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Abstract

This paper presents the derivation of the dynamic (kinetic) rotation equa-
tions and/or oscillations of a rigid body around a stationary axis in the Earth
gravitational field. In the general case the rotation axis is not horizontal. The
kinetic equations of the rigid body motion around the stationary axis are in-
terpreted by means of the introduced vectors: &Y of the body mass linear
moment for the point in the stationary (fixed) bearing A and for the rotation
axis oriented by unit vector n: EE‘A} of the body mass inertia moment and its
deviation part of the vector D) of the deviation load by the body mass inertia
moment of the rotation axis for the pole in the stationary (fixed) bearing.

The formed kinetic equations are used for determining scalar equations of
the rigid body rotation/oscillation around the stationary rotation axis as well
as for determining the bearings reaction components: that is, axial and devi-
ational reaction components — resistance (pressure) of the stationary bearings
and deviational (normal to the axis) reaction - the moveable bearing resistance
(pressure).

The first integral, that is, the integral of energy is determined from the
scalar equation of the rigid body rotation/oscillation and by means of it the
motion character analysis i1s performed by means of the phase trajectories and
constant energy curves in the phase plane. The analysis of the singularity and
phase trajectories in the phase plane leads to the conclusion about a possible
appearence of the rigid body asymptotic stochastic behaviour in its rotation
around the stationary axis in the Earth gravitational field in the case when at
the initial moment the body is communicated a certain bifurcational value of the
overall energy by mean of the kinetic and/or potential energy, that is, when at
the initial moment the body 1s communicated a certain angular velocity and/or
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nitial elongation. The time interval in which the motion is done is also taken
into consideration in this case as well as the time elongation at inginitum.

The appearence of the singularity triggers coupled set is pointed out on the
phase portrait and at this bifurcational value of the initial kinetic parameters
the sensitivity of the moment character is also pointed out within the scope of
that value of the initial motion parameters.

From the expressions for the bearing resistances (pressures) parts are se-
lected corresponding to the kinetic pressures — dynamic bearing resistance from
the parts that would correspond to the bearing resistances in the case of the
determined system static equilibrium. These parts - the kinetic pressures are
expressed by means of the vector &4 of the body mass linear moment and

by the vector DY) of the deviation load by the body mass inertia moment of
the rotation axis for the rotation axis and for the pole in the stationary (fixed)
bearing.

On the basis of the expression for the dynamic pressures it can be seen
that a part of the stationary bearing reaction coming from the body dynamic
properties with respect to the rotation axis its rotation around it depends on
the rotator vector R and the absolute value of the vector 6% of the body mass
linear moment for the rotation axis and for the pole in the stationary (fixed)
bearing while the reaction part of both the moveable and the stationary (fixed)
bearing which also comes from the rigid body moment properties which rotates
for the rotation axis and for the pole in the stationary (fixed) bearing depends on

the rotator vector and on the absolute value of the vector D4 of the deviation
load by the body mass inertia moment for the rotation axis.

Further on in the paper the rotator vector R behaviour is discussed as
well as the change of its intensity in the body rotation or oscillation around
the stationary axis in the Earth gravitational field. The numerical experiment
is performed and the graphical a chemes are formed of the phase trajectories
in the phase plane, of the rotator change as the elongation function and the
rotator change as the versor in the plane perpendicular to the rotation axis. The
diagram shows that the vector has the zero value only at the bifurcational value
and that it has extreme values at the singular points; that is, it has maximum
in the stable equilibrium positions, and minimums in the unstable equilibrium
positions, namely, at the reciprocating points. The reciprocating points appear
in oscillation and they correspond to the maximal elongations and the angular
velocities are equal to zero at them.

I am sure that in this paper [ have given a modest contribution to this much
explored topic. In my opinion this contribution is in the interpretation of the
kinetic equations by means of two newly — introduced vectors &5 and 3% and
in their use in interpreting the kinetic pressures as well as in the introduction
of the rotator vectors.
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Introduction

A body rotation around a stationary axis in the Earth gravitational field is
the topic very much explored and the question may be ascked if there is still
something new to find out and say about it. However, the presented interpreta-
tion of the kinetic pressure obviously gives an affirmative answer.

