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1. Introduction

Conservation laws (or balance laws) have been the subject of considerable
research in recent years. One of these laws, the J-integral, has been applied
extensively to the fracure mechanics problems with much success. In this paper,
we examine a similar type of integrals for granular solids. Their investigations
were based on a continuum theory of granular materials, developed by Cowin
and Goodman [1,2,3]. Central to their theory is the concept of distributed body
which leads naturally to the introduction of an independent kinematical quantity
called the volume distribution function ». This quantity represents the fact that
the granules do not occupy the entire volume of material.

The importance of fracture mechanics for practice is well-known, as well
as the importance of the J integral concept in fracture mechanics, J integral
derivation, based on Noether’s theorem, for linearized and finite classical elasto-
statics, was given by Gunther [4], and independently, by Knowles and Sternberg
[5]. The latter work was extended to linear elastodynamics by Fletcher [6].

In this paper the intention is to derive conservation laws (or balance laws)
using the invariant characteristic of the variational principle in relation to the
Euclidean group of transformation. Using the Euclidean group of transformation.
the equivalence between the conservation law and the Euclidean invariance is
demonstrated. As a consequence a nowel result for the conservation law (or
balance laws) for granular materials has been obtained. Finaly. one of the laws
is an example used to ilustrate its application.

b
2. The symmetrical theorem

In this section, we give Noether’s symmetrical theorem of granual continuum.

Let £ = (4) € R,a=1,2,...,n, be the independent and u = (u;) € R, 1 =
1,2,...,m, v and w € R be arbitrary vector and scalar variables, which describe
the behaviour of the material system under consideration.
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We suppose that these fields are twice continuously differentiable in .

We-consider a continuous transformation group (¢ with one single parameter

€, = &a + aan + 0(7?)
G: Y=v+bn+0(n?) (2.1)
¥ =(uk,v, w), b=(b, v, 6)
where 77 1s a paremeter, a = 1,2,3,4; k= 1,2,3 and the quantities

_ d&,

dy
dn .

Ty

(2.2)

n=0 n=0

It is obvious that we can obtain some kind of transformation group G by as-
signing ag, B, v, and 6 some special values. Further, suppose that

L= L(Y) (2.3)

is a real function of ¥ is defined and differentiable for all values of its arguments:

Y= ¥Y(la, try Wi ©, v w, w,) . (2.9)

Now, we define an action functional A for given field (u, v, w) by the formula

A{ﬁ:}:!!LdVdr:]L[Y}df (2.5)

R

The functional A in (2.5) is said to be invariant at (ug, v, w) under the trans-
formation (2.1) if

fL(?}dfz ]L[Y]df (2.6)
E R

for all sufficiently small values of |p|. If for a given (ug, v, w)

d

a/L(?] de =0 (2.7)

H n=0

then A 1s said to be infinetisemally invariant at (ug, v, w).
Now we can state a restricted version of Noether's theorem.

If the action functional A4 has infinitesimal invariance under the group &
there exists

Baa—{Q, P} +{p, E(L)y} =0 (2.8)

where

dL oy 0 L 9L - :
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and
p=b—va0a, P=(pPr, ¢ T) (2.10)
It was conventient to use abbreviated notation sugested by Ericksen,

{(a,b,c)(a,b,c)} = aa+ bb+ cc.

Noether’s symmetrical theorem plays an important role in modern field
theory. From it we can obtain the field equations, the conservation laws and
the dynamical criterion of a singularity motion for the material systein under
consideration.

The proof of this theorem can be found in [7].

3. Thermodynamic theory of granular solids

We follow the approach of Godman and Cowin [1] and assign to the solid
the mathematical structure of a distributed body. The motion of such body is
described by the functions:

L = Ik(Xh t) (31}

An important consequence of the motion of a distributed body is the fact
that at any point z(Xj) and time ¢ the density o can be decomposed as

o=y (3-2)

where v = 7(X, t) is the density of granules, and v = v( X, t) (0 <v <)
is called the volume distribution function. This distribution function represents
the ratio of the volume of granules dVj, to the volume of the material dV i.e.

dv, = vdV (3.3)

The local balance laws in the reference frame X are listed below for ther-
modynamic granular materials [2]:

The balance of linear momentum

Tkr,x + 0o fx = 00 Uk (3.4)
The balance of moment of momentum

Tke zi,xk = Tki Tk K (3.5)
The balance of energy
: 00 = Tkk Vi,x + Qk.x + Hxkv g — 009V + oo h (3.6)
The balance of equilibrated force

ook = po(l+ 9)+ Hr K (3.7)

=]

where the above given quantities are
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Tk - the first Piola-Kirchhof stress tensor,
Q. — the heat flux,
09 = the initial mass density,

£ — the internal energy density,

E?E = { ) the material derivative,

Hy - the equilibrated stres vector,

[ — the external equilibrated,

h — the heat supply per unit mass,

g - the intrinsic equilibrated body force,
1 — the entropy density.

