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1. Introduction

We consider functional that depends on function and its derivative. In
the calculus of variations different classes of functions are candidates for the
extremum value of the functional [1]-[3]. Usually, the following three classes
of functions are in use: 1) Class D;, smooth functions, which are continu-
ous function with continuous first derivatives; 2) Class D, piecewise—smooth
functions, which are all continuous functions but with corner points, at which
the first derivative is not continuous; 3) Class, D3 are piecewise continuous
functions. It is obvious that the following inclusion holds DyCD,cDs. If, for
some problem, we have two extremals of the different classes then the extremum
on the extremal from the wider class is better (smaller or larger depends on the
type of extremum). If the candidates for extremal curve belong to the classes
D, and D3, then the functional is the Riemann integral, while in the case of
the class D3 it is the Lebesque integral.

Pars, considering two examples in [1] p.47 and p.70, show that by an ad
hoc selected extremal of the class D, it is possible to approach, close as it is
necessary, to the extremal of the class D,. However, the functional does not
have stationary value on this ad hoc extremal curve.

Practical determination of the extremal requires solution of the Euler equa-
tion, generally nonlinear differential equation and very inconvenient for solving.
Therefore, the calculus of variations suggests approximate methods for finding the
extremals. One of the most convenient methods is the Ritz method, developed
m 1908. The crux idea of the Ritz method is that the value of a functional
calculates on a curve that is linear combination with constant coefficients of
some finite number of known smooth functions of the independent variable. The
functions satisfy the corresponding boundary conditions identically. As a rule,
the Ritz curves approximate the extremals of the D, type.

We devote the paper to approximation of the extremal curves by the Ritz
method. The corresponding extremal curves can be of D;, Dy or Dj type.
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We stress that the Ritz method may approximate extremals belonging to the
different classes.

Obviously, the study is the most clear if we explain them on particular
problems. In this course we elaborate three particular examples.

2. The basic theory

Let us consider extremity of the following functional

g

I= ]F{t, y, ) dt, (1)

i

which depend on a function y(t), where ¢ is independent variable, y is derivative
of y concerning ¢, t4 and tp are fixed initial and terminal values of t, F is an
arbitrary function of ¢, y and 3. The function F is continuous and has continuous
partial derivatives to second order inclusive.

Here, the permissible curves must pass through known boundary points A
and B

y(ta) =va, y(ts) =ys, (2)
where y4 and yp are known constants. Also, let us suppose that the extremal

belongs to the class Dy and has only one corner point at C (see Fig.1). If there
are several corner points, then the same argument applies to each one.

It is obvious that the separate smooth arcs which make up the broken-line
extremal must be integral curves of the Euler equation

ddF OF _

Eic?_y - Ey‘ =1, (3)

Because the broken-line extremal has one corner point C, we can consider (1) as
te tm

J’:]F(E,y, y}dt—l—fﬁ'{i,y, y) dt. (4)
ta te

where o is the abscissa of the corner point (Fig.1). Taking that AC and CB
are integral curves of the Euler equation passing through the boundary points
A and B and that the point C can move in arbitrary fashion, we get

J‘?F) ( .SF)
ol = F - e —| F— L R
{( y dy t=lc-o ﬂy t=tlcgo

(BF) (BF) 5
o ] e e
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The necessary condition for extremity of (1) 7 = 0. and since 8t and dye
are independent, yields
LOF JF o
s) (),
¢ y t=ti—n ry I‘-.:Ir_—_'+u

(7= 3%5) e (F35) L
ay t=tc_o ay t=tc 4o
This conditions, together with the following continuity condition of the desired
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extremals at the corner point C

Y(tc-o) = y(tc o), (7)

permits determining the coordinates of the corner point.

3. Applications
Ezample 1.

Let us consider minimization of the functional
1
1= [Pa-ira, (8)
1

where
y(-1)=0, y(1)=1 (9)
In this case the Euler equation (3) is

v|i- %{ym] =0, (10)

whose solutions are y = 0 or y = (t* 4+ Cit 4+ C3)'/?, where C; and C, are
integration constants. Let us assume a smooth curve (class D;) between A and
B as an extremal. Then, the first solution does not satisfy boundary conditions
(9), while for the second solution the boundary conditions yields Cy = 1/2 and
Cy = —1/2. The second smooth curve between A and B is not defined for
t € (—1,1/2). Hence, in this problem an extremum can not be on a smooth
curve (class D,) between A and B. Therefore, consider the extremal as broken-
line at the point C (class D,). For t € [—1, 0] the extremal is

y =0,
while for t € [0, 1] it is
y = (t* + Cit + C2)V/2.
Satisfying (6), (7) and (9) we have C; = 0 and Cy = 0. On that broken-line
extremal the functional (8) has absolute minimum [ = 0.
Let us suppose trial solution for the extremal curve of (8) as a smooth curve

(class Dy)

1+1)?

y:f : ) + (@ou + ayu® + agu® + azut)u®, u=1-1% (11)
where ag,...as are unknown constants. The solution satisfies the boundary
conditions (9) for arbitrary ag,...aa. Substituting (11) into (8) and minimizing
that functional concerning ag,...as we have optimal values if these constants:

ap = —0.87883, a; = 1.29369, a» = —0.13584, a3 = —0.48980.
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.

