved the problem since we use coefficients to determine
the Laurent series by which we form the stress biharmonic function, hence, the
stress tensor components, the small strain tensor and displacement vector.

5. Relative deformation tensor components in the
hyperbolic-elliptical coordinates

By applying the Hooke’s law by means of the expressions (33), (34) and (35)

given in the paper [20] we determine the relative deformation tensor components
in the hyperbolic-elliptical coordinate system so that we obtain the following:

a) The expression for the dilatation €,(p, ) of the line element drawn from

the point N(p, ) of the plate in the umit direction lTu which is tangent to the
hyperbolic coordinate line:

eo(p,p) = enlp, @) =

1 2k m
E—mgﬂgk;ﬁ {[l — ) [cosﬂh,nw Ecas?(k-}- l}tp] +

(14 p) [—% [cns 2kyp — ;—i;-cus 2(k — l}rp} +



40 Hedrih (Stevanovié¢), K., Jovanovié, D. B.

3 2
% cos 2(k + 1)p — % cos 2(k + 2]5@} +
P

2m m?
T 1+3;T cos 2(k — 1)p—

a°g”

2
-n; cos 2(k — 2)p — 312 (1 + Tq—) cos 2kp+
p? p? p
2 2 3
IE; (3 + %14—) cos2(k + 1) — EIT cos 2(k + 2}-‘,&“ } +
¥

1+p 2k
Egzﬁ-} ZBEJ:P ~c052k<p+ ;‘-Cﬂﬁ?(k-’-ﬂ);}_

m2
(1 + T) cos 2(k + l}{,c:] +
p

2m m? m
— 9. | éo82kip— 2 OB 2K — T~
P9k + 1) [(” o) cosiko — eos2t -
m m2 n?
= 2 -}- — | cos 2(k + 1)~',¢?+ — cos 2(k + 2)p (31)

b) The expressions for the dilatation e,(p, tp) of the line element drawn from
the point N(p, ) of the plate in the unit direction €’ which is tangent to the
elliptical coordinate line:

€o(p ) = €e(p, ) =

1 i
m Z A p?* {—2}: [cms 2k — E;# cos 2(k + 1]{,;::] +

[s.n)

(14 p) [2; [-:05 2k — g cos 2(k — 1}@] +
m? m?
g cos 2(k + 1) — ra cos 2(k + ‘E}gp] —

2
Al [{1 + 3—-—) cos 2(k — 1)¢
g°p°

2
m ™m
—cos2(k—2 t,c::—E—,, (1+ -—) cos 2kp+4
p” ( ) I p

2 2 3
£ (g ’;-) cos 2(k + 1)y — %‘ﬁ_ cos 2(k + E)tp]] } =3

1+ p

m?
(1 4 -4—) cos 2(k + 1}(,9] +
p
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2m m?2 m
et e 11 ] o 2— ke — —cos2(k — 1)p—
p*g(2k +1) [( TR ) S i 8 (k=1

m ‘]'Trl-2 'l"ﬂz
F[E + ;’T) cos2(k + 1)p + y cos 2(k + 2)p (32)
¢) The expressions for shear strain Yp,(p, ), that is 7,,(p, ¢), the right angle

change between the line elements drawn in the point N(p, ) of the plate in the
unit directions H; and ey to the elliptical and hyperbolic coordinate line:

You(p ) = The{lﬁ': w) =
2(1 + ,u} { { : m
— |sin2kyp — —sin2(k — 1)p +
24 7 sin2(k = 1)
ma 2
P—Esin 20k + 1)p — F sin 2(k + E)tp] +
2m |m m?\ .
—— —sm 2k —2)p— 1+ 3;5- sin 2(k — 1)+
g2p?

mz) m?2 ( mg) )
3-—(1-1-——- sin2kip — — | 34+ — }sin2(k + 1)p+
PE p"‘l 3 P4 P4 ( J

3
E%-sin 2(k + E)fp] } +
P

21"’#] 2k ek .
ErRE ZB kP 1+;? sin2(k + 1)p —

2 sin2kep — ;5 sin 2(k + '2){;::1 +

p
(k . k
R LT 20k — ) — (1427 ) sin2k
Ty o2~ Do (14250 ) snkt
m 2 m2
24+ — lsin2{k + 1 ——51n2l+2 ]} 30
P'( P) [ ]‘F‘ P ( ) [ }

6. Displacement vector components in the
hyperbolic-elliptical coordinate system

By splitting up the real and imaginary parts in the expression (8) as well

up + ity = = {(3 = )by — (14 ) bz + b))

|1—§ =9
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[ew)

