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DAMAGE OF THE UNIAXIALLY REINFORCED COMPOSITES
BY INTERFACIAL ARC MICROCRACK

D. Sumarac
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1. Introduction

Composite materials are ideal for structural applications where high
strength-to-weight and stiffness-to-weight ratios are required (Jones, 1975 [3]).
Aircraft, spacecraft and recently bridges in Civil Engineering, are typical weight
sensitive structures in which composite materials are cost-effective. There are
three commonly accepted types of composite materials: Fibrous composites which
consist of fibers in a matrix; Laminate composites which consist of layers of
various materials; Particulate composites which are composed of particles in a
matrix. In this paper fibrous composites will be considered. Despite they are
high performance, those materials are very sensitive to initial defects, which have
decisive influence on they are strength and durability. In the fibrous composites
initial defects are interfacial arc microcracks, which are usually consequence of
the curing process or temperature mismatch. In this paper only stationary
damage model, with the constant crack size, would be analyzed. Finally the
Young's modulus, Poisson’s ratio, and complete compliance matrix in the plane
perpendicular to the fiber direction would be given, for uniform distribution of
cracks.

2. Compliance of the Undamaged Material

Matrix with the longitudinal fibers randomly distributed is transversely
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Fig.l. Uniaxially reinforced composite
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isotropic material. In this paper the same composite, as in the article written
by Ju (1991) [4], will be chosen.

This material consists of epoxy matrix, Fig.1, with the characteristics:

pm =239GN/m*;, v, =035 E,, = 6.4TGN/m?, (2R
and glass fibers with the constants:
pr=4426GN/m*; vy =0.22; E; =10785GN/m?, (2.2)

In the above expressions u, v and E stand for shear modulus, Poisson’s ratio and
Young’s modulus respectively. Let the volume fractions of those two materials
are:

Vn =08 V;,=0.2 (2.3)

For such composed material there is no way to find exact value of the elastic
constants. The approximate, averaged, values will be presented in this paragraph.
The Young's modulus in the direction of the fibers is:

EpL = VinEm + Vi Er = 0.8 x 6.47 + 0.2 x 107.85 = 26.75 GN/m?, (2.4)

which is very well known as the rule of mixtures. For more explanation about
the rule of mixtures see Jones 1975 [3]. Young’s modulus perpendicular to the
direction of fibers is calculated on the assumption that the stress in the matrix
and in the fiber in this direction is the same. This leads to:

=T797TGN/m 2.5
Vin Ef + VI Fon f (55)
There are other approximations to calculate Ep, which can be found also in
reference [3]. Overall Poisson’s ratio in the plane perpendicular to fibers can be
calculated using rule of mixtures from (2.1) to (2.3) as:

Vo = Vintm + Vivy = 0.8 x 0.35 + 0.2 x 0.22 = 0.324. (2.6)

In the plane perpendicular to the direction of fibers material behaves 1sotropi-
cally, with the overall constants Ey and vy given by formulas (2.5) and (2.6). In
this way the overall compliance matrix that represents the response of undam-
aged material in the plane perpendicular to fibers reads:

Er = Ey =

(1-v3) —w(l + vo) 0
[5°]= & [-w(l+w) (1-w) 0 =
0 0 0 21 + vy)
(2.7)
0.112 —0.054 0
= [-0054 0112 0 (GN/m*)~!
0 0 0.332

3. Compliance du to Presence of a Single Arc Microcrack

Consider the interface arc microcrack shown in Fig.2 under remotely applied
stresses. In the subsequent sections 1t will be assumed that the crack size
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Fig. 2 Single arc microcrack

is small compared with the radius of the fiber (a < R, or @ — 0, where R rep-
resents averaged value of the fiber radius). This assumption is in agreement with
the goal of the paper, which is to consider the initial damage, obviously supposed
to be small. Second assumption is, that the crack is embedded in the material
which is with the unknown material constants that should be determined. This
assumption is in accordance with the well known Self Consistent Method which
will be applied in this paper. There are papers that are considering the interface
cracks embedded between two dissimilar media (Toya 1974 [6]) which was used
in the paper written by Ju (1991) [4]. This approach even seems better at
the beginning, leads to cumbersome numerical procedure even for small damage
(crack size). Also assumption of self-consistency will wipe out the strong accuracy
which was used at the beginning.