The Figure N°1 shows a rigid body that can rotate around a stationary
axis which is like a rigid shaft without mass supported on the stationary bearing
A and on the moveable sliding one along the rotation axis. The rotation axis
forms an angle o with the horizon and it exist in the Earth gravitational field
together with the body.

Figure N°1
Let us known that:

the position of the body mass center C is determined by the position vector
0. measured from the pole A in the stationary bearing and by the angle 3
with respect to the rotation axis;

b° the vector ﬁ*ﬁfﬂ of the rigid body mass inertia moment vector for the pole
* in the stationary bearing A and for the rotation axis n and its deviational
part — the vector D) of the deviation load by the mass inertia moment of
the rotation axis for the pole A and for the rotation axis; acording to the
Ref. [10] the vector 5E.A} is:

i = [[[ @ a) am 1)
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while

DA = [ [jm]’ «” (2)

c® the vector G4’ of the body mass linear moment for the rotation axis 7 and
for the pole A in the moveable bearing:

A = f f (7, &] dm (3)
Vv

The Figure N°2 graphically shows fc-llowmg vectors: CT(M EMJ, 3., G and
the bearings reaction components: Fj,, F_‘l 1 FB

Figure N° 2

In the general case let a rigid body be subjected to a system of forces F
whose points of application Ni, are determined by the position vectors . with
respect to the pole in the stationary bearing.

Let’s denote the rotation angle of the body around the stationary axis
oriented by the unit vector i with & = @; let’s denote the angular velocity
0

and the body angular acceleration in this rotation with & and &.

Kinetic equations of dynamic equilibrium

Following the idea in the [l] (4], [11]-[14] and [16] for the linear momentum
K and the angular momentum L4 for the pole A in the stationary bearing and
for the body rotation around the stationary axis oriented by the unit vector A



Interpretation of the motion of a heavy body ... 73

we can write the following expressions:
K=Mi,+w6{ (4)
Ly [éf,f}, 1:-;4] +wIA 4[5, M5y 40w EW (5)
that is, for 74 = 0 and 74 = 0 follows:
K=w6W [,=ui (6)

Using the basic laws of the dynamics starting that the linear momentum
derivative in time is equal to the sum of all the active and reactive forces, and
that the angular momentum derivative in time is equal to the sum of the active
and reactive forces moments we write the following two vector equations:

df? . ~ k=N _
280 fr. 6] = SR @
dt k=1
- k=N
dL—A = {2!‘5;(,“4} + W [ﬁj, ﬁg.:‘]] — [§k1 Fqk] [8}
dt k=1
namely,
B L 2 . " k=N ”
S6M +u |3, 6M| =Fat Fa+G+ Y R (")

k=1
EJ,E‘” +¢Zflff] +w [’-31 ﬁﬁ”] = [53: F_B] + [ﬁc. é] "rkf [Ek, :ﬁk] (8%)
k=1

These two vector equations are kinetic equations of dynamic equilibrium in

motion-rotation of the body around the stationary axis in the Earth gravitational
field.

If we now multiply scalarly and vectorly the equations (7") and (8*) by the
unit vectors 1 and having in mind that §g = g fi, we obtain:

1° The rotation equation around the axis oriented by the unit vector 7 in the

form: i
(30.5) = (= D+ X (@ A]7)  ©
k=1

and

2° The equations for determining the bearmg kinetic resistances (pressures),

that is pressures upon the bearings F4 and Fg, that is, their components
in the axis direction 7 and normal to the rotaiion axis:

(A7) + (G )+ 3 (R ) =0 (10)
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w8 4y [ﬁ, GL’”] = [ﬁ, [F‘;, ﬁ]] & [ﬁ, [C_}, ﬁ'] ] 73

4 [ﬁ', [Fm ﬁ” +E=ZN [ﬁ', [ﬁ;,, ﬁ'H (11)

+kl[[pev141 a
60 = 5 [Fa 4]+ [20.]] + &[5 [ 4]+
[ o] ar)

