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Introduction

It has been proven that the mechanical energy change theorem of a system,
with potential energy Il and time-dependent constraints, can be written in a
general form dE/dt = Ro, where Ry is the power of time dependent constraints,
and E = T + II is the mechanical energy of the system. Introducing the term
» generalized rheonomic coordinate ¢°”, as the known faction of time and parame-
tre 4, which is appears in the equations of constraints, the above relation of
energy is generalized on the form dE/dq” = Ro where Ry is called ”generalized
force of rheonomic constraint”. This unknown function Ry has the dimension of
force (ML2T~2), if the rheonomic coordinate has the dimension of length (L), or
the dimension of torque (MLT~?), if ¢° is a nondimensional coordinate (angle)
and, as already shown, R has the dimension of power (ML?*T~?), if ¢° has the
dimension of time (T). Tt is shown that the equivalent energy change theorem
cannot be proven for system with time-dependent constraints by n standard
Lagrange’s equations of second kind, 2n Hamilton’s equations of motion, or with
so-called ” Homogeneous Formalism”.

To clarify the above mentioned statement, we shall, in Section 1., derive
the energy change theorem by Lagrange’s equations of the first kind; then, in
Section 2., show that, using standard Lagrange's equations of second kind, it
is not possible to derive the previous equations of energy for systems of point
masses constrained by time-dependent (rheonomic) constraints. In Section 3., an
enlarged equivalent system of differential equations of motion is derived and the
invariant enrgy change theorem is proven. Later, in Section 4. an enlarged
suitable system of canonical differential equations of motion is written, and
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using this system, the validity of the derived energy theorem for systems with
rheonomic constraints in an enlarged phase space, is proven. Finally, in Section
0., the relations incorrectly called Energy change theorem, will be shown.

1. The law of energy change

We consider the motion of a system of N point masses, with masses m,,
and position vectors r, € R3, where R? is the linear space. The vector F, is the
. : i cime ; 1
force acting on the v-th point. The kinetic energy of a system 1s T = 5 Emy vl
where v, = r, is the velocity of the v-th point. The flow of kinetic energy holds

N
TSN (1.1)
r=1

If the point masses are constrained by holonomic constraints dependent on
time, i.e., by

fulry, e, )= fu(r,t) =0, r= [Epecq BNl =Tk e 3N (1.2}
then we have

Theorem 1. The flow of kinetic energy change of a system of poinl masses,
constrained by holonomic time-dependent constraints, is equal to the power of all
forces, including the forces of the constraints, acting on the points of the systems,

1.8,
. N
T= Z F,-v,
r=]

Proof. The differential equation of motion of the system can be written in
the form of Lagrange’s equation the first kind [1], [8],

N
0fy
B T (1.3)

u=1

dv, af
=F, § kA, =X, — 5 [ 1.4
mb’ Ii'” + v I arp {:Ju ) ( )
where Ay, .., Ap are Lagrange's undetermined multipliers.

The velocities of point masses satisfy equations of constraints

N ; 4 A f
Za;p dr, L Lo (=, k)

or, dt dt
=]
Therefore,
N N
1 d 9 dv, _
s 3 7 Zlmyvu — Z;ml, i
= =
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This is the base theorem which must hold under all mathematical transfor-
mations.

Corollary 1. If the forces F, acling on points masses, consirained by holo-
nomic rheonomic constraints, are potential with potential energy Il(r) then the flow
of mechanical energy E = T + II is equal to the power of the constraining "force”
‘}'ﬂ‘l [13]

k

: a
E:—le—a-ft&:};ﬂ. : (1.6)

p=1

Proof. A set of forces is potential if and only if there exists a function II(r)
such that F = —3II/dr. Therefore,
= —dIl
(31,,)

N
S P v, -
v=1
2. The standard Lagrangian formulation

uMz

and Eq. (1.6) follows from Eq. (1.5).