From the paper written by Cotterell and Rice (1980) [1], for arbitrary size
of the crack, the stress intensity factors are:
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= cos(3a/2) — og [si:1(3afﬂ)+sin3{a;2)]} (3.1)

- =l 2me ) _ 2= 209y cosi(a sin(a/2)
h” -v"_{[( 9 ) 9 1 [ 1‘1’2) { J'fz}jl (l-i-siﬂz{ﬂ'.f?}}

¥

s =iy

sin(3a/2) + o5 [cos(3a/2) + cos(a/2)sin*(a/2)] } (3-2),
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where Voigt’s notation was used:

i i i ¥ i i

Ty =0y O =0 T = Opy- (3.3)

-

rr:

For small & (o — 0, small crack size), taking only linear term with respect to
@, 1t 1s obtained from (3.1) and (3.2):

Ky =+/mra (i:r; 2 %ﬂ’ﬂ':—i) = +/7Ta (n:r;j — %% r) (3.4)

-l (5-4) - (53]
i (3.5)

Potential energy increase due to presence of a single crack is obtained via Frac-
ture mechanics as:

i
: K} + K? Ta’ 2 a’
o8 — (g [ Bt K, _met o .
1 =] v}f B diis= 5 (1 V}[(Jz) (1+2R2)+
—a

+(Ta)gL—Urari—argr?—a—o’rgrz—a—i—(HJ)E 1+9£
i) gRET TLTApE T Y1T6ap T T1Neap 8 8R2 [36)

In deriving the above expression, equations (3.4) and (3.5) were used. The
increase of the compliance due to presence of one crack are obtained by differ-
entiating expression (3.6) with the governing stresses:

i . G'Ti.»'—"fk]
Sij do, ﬂcr

(3.7)

Substitution of (3.6) into (3.7) leads to:

«(ky _ 2ma’ 2 [ @ a’
S;‘j = “E_{l -v*) SR?éhalj iRz (O1i625 + b2y )+
a".l‘
+* (1 ?Rg) b2i625 — ER(éliéﬁ.‘f + 551‘51.‘!) et R(ﬁ?:aﬁ_r + dgida; )+
g F
-+ (1 + %) ﬁsiﬁsj] : (3.8)
In the case of straight crack (R — oo, or a/R — 0), from (3.8) it follows:
k) _ Ima? gl o oo
5ij Tti v?) (62i82; + beifs; ), (3.9)

which is very well known expression (see Sumarac and Krajcinovié¢ 1989 [9]).
Compliance (3.8) are given in the local coordmate system. Using transformation

rule: i ”
S:‘j = Sn-fn.] Fmilnj, (3.10)
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the compliances in the global coordinate system are obtained, where transforma-
tion matrix g; is given by (Horii and Nemat Nasser, 1983 [2]):

cos- © sin° © sin 20

Gij = sin” © cos” @ —sin20 | . (3.11)
—1sin20 £sin20 cos20

Substituting (3.11) into (3.10) finally it is obtained:
2 7

2 a

5"'“‘3__Wj[1_,,3) g1i — ——(91:92; + 92915 )1+
7 P~ SRzthU AR? 91:92; 2i91;

- 2
a a a '
+ (1 + ﬁg) g2ig2j — ﬁ(ﬂuyﬁj + 96ig15) — 3_1@{93‘953‘ + g6ig2;)+
Ja?
3 (1 - B—R—a) Qﬁiﬂ'ﬁj] - (3.12)

It is very easy to calculate particular values of the compliance from the expression

(3.12).