R[B0] = [ [[eo. 6] ]| + [7 [ [os. Bo] 4] +

AT

k=1 (12*)

where from we determine the bearings resistance (pressure) components
themselves in the form:

For= [ (1] = 4 A

Fay=Fam =% 80| - [7 [G.4]] - X [ [Fad]]  (0)
: k=1
FAN_F{d V)= ng—-im DiA) +$[n [gg,é],?1]+
+ék§ [ﬁ', [gk, Fk] ﬁ] (10°*%)
k=N
Py :(FA ﬁ)r:—(r_’;.ﬁ)ﬁ—ﬁZ(ﬂ ﬁ) (11%%)
k=1
(P:B n) =) = _‘3 — F‘{Bd“]
Fp = —R|BW| - — [, [dc. G ﬁ]—ik:ﬁ 7 (&, A ] (2
2B B B 3
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R=Val+w?! R=Ri=

From the expression for the bearing resistances we select a part which 1s the
result of the action of the external active forces of constant intensity or variable
in time and whose influence upon the bearings resistances in possibly variable
in time only due to the change of their line of application with respect to the
configuration of the body which is rotating such as the case when the force of
the body’s own weight which retains the application line direction and thus its
position with respect to the body configuration although in doing this it retains
the application point constantly in the body mass center which rotates around
the rotation axis together with the body. The body mass center describes a
circle or an arc in the plane through the masses center normal to the rotation
axis.

where 1s:

=0 +w’F (13)

=1 | &

The other part of the bearings kinetic resistances (pressures) in the body
rotation around the stationary axis is the result exclusively of the kinetic-internal
body properties with respect to the rotation axis and the rotation kinematics
and the rigid body rotation kinematics around the stationary axis. These parts
appear as parameters depending on the rotator vector R which in itself contains
the angular velocity and the angular acceleration of the body rotation around
the rotation axis and the rigid body mass moment properties with respect to the
pole A in the stationary bearing and the rotation axis expressed by the vectors
éE:” and ﬁE{”.

In order to discuss the rotor effect on the kinetic pressures upon the bearings
in which the rigid body shaft axis is rotating it is necessary to know the angular

"}

acceleration & and the angular velocity & and in order to do this it is necessary
to solve the body rotation/oscillation equation around the axis (9), namely, to
determine @(t) and &(t) and (w).

A special case of the body rotation around the stationary
axis in the earth gravitational field

From now on we concetrate on the consideration og the rigid body motion

around the stationary axis in the Earth gravitational field assuming that other
forces do not exist. For this case the rotation/oscillation equation is reduced to

the form:
(39.5) = ([ec. 6], ) (5")
Since it is:
fi=cosaj+sinek, d=sinaj—cosak, 7=—i (14)

gc = g cos B+ oc sinfB cospd + g sin F sinpd (15)
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—

2c = @ —?Siﬂﬁsintp +j:|[c0$ﬁl:ﬂ$n + sin @sin a cos ) +

+E(cnsﬁsina — sin [ cos o cos ) (15%)

if it is w = ¢ the motion equation (9") can be written in the form:

M i ;
v+ g éc smﬁcﬁns;nw:{} (9**)
i

If we denote the following expression with 02

_Mgopcsinfcosa g

2 o &
TR (1)
on which I, denotes the expression of the form:
(3. 39) + (&, (@, (7, &)
o o (17)
M (|2 8. [ )
namely,
i .
= oc sin 3 tecsnp cos o (17)
then the motion equation (9%) is reduced to the form:
¢+§gnp=ﬂ/2$m:2d¢ (9*)

which is known in the References as a mathematical model for the heavy material
point movement along the circle of the radius in the vertical plane.