— Z Az p®*H! eizke _ TN ia(k+1)y
= (2k+1)5 p?
1 : A
by = :F/_ﬁ Z Azkﬂ?kﬂ (e—uzhp . ge—;sz-u]w)

ZszPH"' [e—il?[k-ihl}ip 1+m_2 _
Rgf (2k +1) pl

M —izky _ M _ia(k42)p
or in the next expression:

Up + iUy = Up + Tu, =

1 o p?"—+1 - m 20k +1)
e ] ] +1
JiE m'ﬂ-—l—l [Agk{(3—p)(e ‘F’_Fe ‘F‘)_

(14 p)(2k+1) (e"'”*" + Ege'”“‘"'l}”’) } s
p

2
)
g P Ly 3 (35)

and by taking into consideration our conclusions about the coefficients A, and

B,, we can finally write the expressions for the displacement vector components
in the hyperbolic-elliptical coordinates:

a) For the displacement u,(p, ) in the direction IT.; tangent to the hyperbolic
coordinate line:

B 1 oo p2l+1 m
uy(p, ) = &E {_m SET1 Aag {(3—;1] (cosﬂkrp- Eccs?{k—i— 1]{,9) -

(1 1)(2k + 1)(cos 2kip + =5 cos 2(k + lm} 5

s 2
H;. {l+—4}rcns (k-l—l}g)—ims?kt_p———cosz{i+2]
Ry p? pe 36)

(b) For the displacement uy(p, ) in the direction €5 tangent to the elliptical
coordmate line:

] = pk+l 4 Ok m .
Uw(p,w}=ﬁE ;HJA 2k § (3 — p) sin W—§5111?(k+1)a¢)+
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p m
(1 4 p)(2k + 1)(sin 2k + P—zsm 2(k + I]cp)} +

14 p

By [(1 + T ysin2(k + 1)¢ — 3 sin 2k — — sin 2(k + 2)[,9” }
P Iy P (3?)

The displacement components u,(p, ¢) and u,(p, ) are along the coordinate
lines of the hyperbole and of the ellipse at each plate point.

7. Conclusion

Our contribution in this paper is the analysis of the strain state of the
elliptical-annular plate strained by pairs or two opposing segmentally distributed
forces along the external and internal contours by means of complex variable
function and conformal mapping method. In these cases, the expressions for the
strain tensor components at an arbitrary point of the elliptical-annular plate,
have been derived.
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IMNPUMEHEHHUE ®YHKIIMU KOMIIJIEKCHOW NEPEMEHHOW U
KOH®OPMHOI'O OTOBPAKEHWUSA INIA ONPEIEJEHUA
NEPOPMAILIMUA B EJJIUIITUYECKO-KOJIBIIEBOA NNJACTUHHA

B nacrtosameit paBore cpenano McciegoBaHue COCTOAHMA med)opMalMu
B 2JUJIMIITUYECKO-KONBLEBOW IJIACTHHM, IMJIOCKO, CErMEHTHO HarpysKeHHoM Tmo
BHEIHEH M BHYTPEHHOW KOHTYPAX IOCTOAHHEIM paclpejefleHMM INaBJcHUEM.
Insa aToro cnyvas HarpyKeHus, NOCPOEHHM BhIPaKeHUA IIA KOMITOHEHTH TeH-
30pa dedopMallMM M BeKTopa IlepeMelleNMA Todek mactudu. McenonsizoBau
METOJT AHAMTHYECKUX (YHKUMA KOMIIEeKCHHON NMepeMeHHOM B 3 NJIMNTUYE CKO-
runepHoauyYecKMX KOOPIMHAT U MeToi KoHPOpMHOTO 0TOBpOKeHUA.

PRIMENA FUNKCIIE KOMPLEKSNE PROMENLJIVE I KONFORMNOG
PRESLIKAVANJA ZA ODREDJIVANJE STANJA DEFORMACLIE U
ELIPTICKO-PRSTENASTOI PLOCI

UU ovom radu su izvedeni analitiéki izrazi za komponente tenzora defor-
macije i komponente vektora pomeranja u sistemu elipticko-hiperbolickih ko-
ordinata u tackama eliptiéno-prstenaste ploée segmentno optereéeno kontinual-
nim opteredenjem na spoljasnjoj 1 unutrasnjoj konturi. Funkcija kompleksne
promenljive, metoda konformnog preslikavanja 1 hiperboliéno-eliptiéne koordinate
su koriséene za reSavanje ovog problema.
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