4. Compliance due to Presence of an Ensemble of Cracks

Once the increase of the compliance (3.12) due to presence of one crack is
known, the total contribution of all cracks would not be difficult to be obtained.
In the case of many cracks, the total compliance would be:

Sij = 8% + S, (4.1)

where E-'Pj are the compliances of the undamaged material, determined by Young's
modulus and Poisson’s ratio given by (2.5) and (2.6). S;; stands for the increase
of the compliance due to presence of all cracks. Instead of summing contributions
of all parsicular cracks, the averaged values of the compliance increase would be
multiplied by the number of cracks, 1e.

emli
5, =N f S (©) p(®) de, (4.2)
El'mi.n

where N is the number of cracks per unit area (unit cell) (see Horii and Nemat-
Nasser, 1983 [2], and Sumarac and Krajéinovi¢ 1987 [7]). Taking for simplicity
that the distribution of orientation of cracks is uniform, ie. Ompn = 0 and
S = 7, then:

1
w

| (43)
where p(©) is uniform distribution density function of ©. Introducing (4.3) mnto
(4.2), and taking governing coefficients of matrix g;;, after lengthy integration
and algebra it is obtained:

2L

1—12): Sk = TET“ — )z (Si; =0 otherwise), (4.4)

=

ST1 =532 = E
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where:

_ @ = Nra? (1+ ;2) =u(1+%). (4.5)

is the measure of the damage for the arc microcracks, and w = Nwa? is the
measure of the damage in the case of the straight cracks (see Krajéinovié 1989
[5] and Sumarac and Krajéinovi¢ 1987 [7]). For the straight crack, (a*/R?) — 0,
from (4.4), using (4.5), it follows:

Si=sh=2a—ity s

5 See = E-{l T (S5; =0 otherwise), (4.6)
which is the same as obtained in the above mentioned papers.

Composite material with the randomly distributed longitudinal fibers, weak-
ened by the uniform distribution of arc microcracks, is isotropic in the plane
perpendicular to the fibers. Then, the overall material constants (£ and v)
are representing its response. Equations (4.1) accompanied with the equations
(4.4) are the system of three equations that are not identically equal to zero.
Two of them are sufficient to find solution for E and v, and it could be easily
checked that the third is identically satisfied. Taking for Sy, = (1 = v*)/FE and
for S12 = —v(1 4+ v)/E, from (4.1) and (4.4), the solution of the system of two
equations 1s:

E_: I—J“_-I-L-"{;—_?"UUI.:_J} (4?}

Eq 1+ vy (1 = p)?

e (4.8)

Ly I — Ll
As was mentioned above, the equation for Sss is identically satisfied. From
the equations (4.7) and (4.8) it could be seen that for @ = 0 (no damage)
E[Ey = v/vy = 1, which is to be expected. Also for @ = 1 (material is completely
damaged), £ = v = 0, which is also characteristic of the Self-consistent model.
In the case of the straight cracks (a/R — 0), from (4.7) and (4.8), the result of
Sumarac (1987) [8] is recovered. Once the expressions (4.7) and (4.8) are known,
the total compliance matrix is:

[ e L P 0 ‘
o wl
S1= 5 |-w0+w) {22 0 @)
0 0 2(1 +;U_}{i]— Vow

As a numerical example, for already chosen material in the second paragraph,
for @ = 0.1 it is obtained E/Ey = 091 (EF = 7.29GN/m?) and v/vy, = 0.93
(v = 0.3). From this calculation it could be seen that for small amount of
damage of 10%, Young modulus is decreased for 9% if it is compared with the
undamaged material. The compliance matrix for this amount of damage is:

0.125 —0.054 0O
[S]= | —0.054 0.125 0 (GN/m?)~1. (4.10)
0 0 0.357
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Obviously, as is expected, the elements of the compliance matrix of damaged
material are increased which could be easily checked comparing expressions (4.10)

with (2.7).
5. Conclusions

Current development of industry needs new type of materials such are com-
posites. Those types of materials are with the very high strength and stiffness
and low weight, which is ideal for application, but they are very sensitive to
the crack-like defects. In this paper, the influence of distributed damage (arc
microcracks) on the stiffness of uniaxially reinforced fibrous composites was ana-
lyzed. It is shown that for small damage of let say 10% the decrease of Young's
modulus is 9% if it is compared with the undamaged material.

Acknowledgement. The author gratefully acknowledges the financial sup-
port provided by the Scientific Fund of Serbia, to the Department of Civil En-
gineering, University of Belgrade, through the grant number 1701, and partially
by SMNTR thorough the grant number OSI262, which made this work possible.