The motion of system of N point masses, constrained by holonomic con-
straints, expressed in k equations (1.2), is described in standard analytical
mechanics by n = 3N — k independent generalized variables ¢ = (¢, ...,q"),
n = 3N — k generalized velocities ¢ = (¢',...,¢")T and well known n Lagrange’s
differential equations of second kind

dor oT _ o _
Ea_q;" a_q, —Qh (3_ 11"':“_'3N_k)! (21)

where Q; are generalized forces. For potential energy II(g) we have

Qi = —0Il/d¢'

-

The kinetic energy T this is described by non-homogeneous quadratic form
in the generalized velocities

1 n o n I 1
T=3 Z ai;¢ ¢ +Za,-q g (2.2)
1g=1 1 S
L. e - M, Tq
Ts T

Multiplying equations of motion (2.1) by velocities ¢' and summing on index 1,
we shoul obtain the equation of energy (1.6). But, it is not the case, as we

obtain:
d (0T . ol aT

_(5.: _T+n) i(Tg—Tg-fH]:Eé——E (2.3)
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Some authors formally add or subtract various additions to this equations,
or write it in the different form, but that does not change the contents of Eqs
(2.1), because the n Egs. (2.1) are not equivalent to the equation of motion
(1.4}, This will be proven in the following section, and here it will suffice to
show following: If the motion of only one point masses is limited by 3 constraints
fulz,y,2,8) = 0, (p = 1,2,3) and if in the general case, they are moving, their
intersection f; N f3 N f3 is also moving. But, according to the previous theory
n=3N-—K =3-3=0. Therefore, neither theh coordinate g, the velocity ¢ nor
Eq. (2.1) do exist. And that does not correspond to the situation described by
Eqgs (1.4). This fact was also shown by H.Goldstein in his book ([5], p.54), quote:
"Actually the two (energy) theorems are not talking about quite the same energy.
In the previous statement, the energy change of the system included the work
done by all forces, including the forces of constraint. Here, in the Lagrangian
formulation, (energy) V contains only the work of the external or applied forces,
excluding the forces of constraint... . However, if there is a moving constraint
the force of constraint need not be perpendicular to the actual displacement and
the work done by such forces will not be zero”. That problem is obvious in the
modern book of V.T. Arnold ([2], p. 86). Among a number of energy theorems
in the part "Lagrangian mechanics on manifolds” it was written: ” A system of n
mass points, constrained by holonomic constraints dependent on time, is defined
with the help of a time-dependent submanifold of the configuration space of a
free system. Such a manifold is given by a mappingi: M x R — B, (g )==,
which for any fixed ¢ € R, defines an embedding M — E®".” The question ” why”
is arises.

In the standard Lagrangian formulation for a system of N point masses |
constrained by k holonomic constraints, expressed in Egs. (1.2), well known that
B =Rl b 8 0] And

5'('“ 1 (?['p n ar*" ‘1
e i L
ot Tt et Yt
where ¢',...,¢" are generalized velocities. The reader should notices this im-

portant statement, that standard Lagrange’s mechanics treats n-generalized
velocities through the fact that velocity vectors

dr,
it

(2.4)

have n + 1 component.

Only if constrains do not depend on time, the velocity vectors have n-
components. Such as

Dot-multiplying the equation of motion (10) by the corresponding coordinate
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d : : :
vectors = and summing on index v, Egs. (2.1) are obtained. where

dq

n

or,

r=1

are generalized forces, and kinetic energy T stays homogenous square positive

: g b
form T = o %ij 0q -
Differential Eqs. (2.1) are used in standard mechanics and for systems with

time-dependent constrains, even if Eqs. (1.4) are not projected in the direction

of dr, /0t.

3. Introducing "rheonomous coordinate” and consequences

In time-dependent constraints a known time function 7(7,t) is present, it
contains a certain physical parameter, such that equations of constraints are
dimensionally homogenous.