This equation of the motion (9°*) is non-linear and by multiplying with

2{,3: dt = 2dp it is reduced to the form that enables integratization after which
we obtain the following relation between the generalized coordinate ¢ and the

e,?::\/thE(IE) (cos g, — 1) (18)

In the previous equation h denotes integracional constant which has the
following value for the known initial conditions: the angle p, and the angular

angular velocity w = t:::

i [+]
velocity @,:

h =;:=§ + 2 (i‘i) (1 — cosp,)

The equation (18) represens an energy integral which can be written in the

form: )

Ex +Ep =Eo, 5w (a, :?5;”) - (G*, é'c-—é'é) =E, (20)
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in which E, is the overall system energy which is equal to the energy which is
communicated to the body at the initial moment of time measurement by means

of the initial elongation of the angle ¢, and the initial angular velocity w, = :;o
and it has the value:
| . 1
E; = an‘A}t:nﬁ+Mgg¢51nﬁcusa{1—cﬂsgao] = iJFJh (207)

Phase portrait analysis and energy constant curves analysis

On the basic of the numerical analysis of the equation (18) by changing the
value of the parameters of the initial energy h the family of the integral curves
is obtained — of the phase trajectories whose scheme is shown in the Figure N° 3
and which corresponds to the known one given in the literature for the motion
of a heavy material point along the circle in the vertical plane (gravitational
pendulum). See the Ref. [7], [17], for instance.

The numerical analysis i1s carried out for the following values of the in-
tegrational constant — the system energy parameters: h = ng/l. when it is
=1,3/2,25/2,3,7/2,4,9/2,5,11/2, 6,... By analysing the phase trajectories
family in the phase plane for the heavy rigid body motion by its rotation around
the stationary axis we can conclude the following:

1° depending on the value of the integrating constant — system energy raram-
eter, there are three types of phase trajectories:

a’ closed phase trajectories of ellipsoidal shape appear for h < 4¢g/I,;

b® open — progressive trajectories for h > g/l. at which the velocity oscil-
lates within certain limits but which are always of the same sign while
the elongation is constantly increasing; and

¢® closed phase trajectories for h = 4¢/l, of the separatrice — separating
phase trajectories as the boundary curves between the two previous
types of the integral curves;

2° There are two types of the singular points; they are: the stable center for
w =0, ¢ =2n7 and unstable saddles for w =0 and for ¢ = (2n + 1)

a’ closed phase trajectories for h < 4g/l, comprise the concentrically
singular points w = 0, ¢ = 2nm, n = +1, £2, +3,... which are the
centers. These singular points of the saddle type correspond to the
stable equilibrium positions of the rigid body on the rotation axis:

b® separatrices — separating curves for h = 4¢/I. comprise the centers and
all the closed phase trajectories and pass through the singular points
of the sadlle type w =0, ¢ = (2n+ 1)m, n = 1, £2, +3,.... These
singular points of the sadlle type correspond to the unstable equilibrium
positions of the rigid body on the rotation axis:

phase trajectories for h = 4g/l,, while passing through the stable
equilibrium positions ¢ = 2n7 have the maximal values of the angular
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velocities w, that is, the body has the maximal kinetic energy and the
minimal potential energy. In this type of the motion, while passing
through the unstable equilibrium positions ¢ = (2n + 1) which the
singularities of the saddle type correspond to, the angular velocities are
minimal, that is, the body kinetic energy is minimal whereas the system
potential energy is maximal;
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Figure N°3



Interpretation of the motion of a heavy body ... 79

d® closed phase trajectories correspond to the rigid body oscillations
around the stable equilibrium position and for small values of the total
system energy the oscillations are small whereas for greater values of
the initial angles and for the angular velocities at which it still is that
h < 4g/l., the oscillations are of great amplitudes |pmax| < 7.

For small values h < g/3l, in the equation (9*) we can carry out linearization
and write the oscillation law in the form:

[+] !r =
(1) :tpaccst\/fi+tpa\/;sm£\,}££ (21)

then we speak of a physical pendulum which oscillates around the axis which is
at an angle a with respect to the horizon. In this case we speak of isochronous
oscillations with a constant oscillation period which does not depend upon the
initial conditions.

When the constant is g/3l, < h < 4g¢/l, we cannot perform the linearization
and then we speak about non linear oscillations with which the oscillation period
depends on the initial conditions and the oscillation is not isochronous. The
oscillation period will be determined in the next section.

