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Introduction

It 1s well known that the dynamic equations for a potential flow of an
incompressible fluid are automatically satisfied (the energy of fluid particles does
not depend on their position in the flow field, as well as on the time when
the stationary flow is concerned) and that the kinematic part of the problem is
reduced to the solution of the following two equations:

div‘[j’z{}. rotV = 0, (1)

—

where V' represents the flow velocity. The pressure distribution in the flow field
is then directly obtained from the solution of dynamic equations. If in additio:
the flow is a planar one, the solution of equations (1) is then reduced to the
determination of two harmonic functions: the potential function @(z,y) and the
stream function ¥(z,y), which are related by Cauchy-Riemann’s conditions:
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where u and v are velocity projections on z and y axis, respectively. The
conditions (2), in fact, show that from the expression ¢ + i%. the variables =
and y can be eliminated by using one single complex variable : = =z +1y. Due
to the physical importance of the function ¢(z,y), the following expression

e(z,y) + ib(z,y) = w(z) (3)
is ubually called the complex potential, whereas 1ts derivative
E
dz
is known as the complex velocity. Both of them are analytical, for they depend

only on z = r+iy variable. The analytical complex function have very significant
properties which enable a very broad application of them in fluid mechanics.-

=u—iv=V(z) (4)
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Namely, it 1s possible, using the conditions (2), to show that the functions @
and ¥ areharmonic and that the curves @(z,y) =const. and 1(z, y) =const. are
mutually perpendicular, so they form a square net, for it is grade Lgrady and
lgrade| = [gradw|. The following two properties of analytical complex functions
which also result from the conditions (2), play a very important role. The
derivative of a complex analytical function does not depend on the direction
in which the increment of variable z is observed, for conditions (2) show that
dw/dz = dw/dr = dw/d(1y); and finally, that conformal mapping of an analyti-
cal function leads again to an analytical one. The previously mentioned property
of the complex function derivative is connected with complex velocity (4), which,
as a physical quality, must have a finite value in the whole flow field, whereas
the conclusion about conformal mapping provides that each potential flow of an
mcompressible fluid. determined by complex potential (3), can be transformed
in as many potential flows as is the number of available transformations. In this
way, fluld mechanics has gained a mathematical power which enables a successful
solution of a great number of important and complex problems in the potential
flow theory.

Nonanalytical complex functions and their deflection from the analicity

First of all it 1s to be noted that only inviscid fluids flow with the velocity
potential i.e. fluids which in fact do not exist. In case of flow of real (viscous)
fluids, we always have rotV # 0. The vorticity exist and it is only expressed in a
weaker or a stronger form. This means that the study of real fluids velocity field
by means of a Laplace field (which corresponds to the potential flow of an in-
viscid fluid) can only be accepted as an approximation of the reality. Sometimes
this approximation can offer acceptable results for technical practice, but may
also lead to some wrong conclusions about physical qualities concerned with the
flow. According to this, it is concluded that the real fluid velocity field deflects,
more or less, from the Laplace field which is valid for a potential flow of an
inviscid fluid [2]. Observing the fact that for the Laplace field investigation the
analytical complex functions are used, it is natural to conjecture the existence
of such complex functions which could be also used for real fluid velocity field
studying [6]. These complex functions are called nonanalytical complex functions.
Namely, when the real fluid flow is concerned, the velocity potential does not
exist {ﬁ # grady). The stream function ¥(z,y) itself, always exists, due the
continuity of a flow field (div'Lf_’ = 0). However, it is still possible, together with
the stream function ¥(z,y), to observe some arbitrary real function ¢(z,y) (but
now V # gradp), whereby the expression @(z,y) + iv(z,y) will now represent
the nonanalytical complex function:

w(z,Z) = p(z,y) + 1¥(z, y), (5)

in which the ¥ = z —iy is the conjugated value of a complex variable z = z +1y.
In this case, functions @(z,y) and ¥(z,y) do not satisly the Cauchy-Riemann’s
conditions, for grady is not perpendicular to grady and also |grade| # |grady|. It
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is possible, according to Bilimovitch [1], to define the deflection of a nonanalytical
complex function (5) from the analicity such as:

B = gradg — [grady, k], (6)

where k = [7, j] is the z-axis unit vector. If the vector B is equal to zero,
the function (5) becomes (3), for the equation (6) giver the vector form of the
Cauchy-Riemann’s conditions:

grady — [grady, k] = 0, (7)

since, in this case, V = grade. In the paper [6], the geometric interpretation of
vector B has also been given, which is for that purpose shown in fig.1.

B=0 (POTENTIAL FLOW) B#0 (VORTICITY FLOW)

vizy)= Const,
¥z y)= (onst

Yexy)= const
Yix y) = comst,

ytaa.’w

Fig.1.
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[t is obvious that the vector B changes itself according to the position of point in
a flow field. It can always be projected on two arbitrary perpendicular directions,
thus in z and y directions also. In some or even in all points of a flow field, one
of the vector B projections on coordinate axis may be equal to zero. In that
case, function w(z,%) belongs to the class of para-analytical functions and gradye
or grady have then a permanent direction in a flow field.

Complex form of vector B and higher order deflections

When the application of nonanalytical complex functions in fluid mechanics
is concerned, it is more appropriate to represent the vector B in a complex form.
It is obvious that it is:

_ (%29, (2e, 0v) _,0u
B‘(ax ay)“(ay*ﬂx)‘?az' &

In general, B is also a nonanalytical complex function and therefore its deflection
By can be defined too, according to Fempl [5]. The same can be also applied for
By and that will lead to a function B,(z,Z) which represents the deflection of
By(z,%) from the analicity. In this way, one can come to higher order deflections.
It may occur that one of these deflections B; (i = 1,2,...,N) is an analytical
complex function, which leads to the fact that the next deflection B,y must
be equal to zero. And here comes a conclusion: if the first deflection is equal
to zero (B = (), we deal with potential flow of an inviscid fluid. When the
second deflection is equal to zero (B; = 0), the first deflection is an analytical
complex function B = B(z), and ¢(z,y) and v(z,y) are btharmonic functions. It
is proved that all nonanalytical complex functions with an analytical deflection
belong to the class of Goursat functions which have the following form:

w(z, %) = Fo(z) + 7 Fi(z), (9)

where F,(z) and F)(z) represent the arbitrary analytical complex functions. In
this case, ¢ and v are real and imaginary parts of Goursat functions, i.e. of
the first grade areolar polynomials, as denoted by Théodoresco [3]. If B is a
nonanalytical function and its deflection B; is an analytical one, the expression

w(z,%) = Fo(2) + 2 Fi(z) + 22 Fa(2), (10)

is a second grade areolar polynomial. Théodoresco [3] has also define the areolar
polynomials of the N-th grade as:

N
w(z,Z) = )" Fu(2), (11)
which are obtained as a solution of the following partial differential equation:

NV *+lw(z,7) .
s =0, (12)
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Since the order of the derivative of an areolar polynomial at the same time
represents the order of its deflection from analicity, these polynomials may be
described as nonanalytical complex functions whose deflection from the analicity
is an analytical function of the very same grade as the polynomial itself.

One must note that the vector B field is, in general, a complex field, for
from the equation (6) it is obtained:

divB = Ap, rotB = Avk. (13)

It is obvious that the vector B field is going to be Laplace field when ¢ and
1 are harmonic functions. However, this does not mean that the velocity field
will also be Laplace field and that sum ¢ + ¢ must be an analytical complex
function. This comes from the fact that functions ¢ and ¥, even if they are
harmonic, do not necessarily satisfy the Cauchy-Riemann’s conditions. In order
for the velocity field be a Laplace field too, the equations (13) must have a
trivial solution B = 0, which means that function ¢ + i) = w(z) is an analytical
complex functions.