For example, fi = z? + ¢* + 22 — 4t = 2% + v+ 22 - {fut}z — (1
fo = y—tr = y—wtzr = 0, where, x,y,2z are Decart’s rectrangular coordinates,
having the dimension of length [dim x]=L. In the first equation, parameter
v = v = 2[LT~!] has the dimension of velocity, and in the second, the dimension
of angular velocity ¥ = w = I[T]™1.

Definition. The generalized variable q¢°, added to the Lagrange’s independent
coordinates g1, ..., q* and which is equal to a choosen known function 7(t), is called
"rheonomic coordinate”.

For these examples, it is suitable to take for "rheonomic coordinate” q° = vt,
[dim ¢°]=L or ¢° = wt, [dim ¢°] = [0].

In the special case it can be taken ¢° = ¢, [dim ¢°] = T, but that equality
(the constraint) should be distinguished from identity ¢° = 1.

Then the constraints can be written in the form:
fale, )= fu (r, qu) =0, ¢"= () (3.1)

The conditions for velocities are, therefore,
: a 8. : ;
o=, 1 Um0, =i

Because of the independence of k-equations (3.1) and implicite functions
theorem, equations of constraints can be written in parametric form:

Ty =Ty (qu:qli'“aqn)

and

3“’ i° Z‘;’;‘: '—Zar" i (3.2)
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. : , ary . 7)o
where now we have n + 1 independent velocity vectors a q TS 3—: " and
q
corresponding number of n + 1 gen eralized velocities ¢°, ¢',..., ¢". That way, the

observed dmcrepancy (see 2.4) in standard Lanranges mcchamcs is eliminated.
The coordinate ¢° is not formally introduced as q° = ¢, but it is function of time
(contained in rheonomic constraints).

A "generalized force of the rheonomic constraint” as an unknown function
Ro(q°) is corresponded to that coordinate q°. That rheonomic coordinate yields
an additional differential equations of motion [6, 11]

d T aT
e o e Yo Y 3.3
dt 3¢°  9q° Qo = Q5 +Ra :9)
where, in contrast to Section (2.2), kinetic energy is homogenous quadrate form
of n + 1 generalized velocities ¢°, ¢!, ..., ¢, i.e.,
s ol s e sind oo apad o Lo g
T= 3%l 1 = 5099 +anig g + 5 @00q ¢,
[:Cf,ﬁ:ﬂ,l,.",ﬂ; lnj: 1121"'1 ﬂ'}' (34}

Indeed, if one multiplies differential equaitions (1.4) by the basic vectors
or,/dq", ..., Or,/8q™; the known Lagrange’s equations of the second kind (2.1)
are obtained. Thus, also Eq. (3.3) is obtained if Eqs. (1.4) are dot-multiplied

: | ¥ dr,
by corresponding vectors —— or

ot dq°

k
(mp\;r,,. =F, + Z }.L.'G'yf#) . g;—;, (V. = grad,)

as follows

, o, . A or, or,
_.,L dq“fit (:};“q>=zF“ : +sz?ﬂf# 5ru=

p=1 v=1p=1

N

N or, d [Or, ) d i?_ or, Ory i, v o d 00y _
a0 dr b O o ny - v 50 -
Z ot dq% dt \ 8q° i dt a . 34;-' e dq= dt dq?

r=1 p=

il\r'

QO o, (O, it pas, JUGE, T,
di 940 Y3q° 9¢°9¢° 1 U T @i ag 840

r=1
1 1 ar, or 1
=g Ve =5 ) Mg gl E = gesd’d,

Q; = EFU-%;—:1 (a,8=0,1,..,n=3N — k),
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N k k N k

art’ af aru af
. }‘uvufu"aFZE:)‘u ﬁagc}:—&lnaﬁ;‘:ﬁa(qﬂ)-
¥ M In v I

what was be proved. Therefore, can to write

Theorem 2. The system of Lagrange’s equations of the first kind (1.4) 1s
equivalent to the system of equations