The rigid body motion in the phase plane is shown by the representational
point movement along the phase trajectory. Since in the given case the phase
trajectories are at the same time the constant energy curves in the phas plane
this means that the body motion in the Earth gravitational field is performed
at the system constant energy and the identical energy the body has received or
it had at the initial moment of the motion observation.

By considering the phase trajectories according to the type the following
qeustions are asced: Are the separating curves (separatrices) continuous transi-
tions from the oscillatory to the progressive period motions? How is it possible
that, for the local zone of the initial conditions about h = 4g/l. there is qual-
itatively and in time a jump in time for which one oscillation is performed as
well as one revolution in the progressive motion while an infinitely long time is
needed on the separatrice - on the separating curve?

Which properties of the system sensitivity to the initial conditions are
needed to obtain qualitatively different motions for the initial conditions selection
from small surroundings of the denoted values of the parameter h.

The rigid body periodic motion for the initial values h > 4 g/, is progressive
but it is not oscillatory.

If we consider the representational point movement along the separating
curve which will get to the point of the saddle type after an infinitely long period
of time a question can be asced about the way it is going to behave after getting
to the point of the saddle type which is unstable. The conclusion is obviously
leading to a possible stochasticity due to the movement continuation since there
are two types of further motion, which could not be controled by the given initial
value of the initial conditions. The separating curve contains in itself two types
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of the phase trajectories, a series of the closed phase trajectories as well as two
progressive trajectories of the periodic trajectory. These trajectories comprise
singular points of the center type and they pass through the singular point of
the saddle type. An infinite secvence of equilibrium state triggers can be noticed
on them - that is, singular points: two unstable ones and one stable between
them or two stable ones and one unstable between them. The appearence of
such singularity triggers points out to a possibility of the appearence of the
body stochastic behaviour under the determined conditions. However this does
not happen in finite time.

The value of the energy parameter h = 4g/l, can be considered a bifur-
cational value where the movement separation takes place, the stochastic one
after an infinite passage of time. The period of the rigid body motion around
the stationary axis esentially changes when the constant h — 4g¢/I, and the
oscillation amplitude is approaching .

Time periods of the body rotation around the stationary axis

The time intervals in which the body rotation around the stationary axis
takes place is determined from the equation (18) solved by time t:

@
d
. f IR (22)
Ve 0 1~ (4-L)sin? E
l. h 2
and if we introduced the notation:
g gl .
£° = 41‘..!: (22%)

and the integral is defined in the zone of real numbers for £ < 1. This is always
satisfied for h > 4¢/1.. But for h < 4g/I. the subroot function is positive only
if the elongations are in the following intervals:

1 fl-h = 1 ok
wE [21'117 — 2arcsin 3 T' 2nw + 2 arcsin 3 - (23)

When the subroot expression is always positive so that angle ¢ constantly
increases and there is no angle ¢ for which the angular velocity is equal to zero
so that the rigid body motion is progressively periodic but it is not oscillatory.

For the case when ¢ < 1, that is, when h = 4 g/l, the integral (23) gets the

form: o
1 / de {. w4+
t= — =4/—Int 22"
Vvh 4 cns% V 9 . 4 ( )

For ¢ — = it follows that ¢ — oco. Hence we conclude that it is a asymptotic
approximation of the representational point along the separating curve to the
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singularity of the saddle type. In the Earth gravitational field the rigid body
approaches asymptotically to the unstable equilibrium position and it reaches it
in an infinite period of time.

In the case that £ > | the zone of the angle ¢ change is determined by the
mterval (23), while the integral (22) represents a complete elliptical integral of
the first kind. Euler has given its solution by developing it into order so that
we can write for the oscillation period:

T Tk —TIT 5 ‘
T:“ﬁ{”z e ¢ o

k=1

The progressive motion condition is that h > 4g/l., that is, the kinetic
energy at the initial moment has to have a greater value in the stable equilibrium
position, that is, in the highest position of the rigid body masses center on the
rotation axis.