Finaly we write the constitutive equations

o de )

_ O e U Y
ark,ﬁ-gﬁﬁl‘t,x’ 1T="% 1T & HK_Q'C*@HK (3.8)

Tkr = 0o

where # 1s the absolute temperature and
¥ =Yk, v, vk, 0) =€—0n (3.9)
the free energy.
From (3.8) and (3.6) we obtain
000N = QK ,k + 0o h. (3.10)

In order to write the differential form of the balance law (3.4), (3.7) in more
compact form it is convenient to introduce some additional notation. We set

€ = {"?‘ 1=K £()=()4 (3.11)
and
L = oo(¥ — vk v — 3kvv) = L(Tka;¥; Va3 0) (3.12)
[t may be verified that
Law=Tkr, Lg =-—00%r, Lz =0
(3.13)
Ly,=Hk, L;=—pokv, L,=00g
holds, and the laws (3.4 and 3.7) are
g Lz,.+e00ft =0, L,,+elg+1)=0 (3.14)

B¢, BEa

Then, Noether’s theorem can be applied to our case. To confirm this we chose

L=L, wu=zx, v=v, w=0, Fr=pgfr, G=0l, R=0,

X=(,z,v8), v=(ze,v,0 Y =(zka, v va, b)), (3.15)

Pk =POr — Tka®ay, ¢=7—Va, Qa, r:‘ﬁ_g,aﬂa-
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Then. from relations (2.8), together with (3.15) and the divergence theorem, it
follows that

1
é}fﬁf«.n pe+ L i q+ Lay) dv + / (Lz xPe+Lyyxa+Lag) Nk ds—
¥ 5

A/L,ﬂrdwfeuffkpqu}dv=ﬂ

v v

(3.16)

4. Invariance and conservation

Following R. A. Toupin [8], we postulate that the egivalence of Euclidean
invariance of the action density and certain conservation laws.

The action density L is invariant under the group of Euclidean displacements
if
L(a, zk, v, 0) = L(&a, Zk, 7, 0)

where storred and corresponding undstorred quantities are related by

‘E_-::I. = Eu + Ca n
Zp = zx + (R} zj + D)y (4.1)
¢=06+En E=(Eo Er)

and where R} is a constant antisymmetric tensor, R} = —Rf, and C,, Dy and
E are arbitraru constants.

By taking all of the arbitrary constants in (4.1) to be equal to zero ex-
cept the one in turn, we obtain the corresponding conservation laws. They are
the following three transformations under which the functional is infinitesimally
invariant:

(I) Dk #0, B =Dy, pr=D¢, ¢q=0, r=10

This transformation represents rigid body translations. The corresponding con-
servation law (3.16) now reads

d

E qukdv-fok Nxds—fg[}fkdr:ﬂ {4,2}
g 5

¥ v

(I) RL#0, B=0, pe=Riz;, ¢=0r=0.
)
This transformation represents rigid body rotation, and the corresponding con-

servation law reads

.| d
R‘L E]guukmjdv—ngkij'Vde—/gul‘j_ﬂ;dv =

Vv s v (4.3)
[III] g = CTu % D, P — —Vi C'g, q= -—I:J'CQ, —éCﬂ,
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This transformation represents a shift of time, and the corresponding law
read

%j 5 d. /{Tf“f vi + Hg v] Ng ds — f oo(fe v +1v)dv=10 (4.4,)
Vv 5 v
where
E=W+ %Euvk Uk + —}gukm}z W+ K
Upon using (3.8-3.12) this reads

d

'L'“ E T'——/[THL-UK+H1-U+Q,&] f‘vkds—fgg{fkvl.%—fu—l—h]du*"ﬂ {443

v

The above conservation laws (4.2)-(4.4) represent the conservation of linear
momentum, angular momentum, and energy, respectively. Thus, we have es-
tablished the basic theorem of equivalence between conservation and invariance
[8]:

Linear momentum, angular momentum, and energy are conserved in a gran-

ular medium if the action A is invariant under the group of Euclidean displace-
ment.