EE_E—Q“ [1:1,...,?1:3N—k)

dt d¢* J¢ 3.5
dar T (33)
C_ﬂa_lj"}__éq_d_.ﬂ?m

M

where q° 1s the "rheonomic coordinate

Corollary 2. If generalized forces Q@ = (Q5,@1,...,@n) and the generalized
forces of rheonomic constraints acl on the system of point-masses, then the lotal
differential of the kinetic energy is equal to the work all generalized forces including,
the generalized force of the rheonomic constrainis Ro 1.e.

dT = Qdg’ + Qodg® = Qdg + (Q} + Ro) de® = Qude®, Qo=Qs+Ro, (3.6)
Proof I. Multiplying Egs. (3.5) with d¢' = ¢'dt, and Eq.(3.3) with d¢® = ¢°dt
and adding on index i it is obtained Eq. (3.6).
ProofII. Substituting the expression (3.2) in Eq. (1.1) i.e.

,hNF OFiog. o
T—Zl p'aqaq '—Quq

Eq. (3.6) follows.

Corollary 3. If the generalized forces act on a system of poinl masses with
time-dependent constrainis have a polential Il (q”,ql, ) Q =1L/ 8y,
Qh = —011/3q°, then the total differential of the mechanical energy E =T + 11 15
equal to the work of the generalized constraint force Ry, t.e.,

dE = Rodq° (3.7)

Eq. (3.7) is equivalent to Egs. (1.6). For ¢° =t Egs. (3.7) and (1.6)
are identical and for ¢° = 7(¢) only the dimension of the generalized force Ry
changes, because of R (¢°) dg° = (Rodq"/0t) dt = Ro (t)dt, R (t) = Redq" /0t =
Ao,

Introducing the rheonomic coordinate ¢° as a known function of time, from
the holonomic constraints and the corresponding force of constraint Rg, the law
of the kinetic energy flow (1.3) and (3.6) and the theorem of the mechanical
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energy change (3.7) derived from the differential equations of motion, can be
brought into agreement with the invariant and equivalent cases for nonholonomic
systems with time-dependent constraints.

4. The Hamiltonian formulation

The theorem of the energy change, equivalent to relations (3.7) or (1.6), for
a system with the holonomic time dependent constraints, can be obtained from
2n + 2 cannonic differential equations of the form

o€ €
1*==—, Pa=—-—5—, (a=0,1,..,n 4.1
"= g Ba= g ) (41)
where,
1
E=T+N+P= EﬂaﬁPaPﬁ“}‘n‘l‘/Rﬂ (¢°) dq°
is the "total mechanical energy”, P = — [ Ry (q“) dq" is the "rheonomic poten-

tial” [6,10,11] and po, p1, ..., Pn are generalized impulses. These 2n+2 equations
are equivalent to the system of equations

. 8H .,  OH

g = S_p-’ g = —E- (4-2)
) JdH : oH
Pi = o Po = N + Ro, (4.3)
where
1 0j 1 g0
H=T4+1 = ﬁnjp,-pj +apop; + Eﬂ mwpo+II=F {4.4]

Egs. (4.1) are equivalent to Eqgs. (3.3), (3.5), as well as Egs. (1.4) for a sys-
tem of potential forces. Indeed, g% are generalized coordinates, as it was shown
in Section 3. The corresponding generalized impulses are sums of projection of
momentum on the point masses direction of the coordinate g, i.e.