REFERENCES

[1] Cotterell, B., and Rice, J.R., Slightly curved or kinked cracks, 1.J. of Fracture, 16 (1980),
155-169,

[2] Horii, H., and Nemat-Nasser, S., Overall Moduli of Solids with Microcracks: Load Induced
Anisetropy, J. Mech. Phys. Solids, 31 (1983), 155-171.

[3] Jones, M.R., Mechanics of Composite Materials, Scripta Book Company, (1975).

[4] JuJ. W.,4 Micromechanical Damage Model for Uniazially Reinforced Composites Weakened
by Interfacial Arc Microcracks, J. of App. Mechanics, 58 (1991), 923-930.

[5] Krajéinivié, D., Damage Mechanics, Mech. of Materials, 8 (1989), 117-197.

[6] Toya, M., A Crack Along the Interface of a Circular Inclusion Embedded in an Infinite Solid,
J. Mech. Phys. Solids, 22 (1974), 325-348.

7] Sumarac, D., and Krajéinovié, D., A Self-consistent Model for Microcrack Weakened Solids,
Mech. of Materials, 6 (1987), 38-52.

(8] Sumarac, D., Self-consistent Model for the Brittle Response of Solids, Ph.D. Thesis, UIC,
Chicago, (1987).

[9] Sumarac, D., and Krajénovi¢, D., 4 Mesomechanical Model for Brittle Deformation Fro-
cesses, Part 11, J. Appl. Mech., 56 (1989), 57-62.

[10] Sumarac, D)., Elastic Parameters of the Body Weakened by the Elliptical Voids, Theor. and
Appl. Mechanics, 18 (1992), 119-130.

NEPEKT KOJBUEBBIMU TPEIIMHAMBI OJTHOHATIPABJIEHHBIX
) BOJOKHUCTBLIX KOMIIO3UTOB

B uHactoamei paboTe, Moib3yAchk NPHUEMOM MEXAHMKH i:mapymenuﬁ u
MeEeXaHWUEH JElElilEKTClE, I'IPEB.JIIDH{EH BIOJIHE aHAJMUTHYECKUd wMeTol onpelde-
JIEHWA MATPMWIBI MOJATIMBOCTM, MW MOAYJAA YOPYLocTH U KoadguimeHTa
H}’H.CC{}H&, oA BOMOKHHMCTREIX KOMIIOZWMUMOHHEIX MATEpPHAJOB, TMpPHM HalWYHH
KONBLEBLIX T])ELU.HH. B ortauume 1O noigxonoB BCTpPEYAIMMXCA B JIMTEp-
aTypH, HMMewIMx 3a OCHOBaHMEe TOYHME Bblpa.}'l{EHHH, 4 3aKOHYHMBAMIUIMXCAH
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HUCHEHHBIM METO/IOM pelleHWA. B aToi paboTe To camoro Ha4ajia BBeJI€HO
Npeanolorkenue 0 MaloM pa3mepe jdedekra. DTo NPeANnoONoOKEHHUE, BMECTE C
HpUMEHTHHMEM MEeTO0a CaMOCOTAACOBAHMA, Pe3ylbTHUPOBAJIO MPOCTEIMM aHal-

MTUYECKMMM BbIPpAKEHUAMM AJIA MCKOMMBIX XapaKTepUMCTUK MaTepuaia, yaob-
HBIX [UIA TIpUMEHEeHWId B 1paKTHUKe.

OSTECENJE KRUZNIM PRSLINAMA KOMPOZITA ARMIRANOG
JEDNOAKSIJALNIM VLAKNIMA

U radu se. polazeéi od mehanike loma 1 mehanike osteéenja, daje analiticki
postupak odredjivanja matrice deformabilnosti, odnosno modula elastiénosti 1
Poasonovog broja, kompozitnog materijala oslabljenog kruznim prslinama na
spoju matrice 1 vlakana. Za razliku od rezultata u literaturi, koji polaze od
strozijih predpostavki u samom poéetku a to vodi u numeriécko dobijanje reienja,
u ovom radu se poslo od pretpostavke malog ostecenja. To je uz koriséenje
samokonsistentnog modela dovelo do jednostavnih analitickih izraza praktiénih
za svakodnevnu primenu u praksi.

Dragoslav Sumarac

Civil Engineering, University of Belgrade,
Bul. Revolucije 73

11000 Belgrade, Yugoslavia