The minimal value of (11) is [ = 1.87831-107*. Obviously the minimum is very
close to the absolute minimum / = 0 of the functional (3).

The curves on the Fig.2 are the approximate (class D) and the broken-line
(class D2) extremals. The Ritz’s approximate extremal follows the broken-line
extremal quite well.
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Ezample 2.

Find the minimum of the functional (see [2] p.110)

v

I:]I(E) dt, (12)

for the boundary conditions

y(0)=1, y(1)=e. (13)

From the relations (6), (7) and (12) it is obvious that derivative y must be
continuous at the possible corner point '. Hence, in the problem an extremum

may exist only on a smooth curve (class D,). The corresponding Euler equation
(3) 1s

%(1_1&) =4 (14)

¥

The only solution of the equation (14), which satisfies (13), is y = ¢'. The
corresponding value of (12) is [ = 1.

Let us seek the extremum of the functional (12) in the class of piecewise -
continuous functions (class D3). Krotov (see [2] p.105) proved that the functional
(12) achieves the absolute minimum, zero, on a composite curve consisting of the
segment y = 0 and the vertical segments at t = 0 and t = 1 (class Dj).

Let us consider trial extremal of (12) as the following smooth curve (class

D).

5
y:l+(e—5—§)t+(3-—4e+ §)£2+{4e—4—2u}13+at4. (15)

The curve (15) satisfies boundary conditions (13) for arbitrary value of the
constant a. Substitution of the trial solution into (12) guarantees integrability,
because y(1/2) = 0 and limy_,/2(y/y) — 0. The functional (12) has minimum
value [ = 5.8616- 102 for a = 27.41818. This is a good approximation of the
Krotov’s absolute minimum. The Fig.3 shows Euler’s, smooth y = &' (class D),
Krotov’s, piecewise-continuous (class Ds) and the approximate extremals (class
D,). Here, we must underline that the Ritz’s approximate solution (class D)
of the problem can converge to the extremals belonging to the different class of

CUurves.
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Ezample 3.

Let_us consider Weierstrass example [1] p.70 of minimizing

1
I = /:2;;;2.:1:, (16)
1

with the boundary conditions

y(-)=-1, »(l)=1 (7)

In this case the conditions (6) and (7) do not permit an extremal of the problem
of the class Dy, i.e. a curve with a corner point at €. Now, the Euler equation
18

d

—_— 2 Y -
79 =0 (18)
and 1its solutions are the hyperbolas
Y= b2 + C>, (lg}
Y

however, no continuous extremal passes through the points A4 and B, where
(17) define the points. Meanwhile, the minimum of the integral (16) exist, and
is equal to zero. The integral (16) is equal to zero on a piecewise-continuous

extremal (class D3). The curve consists of the lines y = —1 for —1 <t < 0,
y=1for 0 <t <1 (y=0 on these lines) and the vertical segment that is the
ordinate axis between y = —1 and y = 1 ({ on this segment).

By appropriate choice of the &, where 0 < ¢ < 1, the integral (16) can
achieve arbitrary small value on a smooth curve (class D), see [1] p.70,

arctan(t/e)

- arctan(1/g)’ 2l)

This is an ad hoc extremal that i1s not solution to the Euler equation (18). If
we consider the integral (16) as function of ¢, then it follows that lim._o I — 0.
But, we must underline that the functional (16) does not have minimum on the
family (20) for any £. The value I = 0 is only the least value of (16), where
§1(e) #£0.

Let us consider trial solution of the problem (class D)

k=3

y =sin(wt/2) + Y aysin[(k + 1)xt], (21)
k=0

where a; are arbitrary constants. Minimizing (16) with respect to those constant
we have their optimal values

ag = 0.3220826, a; = 0.21820, a> =0.08130, a3 = 0.03373.
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The corresponding minimum value of the functional is [ = 0.08486. The Fig.4
shows the approximate extremal (class D;), the curve (20) (class D), and the
piecewise-continuous extremals (class Djy).
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O PUTHOBOM IMOOXOAY K 9KCTPEMAJIAM

PaccMmoTpuBaaeTcsa anpoxkcuManma skeTpemad metolioit Putna. CooTtsee-
TBYIOIIME 3KCTpPeMaliMel NpuHaanexatoT kiacce Dy, Dy uan D3. Anpokcuma-
TUBHBEIE TUHUK KJIacckl Dy Mcnosib3oBaHW ANA pelleHUA NMPU 3aladM.

O RICOVOM PRISTUPU EKSTREMALNIM KRIVIM

Rad je posveden aproksimaciji ekstremalnih kriva metodom Rica. Odgo-
varajufe ekstremalne krive pripadaju klasi Dy, D, ili D3 krivih linija. Aproksi-
mativne krive klase D, su upotrebljene za resavanje tri problema.
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