Y

N :
(L}I'b. dr, aru . . iy :
= E_:l v, - Er;_r‘_ = Z?ﬂu ot 07 = a,09” = ﬂ'ij‘i’;F + flmqu- (4'5}

r=

In the same way, we obtain the additional impulses

""f
: iy o e O
;:Emv-—-——-:u' = = 4.6
P e v aqg 079 aqu ( }
Since there are linear constraints connecting the generalized impulses po, p;,
..., Pn With generalized velocities ¢%, ¢*, ... | ¢" then,
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"¢® =a""p, Z Pap =aﬁ°pg—|—2aﬁ'-p.- (4.7)

a=0 i=1

Substituting into Eq. (3.4) the kinetic energy is obtained, as well as the
homogeneous quadratic form of the generalized impulses

1 o 1 1
T= Eﬂnﬁqaqﬂ = iaaﬁﬂﬁTPTﬂﬂpp# = EQTPPTP#‘ (4’8)

As the Hamiltonian function H is equal to the mechanical energy, E = T+1II,
considering that

0T(g,9) _ _9T(a,»)
dq dp
Eqgs. (4.2)*and (4.3) follow from Egs. (3.3) and (3.5) and vice versa
If we multiply Eqs. (4.2) by impulses p, and Eq. (4.3) by corresponding
generalized velocities, and by adding, the following relation is obtained

H=FE=mRy (4.9)

This is identical to the relations of energy (3.7) and (1.6).

In case that the constraints are time-independent, neither the rheonomic
coordinate ¢°, nor the corresponding impulses pg (¢° =0, po = 0, = Ro = 0)
do exist, so all the results of the classical Lagrange’s, Jacoby’s and Hamiltonian
analytical mechanics are obtained

In the standard analytical dynamics, Eq. (4.9) is not obtained, but it is
known that

an _on
dt ~ at’
where H = T35 — Ty + II.. This is equivalent to Eq. (2.3) because of

(4.10)

0T(g,4.t) _ _9T(¢.p.t)

at B ot '

but it is not the flow of energy of rheonomic systems
Eq. (4.10) can also be obtained by the so-called homogeneous formalism
(see for example [8],[6] or [3]), which is different from the proven energy theorem
for rheonomous systems (4.9). Only the denotations ¢° and py are similar in
"the Homogeneous formalism”. Everything else is different. This is not the
question of formalism but of the description of the real mechanical motion. The
coordinate ¢° is not introduced formally, but by the time-dependent constraints.
The impulses are not introduced by the definition p = —H as in the homogenous
formalism but are obtained from Newton’s definition of ”Quantitas motus”, using
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the expression (4.5) Those are such big differences that we can’t talk about the
same mechanics. In the homogeneous formalism n + 1 equation of the form (3.5)
exist, but it doesn’t contain the force of rheonomic constraints Rgy. Also, two
relations

0 OH . _OH

i = E_p-u_: Po = @
are similar to our Eqs. (4.1). But, it is known that in the homogeneous formal-
ism those equations are identities, which solve nothing in the classical mechanics,
while here, using one equation, the unknown generalized force Ry is determined,
and using the other equation, the relations between velocities gg, ¢*, ..., ¢" and
Po, P1, --- , pn are determined.

For the case of the Decart’s rectangular coordinate y; is easy to proove that
15

0, 1# ]
al = 69 = 1 R
by ] t=7
Ty
For a system of point masses which are not connected by rheonomic con-

straints, for example, N celestial bodies, the "rheonomic coordinate” ¢° does
not exist, as well as the corresponding impulse pp. In that case the Newtonian
equations of motion are

Jll

dr,

+P,...,

myry, = —

where II is potential of forces, P, are non-potential forces, or
. a1
Ty h = - f:)l" '|‘" !-}h [:TT?_Bl'_? = Tﬂ?:’—l = mﬂ-l) [4_12)
I
where, here, y; Descart’s rectangular coordinate.