Now we consider the case when
(V) e =Cg#£D pr=-2ekCx, q=-vgCk, r=-0xCk

This transformation represents the family of coordinate translations, and the
corresponding conservation law reads

%fﬁ@ vk Tk Kk ok vy ) du—
v
/[(W—K}ém_ —Tee v x — Hp v'g| Npds— (4.5)

- f Lgb gk dv— f o(fezex +lvg)dv=0
v v
The last case follows from
(V) v=E0#0, pr=0, ¢=0, r=E

This transformation represent a family of scale change, and corresponding law

reads q
d!fgkydv—/H;;Ngdsw—fgfdv:{] (4.6)

v 5 v
which denote the balance of equilibrated force,

In the local form the integral (4.2) and (4.6) give the balance equations
(3.4) and (3.7).
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DISCUSION

Classical granular malerials

In the absence of heat conditions the Lagrange function does not depend
on 8, so that L 4, vanishes and expression (4.5) reduces to the two-D version for
the J integral for granular materials.

Matertal without voids

In that case ¥ = vp = 1, 0p = 7o, the Lagrange function does not depend
on v thus M vanishes as it may be seen from (3.9). Expressions (4.2-4.6) reduce
to expressions as obtained in [9].

5. The case of steady crack propagation

Let us consider a two-D granular deformation field for which the displace-
ment vector z and the volume distribution function v depend on the coordinates

£, 1.
Theorem. The integral

t

J=f /(W—H“F;.-xk-(;u]dn— (Tg%JrH%%) al a

tg r

, Bzg .Eu
[ (o2 G+ x5 o

5

t

Iy

is path-independent for any path around the crack tip (Fig.1) and for any
o110,

Here W and K are the strain energy density and kinetic energy density
respectively. The domain S is a region bounded by T and the crack surfaces
(Fig.1). The proof may be found in [7]. T

b

X

L 0
‘_’3 ;
. A

crack

Fig.l.
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Ezample:

Below we consider an interesting case in granular fracture dynamics. It is
the case of the steady-state crack propagation.

1 Lf‘l. the propagating velocity for the crack tip be V. Consider paths T mov-
ing with the same velocity V in a new coordinate system &, 77 moving together
with the crack tip (Fig.2). 0

74
r p
4
- S,
v 4
Fig.2.
The transformation from £, 5, to £, 7, { is

E=¢-Vt, V =const.
N=mr (5.2)
i =t

and

'rk'{‘f.- 1. E] = rﬁ:{‘?'- ﬂ-- E}

v(&, n, t) = v(€ 7, 1)

For a steadily moving crack, we have — = 0, that, from (5.3), the expression

ot
for velocity (#¢, ) and acceleration (I, v) we get
. 1':?3:';,. g dv " d‘l'-.fk " " a°v
W ) oo =-V—, #H=V? T R Vel 5.
Ty v 3¢’ v B¢ T i 7 P (5.4)

Thus, recognizing a constant path ' in the £, n system from Eq.(5.1) we
have for granular elastic case

- oo -
Fy= / (H’-{- VZipz a&;’: - Vﬂgﬁ:ugfg — Fp xy —-Gv) dn—
F
0Tk 27 - " Oz, TN o
s [ RSk S Td= ¥ G kv— ) d3
(T" O +Ha€) : f (‘“" og3 T ¢ ”w) S

5

The expression turns out to be path-independent for different T.
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NOETHERS THEOREM IN DEN GRANULIERTEN STOFFEN

Das Ziel dieser Arbeit ist darin, dass die Untersuchung der Erhaltungsgesetze
auf granulierte Stoffe erweitert wird und dadurch gezeigt wird, wie dieselben
mittels Noethers Theoreme folgen.

Beniitzend Euclideans Gruppe der infinitesimalen Transformationen wurde
die bestimmte Klasse der Erhaltungsgesetze fur dieses Materialtyp gewonnen
und danach eines von diesen Gesetzen als ilustriertes Beispiel im Falle der Br-
uschweiterung mit der konstanten Geschwindigkeit ausgenitzt.

O TEOREMI NETEROVE U GRANULARNIM MATERIJALIMA

Poznato je da se zakoni konzervacije, koji dovode do integrala nezavisnih
od putanje, mogu dobiti na razne nacine. Jedan od tih naéina zasnovan je
na invarijantnosti datog akcionog integrala u odnosu na odgovarajucu grupu
infinitezimalnih transformacija (teorema Neterove).

Svrha ovog rada upravo je u tome da se porSiri ispitivanje dobijanja za-
kona odrianja na granularne materijale 1 da se pokaze kako oni slede primenom
teorgme Neterove. Koriste¢i Euklidovu grupu infinitezimalnih transformacija do-
bijena je odredena klasa zakona odrianja za ovaj tip materijala, a potom )e
jedan od tih zakona iskoriséen kao ilustrativni primer u slucaju Sirenja prsline
konstantnom brzinom.
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