For each value of the constant h < 4 g/l, we have the initial energy levels -
the kinetic and the potential one one as well as during the system motion which
the closed phase trajectories correspond to the motion is periodic. These phase
curves are closed within the separating trajectory (homoclinic trajectory).

The separating trajectories do not give any information about the motion
of the representational point after it has got to the singular point of the saddle
type (homocinic type). If the time parameter is excluded in which the motion is
performed evrything points to the appearence of stochacity (stochasticaly like)
since 1t cannot be foreseen whether the motion is going to remain oscillatory
and thus it is going to repeat an infinite number of times or if it is going to
be progresive periodic one ar even a combination of these two in many variants.
But due to the infinity of time, this is not possible.

A question of the phenomenon of the observed motion properties is present
if an infinite period of time is necessary for the representational point motion
along the separating (homoclinic) curve — separatrice to get to the unstable
saddle — homoclinic point, for the energy communicated to the body which h =
4 g/l corresponds to and when, on the other hand, for slightly different initial
conditions - initial energy we obtain the oscillatory motion of the rigid body or
its progresive periodical rotation around the rotation axis under the effect of the
Earth gravitational field for a definite time intervale?

Extreme value of the bifurcational parameter

The extreme value of the total system energy at which asymptotic motion
of the rigid body appears in its rotation around the stationary axis, that is, at
which the representational point moves along the separating phase trajectory is
the one which corresponds to the extreme value of the constant h. The constant
extreme value is maximal, that is, Anax = 49/lrmin = 4Q2%_ and when I, is
minimal. Since the expression (17) is known then by its differentiation with
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respect to (gc sin 8) and by its identification with zero we obtain the extremum
condition:

- ()
() _ [ In
. M
so that the minimal value of the reduced length lr(min) and the maximal value
of the frequent parameter Q2 _,

ocsinf =1 (25)

(C)
% In ) 7 _ g Cos o 2
llr{min] - 2':05 o ] ﬂma]{ o W— f?'ﬁ J

In this case since the bifurcational (homoclinic) value of the energy parameter

h:

hbi[=4£ s AN 4M!.'-'E'f:5iﬂ,3c-:-sn

I ) (26)

its extreme value 1s:
g cosa

hyigmax) = 2= (26%)
in

The maximal bifurcational value of the total system energy as well of the
initial energy communicated to the rigid body at the beginning of the motion is:

1 o . .
Eobit(max) = §J£C}P3hif + M gil®) cosa (1 — cos pobir) = M gilllcosa  (27)

The maximal values of the initial energy at which asymptotic motion appears

i1s when the masses center is distant from the rotation axis for i'..EF} = pc sin S,

Rotator

In the expressions for the kinetic pressures there is a vector R that we
have named rotator and whose intensity square is in the form of the generalized
coordinate function :

2 2
R(p)* =w? +wt= (fisingﬂ) + [h-{uﬂfifcosgp—l}} (28)

that is,

o r

R(p)? = (%)- {sin?i,’:f +4(cosp — 1]2] +h [h - 4% (cosp — 1}] (29)

For different value of the elongation the rotator has the following values:

2
R(0)* = h* = Fﬁ + 2?— (1-— cosrpﬂ)} (30)
2 4 Sk
R(x/2) = [h + 4%} , HAxP skl 4*’1?: + 9 (E) (307)
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At the bifurcational value of the energy parameter:

M g oc sin (7 cos o

[A)
n

h:4££:493:4

L

the rotator has the following form:

R(p)? = (%)- [sin? @+ 4(cosp + l]z] (31)

and for different values of the elongation the rotator at the bifurcational values
has the values

2 2
R(0)2 = 16 (fi) R(n/2)? =5 (IE) R(r)? =0 (32)
i
Ko = ot o

: %@,{ﬂ g': g &‘{ﬂ %=v5h1."?1. [&'TZ [Eﬁ?-Jﬂt

5.50 3’
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Since in the case when the energy parameter h < 4g¢/l. the motion is
oscillatory and defined for the values of the generalized coordinate ¢ in the

zone defined by the interval (23) it stands for that the rotator is defined this
interval.