From Eqs. (4.12) it follows that the flow of energy holds, as in Eq. (1.1),

3
E=Y" Py

=1

1.6

In the conjugate variables ¥, ..., ysn; P1, ..., Pav the motion is described by
the set of differential equations

. JdH . aOH
W= y Piimsg o Pi—:
ap;

dyi

where
an

L s
Fi= g 57 pip; + 1()

i,7=1
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So, for such systems, the kinetic energy is a homogeneous quadratic form,
therefore there is no need for additional introduction of conjugate variables, yo
and Po-

5. The misconception of the energy theorem

In many textbooks and references on Analytical Mechanics of systems with
time-dependent constraints, the flow of energy theorem is either not precisely
well described, or reduced to the Jacobi’s form (see for example [1]),

d (8L ar
R - — o — i P L = T — H 5].
dt(a,q L) dt-l—Qq (5.1)
or in the form ([3] p. 58, 88)
dE . d 6‘T o1l
— -4 = 5.2
where: 1 = 1, ..., n 1s the summation 1nr:lex, II(gq,t) is the natural potential energy,

E =T +1 is the mechanical energy, @; are non-potential generalized forces and
T is the kinetic energy in the non-homogeneous quadratic form (2.2).

Similarly, in the Hamiltonian formulation Eq. (1) is described in the form

dH O0H -
=S+ Qud (5.3)

where the Hamilton’s function H is equal to the energy E only in the case of a
system with time-independent constraints.

Egs. (5.1), (5.2) and (5.3) are describing the same energy, because one equa-
tion is following from the other. Indeed, if we add the differential d (T + 27})
either to the left and the right side of Eq. (5.1), we shall obtain Eq. (5.2).

In fact, Eq. (5.2) neither contains the total energy FE, nor its total time-
derivative, although it looks like it. It is an identity to Eq. (5.1) for the case

of potential forces. In fact, if the mechanical energy is written in the form
E=T+0=T:+T1 + T +1I 1t follows that

dE d aT ol
E—“(T2+T1+TG+H)— [T1+?Tn)——+at

and this i1s reduced to

because of
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Therefore, Eq. (5.2) and other equivalent Eqs. (5.1) and (5.3) describe the

part of the energy of a system with time dependent constraints, but not the
total energy.

Example®: To illustrate Sections 1, 2 and 3 of this paper, let us choose
the system shown in Figure a (case a) and Figure b (case b).

We choose two kinds of constraints
(case a) f; =y, —acosQt =0,
(case b), fa = yo — y1 —acosQt = 0; a&Q = const.

Y
/i __ mmz{fmz
acos Qt <
Il > k
™ m Y ‘{:} :
(0.0yp T € Y1 <
e >,
Iz qﬂ} kl 1 {'J 1
{} acos 1t
0,03) J,_ 777777 S ' A
3 m, AL e
y T yz
¥
y
Fig.a. Fig.b.
Case a.
Section 1. The equations of motion (1.4) in this case are
mi = kAl + A = k(2 —n— L)+ X4
Maljs = —kally = —ka (Y2 — n1); (1.1,a)
=t —acosfit=0,
fl = ﬂ — }‘l = kz [:yz it ) e IE} _— Tﬂlﬂﬂg L‘,OSﬂi (12,3-}

*This example was proposed to the author by anenymous referee
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Multiplying the Eq. (1.1,a) by dy; and the Eq. (1,2.a) by dy, we will get
Eq. (1.6) in the form

d [(%) (myf + mzﬂg)} =d [(#2_2) (2 —wn — 52}1 + Aidys, (1.3,a)

or

E=T+1=XalsinQt = Ry (1.4,a)

or

E=T+H:fﬁgdi+c. (1.5,a)

Section 2. The degree of freedom n = 1; Lagrange’ s independent co-
ordinate ¢ = z. Then constraint f; in the parametric form: ¥ = acoslt,
y» = acos (it + .

The equation of motion (2.1) is
ms (2 — aQsinQt) = —kox (2.1,a)

because the kinetic energy gets the form

1. s :
= 5:.:? —ams 2 sin Ot + %— (my + ma) a®sin® Qt (2.2,a)
i
\_w'_,..a TI L. e "
Tﬂ Tu

and potential

K
= _ii_xz (2.3,a)

Multiplying the Eq. (2.1,a) by dz we will get

(%) (*mgr'2 + I:gr'?) = mguﬂzjmsﬂtdm—}- C (2.4,a)

or

E£T,+1I = mgaﬂzfms Qtdz + C (2.5,a)

It is follows that Eq.(1.5,a) # Eq.(2.5,a).

Section 3. In this case a the rheonomic coordinate ¢° = z5 could be taken
as functions: zg = U, Tg = cosf, Tg = acosft and zp =t. Let as

zo = Qt (3.1,a)

Then we have: y, = acoszg, y2 = acoszg+ b +z; T = {mﬂ?)x"’, Il =
(k2/2)z?. The Egs. (3.4) & (3.5) or more concrete
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d T ar _ on
dt 9 0z Oz
d aT arT A1l

Ehoy Oy~ B0 T
in this case are
G = b :
my |+ — (azgsinzg)| = —kaz... (3.2,a)

dt

d

¥ [[ml + my) ga’ sin? zg + moaz sin mu]

(my + ma) rga“ Sin Tg COS g + amaTpZ coszg = Rp. (3.3,a)

Multiplying the Eq. (3.2,a) by dz and the Eq. (3.3,a) by dzg and then
adding, we will get

ms . % 5 8
E—QEE-FEI.?T'L?JL‘[]ISIHIu-i-—l-{?-—"E'ﬂzlESlﬂ r+-~z —/Rﬂ (zo)dzo+C, (3.4,a)

or

E=T+1 :/Rndrg+l‘3. (3.5,2)
It 1s follows that (1.5,a) = (3.5,a) # (2.5,a) what was to be proved.

Case b.

Section 1. In similar way we will consider and this case

miyy = —ky (1 — 1) — As, {175:b]
mays = Ag; (1.2,b)
fa=1—y +acoslt =0, (1.3,b)
- km
= Ny s
fo=0 — A m;-i—m (30— 1),
ﬂllylz + ?ﬂgyg — —Iﬂ'l {L"l ol II_'|_:J2 + E/AQHQSiH ﬂtdi + C (14,b)
E=T+I= ]Agaﬂsinﬂi{ﬂ +C (1.5,b)
Section 2.
y =1 +z, 2=l +z+acos
my + ma ., . maaQ)? )
= g — maafe sin 2t + sin” (¢ (2.1,b)
sl Ry ekt
», "l Tl . - = -

Tg TEI
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k
= ?11.'2

(my +ma) 2 — maaQ? cos Ut = —ky z,

) k
o TR qnzfm Qude + C*,

E£T+1l= mgaﬂﬁfcosﬂtdm+ c*

Section 3.

n=h+z, =0 +z+ zg; Ty = acoswt,
my + ma 2 L .2 kl b
T _ —— H —_— —
9 %+ mazot + — 5 Ly, D) T
(m1 +mz) & + maE = -k z,

Mo (£+In) =Ko

my + Mo ., b s Mz . g

° 4+ mazo + —Ig+ —:: = /Rud:ﬂu + C,

2 2

E:T+H:fﬁgdmn+c.

It i1s follows that
(1.5,b) = (3.5,b) # (2.5,b)

what was to be proved.

This simple example is give a clear explanation our assertion that
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(2.2,b)

(2.3,b)

(2.4,b)

(2.5,b)

(3.1,b)

(3.2,b)

(3.3,b)

(3.4,b)

(3.5,b)

1. Lagrange’s equations first kind and standard Lagrange's equations second
kind, neither the same nor the equivalent Energy exchange theorems in

systems with time - dependent constraints are obtained,

2. Using standard Lagrange’s equations second kind a correct energy exchange

theorem could not be obtained, and

d. That it is necessary that Lagrange’s standard systems of equations second
kind be supplemented by one more appropriate equation which corresponds

to "Rheonomic coordinate”.
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TEOPEMEI OB USMEHEHHUUW SHEPI'MUW CUCTEM
C PEOHOMHLBIMHU CBA3AMHU

Ilna MexaHMYeCcKUX CHMCTEM C PEOHOMHBIMM CBAZAMM JOKA3AHO!