The Fig.N°4 shows dependence of the rotator intensity as the function
of the elongation ¢ and for different values of the initial parameter h of the
energy, that is, of the initial system energy for which the families of the curve
rotators are obtained. The next Figure N°5 shows dependence R(e) in the
polar coordinate system so that R is shown as a versor.
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Concluding remarks

The rotator is equal to zero only in the case when h = 4g/l, whereas
in all other cases of the dynamically unbalanced rigid body rotation around
a stationary axis is different from zero so that the dynamic pressures on the
bearings are different from zero. The smallest values of the rotator are in the
rigid body positions on the shaft corresponding to the position of the unstable
static equilibrium whereas the greatest values are in the positions corresponding
to the position of the stable static body equilibrium. We conclude that the
dynamic pressures have extreme values in the positions corresponding to the
positions of the rigid body static equilibrium on the shaft. In the position in
which the potential energy is maximal the rotator has minimal value whereas in
the pozitions with minimal potential energy the rotator has maximal value.

The folowing conclusion is that the smallest kinetic pressures are upon the
bearings while the body is such a position that its masses center is at the highest
level and vice versa it is the greatest when its masses center is the lowest.

In the rotation axis is the central inertia axis and the main inertia axis for
the pole in the stationary bearing then it is a rigid body which is dynamically
balanced and the members in the kinetic presures depending on the vector &

and D% are equal to zero and are not influenced by the rotator change. Then
there are only the components of the bearing resistance arising from the vearing
static resistances (pressures) in the definite position of the active forces system
and the reactive forces system during the body rotation.

If the rotation axis is the axis of the inertia asymmetry for the referential
point in the stationary bearing then the dynamic pressures are greatest both on
moveable and stationary bearing. Since at each point on the rigid body there are
three pairs of such mutually perpendicular axis which are in pair prependicular
to one main inertia direction and they form with the other an angle of 45° each
so that the inertia asymmetry axis which are perpendicular to the second main
inertia direction forming angles of 45° each with the first and the third main
inertia directions as the rotation axes will be the greatest vector of the deviation
load and at the same time the greatest kinetic pressures on both the bearings.
The kinetic pressure on the stationary bearing depends on the masses center
position with respect to the rotation axis and this can be adjusted by the choice
of the inertia asymmetry axis in pair as well as by the choice of the moveable
bearing position with respect to the stationary one on the definite axis of inertia
asymmetry. The inertia asymmetry axis should be avoided as the rotation axis
in order to reduce the dynamic pressures upon the bearing.

For a pair of inertia asymmetry axes as the rotation axis as the rotation
axis the axial moment of the masses inertia is identical so that depending on
the masses center position with respect to one axis or another and on the choice
of the moveable bearing an increase, that is, decrease of the kinetic pressure at
a given constant value of the initial energy communicated to the rotating body.

There are four (that is, eight) axes through each point of the body which
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we have chosen as a stationary bearing for which the axial inertia moments are

of the same value and the vectors f'LM of the deviation load by the body mass
inertia moment are proportional to the sum of the three deviation load vectors
by the body mass inertia moment of the inertia asymmetry axes. For these
octahedral axes the dynamic pressures on both the stationary and moveable
bearings are the same while the pressures on the stationary bearing are different
and by choosing one of the octahedral axes minimization or maximization of
their value can be performed. By displacing the moveable bearing from one to
another octahedral axis through the stationary bearing the kinetic pressure on
the stationary bearing can be adjusted while retaining the share in the pressure
on both the bearings of the part that corresponds to the deviation load vector
although the ratator is going to change as well (but this can also be adjusted).
The smallest pressures would appear an octahedral axis is chosen so the body
masses center 1s closest to the rotation axis, that is, the most favourable of all
the octahedral axes for the rotation axis is the one which the body masses center
1s closest to.

A general conclusion would be that if we cannot in the design method choose
the main central axis of the rigid body rotation as the rotation axis when the
system is dynamically balanced then we have to make an analysis of the inertia
moment state at each possible point for the stationary bearing positioning and
according to the design requirements we can make a choice of the stationary
bearing as well as of the rotation axis according to the given analysis.