1. yro n cranHapTHEIX MMbdepeHumanbHbEIX ypaBHeHunit nwkenua Jlarpamsa
BToporo pona (2.1) He ABJNAIOTCA BKBUBAJIEHTOM CUCTEMBI ypaBHeHuit Jla-
rpaHKa InepBoro pofla (1.4); nnA sKBMBaJeHTHOCTHM HeoBXoIUMO ypasb-
nenusam (2.1) noSasute ypasHenue (3.3).

2. Ha ocxopanun n amddepenimansusix ypasHenmii Jlarpamwxa (2.1) wr-
U MM COOTBECTBEHHBIX 2n auddepennmanbueix ypabHeHMid [amunsToHa
Hellb3# Ioka3aTh Teopemy o6 namenenuu sHepruu (1.1) wmm (1.6). Yrobe
JloKa3aTh 3TY TEOpemMy Ha OCHOBaHMM ypaHenuit (2.1), Hamo UM no6aBuThb
ypasnenue (3.3), T.e. NoKa3aTeJbCTBO 060CHOBAThH Ha pacCHIMpeHOMN CHC-
TeMEl ypaBHenuit (4.1).

3. CooTnowenue "Teopembl” uiau "3akona” o6 usMenenuu sHepruu (5.2)
npueeseHo popmalibieiM criocoboM m3 ypasHenua (5.1) ¥ He BrIpaxaeT
Teopemy 06 M3MeHeHMM BHEPruM, cooTBeTCcTBYIOIYo Teopeme (1.6). Hu-
BapHMaHTHHOE COOTHOUIeHMe 00 M3MeHeHMH MeXaHWYeCcKOM sHepruu, sk-
BUBaJieHTHoe cooTHoweHUo (1.3) u (1.6) B 0B6o0ueHHBIM He3aRUCHUMBIM
rkoopauiaTasm Jlarpaska MIM OTHOCHTENHHO KAHOHMUYECKUM KOODPAMHATAM
FamuneToHa umeeT Bua (3.6) mam cooTBeTcTBeHHO (3.7).

O TEOREMAMA PROMENE ENERGIJE REONOMNIH SISTEMA

Za mehanicke sisteme sa reonomnim vezama dokazano je:

1. da sistem od n standardnih Lagranzovih diferencijalnih jednaéina kretan-
ja druge vrste (2.1) nije ekvivalentan sisternu Lagranievih jednaéina prve
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vrste (1.4); za njihovu ekvivalentnost potrebno je jednaéinama (2.1) dodati
jednaéinu (3.3).

2. Na osnovu n standardnih Lagranzovih diferencijalnih jednacina (2.1), ili n-
jima odgovarajuéih 2n Hamiltonovih diferencijalnih jednaéina nije moguce
dokazati teoremu promene energije (1.1) ili ( 1.6). Da bi se dokazala ta teo-
rema na osnovu jednaéina (2.1), potrebno je sistemu jednaéina (2.1) dodati
Jednaéinu (3.3), tj. dokaz teoreme bazirati na prosirenom sistermnu jednacina
(4.1).

3. Relacija "teoreme” ili "zakona” o promeni energije (5.2) izvedena je na for-
malan naéin iz jednacine (5.1) 1 ne izrazava teoremu o promeni energije, koja
odgovara relaciji (5.1). Invariantna relacija o izmeni mehanicke energije, koja
je ekvivalentna relaciji (1.3) ili (1.6) u generalisanim nezavisnim Lagranzovim

koordinatama ili u odnosu na Hamiltonove kanonske promenljive ima oblik
(3.@) ili (3.7).
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