These conclusions are very important if the designer cannot change the
stationary bearing but if he can change a moveable bearing and choose it freely
in a rigid body; then it is surely important for him to choose it in such a way as
to make the dynamic pressures as small as possible. The special rotation cases
of a heavy rigid body around a stationary axis are when the axis is horizontal
or vertical.
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UHTEPIPETALIUA NBUKEHUA TAKEIOIO TEJIA
BPAIIAIOIIEIOCA OKO HENOABUAKHOW OCHI U
IUHAMWYECKUEIABJIEHUA HA OIIOPAX, C IOMOIIKO
BEETOPOBMOMEHTOB MACCHI IJIAd OChbl U OJIA MOJKOCA

IInA cocTaBNeHWA KMHETUYECKHMX YpPaBHEeHMH ABWxeHMA abcollloTHO XKac-
TKOr0 TeJla BPAIIAKMIEroCA OKO HEMOABMMHOM OChl BOCIIO/Ib3YEMCA MHTEp-
npeTanMoil KMHeTHYecKMX MapaMeTpoB Teljla C MOMOI HOBOBBeOeHF i BeK-
TOPOB: éE{” BEeKTOpa JIMHeHHOro MOMEeHTa MACChl AJIA OChkl POTALMM OpPEeH-
THPOBAHOW eJMHUYHMM BEKTOPOM Nl M [UIA NoJioca A B HeNoABMAKHON onopsl U
BEKTOpA ﬁ‘;{” MOMEHTA MHEpPLUMM Macchl TeJla MJIA oChkl POTALMM M JJA [Moarca
A u ero QeBMALMOHOM YaCThI 535:”, NeBUALIMOHOr0 HATPYHeHUA MOMEHTOM WMH-
epLMM MACChl TeJjla OJA OChl POTALMH M MOJIOCY B HEMOIBHMXHONH OMOpEL.

KuneTuueckMe NaB/leHWA Ha OMOPAX BAaJa BEIDAKEHMHM C MOMOIO Bek-
Topa f}LA} IeBHALMOHHOra HArPYeHWA MOMEHTOM MHepLMHM Macchl Tella 0Chl
POTALMHA M OMA TOAIOCA B HEMOABUAEHOW OMOPHI.

Ha ocHoBaHMM BBIpasKeHMAX [JIA IMHAMM4YecKWe NABJeHUA BBeleHO MOH-
ATHE BeKTopa R poTaTopa M Ha OCHOBaHMM €ro MHTepIpeTHUpPOBaHbLI KUHEe-
TUYECKMe [daBJ/ieHMA Ha omopax. [IpencraBieHme rpadmyeckue WJIIOCTpalMM

M3MeHeHMA MOIMJIA BekTopa R poTaTopa ANA YacHoro ciaydasa csoboaHoit
poTauMM KoleGaHUA Teja OKO HEenoABMMEHOW OcChl.

INTERPRETACIJA KRETANJA TESKOG TELA OKO NEPOKRETNE OSE |
~ DINAMICKIH PRITISAKA NA LEZISTA,
POMOCU VEKTORA MOMENATA MASA ZA POL I OSU

Kineticke jednaéine kretanja krutog tela oko nepokretne ose su interpretirane
pomoéu uvedenih vektora: g linearnog momenta masa za pol u nepokretnom
lezistu i osu rotacije orijentisane jediniénim vektorom #; 35" momenta inercije
mase i njegovog devijacionog dela vektora DA devijacionog optereéenja momen-
tom inercije mase tela za osu rotacije i pol u nepokretnom lezistu.
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Kineticki pritisci na lezista vratila su izrazeni pomocu vektora linearnog mo-
menta mase tela i vektora D4 devijacionog optereéenja momentom inercije mase
tela za osu rotacije 1 pol u nepokretnom lezistu. Na osnovu izraza za dinamicke
pritiske uveden je pojam vektora R rotatora i pomoéu njega isti interpretirani.

Dati su graficki prikazi promene modula vektora rotatora za specijalni slucaj
slobodne rotacije oko nepokretne ose.
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