Apphication of nonanalytical complex functions in fluid mechanics

Bilimovitch [1] was the first to demonstrate the application of vector B in
a complex form when the slow plane flow of an incompressible viscous fluid is
concerned. Namely, the Navier-Stokes’ equations for incompressible flow may be
written in the following form:

A4iC= [M_ﬁ] g [MH@

oz dy dy T (14)

where:

. ot dx d
fjit 31: (}u
C E(JT+U5;+Ld_y Fy).
G 3_1 du
T Bz dy

Since the right side of the equation (14) represents a deflection of the non-
analytical complex function 2pw — ip from the analicity it may be written as
A+1iC = B(z,Z). In case of the slow flow of a very viscous fluid, when gravity
forces are neglected (Stokes’ flow), it is A +iC = B = 0, and therefore the
function 2uw — ip 1s an analytical one. This means that both the vorticity 2w
and pressure p are harmonic functions, for they satisfy the Laplace equation
A(2w) =0 and Ap = 0. Since, we have 2w = —Avy, 1t is AAY = 0, which means
that stream function is a biharmonic function.
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Voronjec [2] has used the vector B for studying a stationary potential flow
of a compressible fluid. Namely, the continuity equation and the nonvorticity
condition
div (—) =0, rotV =0, (15)
Yo
lead to following well known relations:

_Od¢ _edy Oy o 0Y

The densities g4 and p correspond to the velocities Vo and V and pressures pg
and p, respectively. Although, we deal with the potential flow, complex function
@+ 1 1s not an analytical one, for equations (16) do not represent the Cauchy-

Riemann’s conditions. That 1s why a deflection of the nonanalytical function
@ + 1Y = w(z,Z) from the analicity, can be formed:

gz(l_i) V=[1-7(v?)] 7, (17)
Oo
because from the dynamic equation follows that p/gg = f(V?). The form of
the function f(V?) depends on the way the change of a thermodynamic state of
a compressible fluid during the flow is made. Practically, only isothermal and
adiabatic processes are to be taken into account. Now, the following expressions

can now be evaluated:

divB=Ap=-L (F’, gradf) ; (18)
rotB = Ak = [‘:’, gradf—] : (19)

From these equations one may see that both ¢ and i can not be simultaneously
harmonic functions. It is impossible for the scalar and vector product of two
vectors to be equal to zero simultaneously. It is well known, however, that from
the expression (16) the nonlinear partial differential equations for ¢ and v are
derived. The solution of these equations in some particular cases may be of
a great difficulty. That is the reason why Chapligin has proposed the velocity
hodograf plane for studying the compressible fluid potential flow.

In the paper [6] one more approach of using vector B for studying real
incompressible fluid plane flow has been suggested. In that case, the continuity
is satisfied with the stream function ¥ = y(z,y) using the following relations:
u = d/dy, v = —d¢/0z. The vorticity may be expressed as 2w = —Ay and
therefore, Navier-Stokes equations are reduced to this form:

Y 9AY Gy dAY
dy Oz dz dy

When the variables ¢ and y by using z and Z are eliminated from the stream
function 1(z,y) the new function ¥ = ¥(z,Z) is obtained, and therefore, equation

= vAAY. (20)
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(20) becomes:

oy % oy v _,. 8 (21)
0% 9220% 9z 8207° 9z207%
This equation suggests the use of complex velocity in the form
=2 Y
—iV = —i(u—iv) = 23—, (22)
' 0z

instead of function w(z,Z) defined by the expression (5). Since the complex ve-
locity is a nonanalytical function, because the real (viscous) fluid incompressible

flow is concerned, the deflection of this complex velocity from the analicity may
be defined as:

= —2w — idivV. (23)

az
From this expression it is easily seen that B; can not be equal to zero (i.e. that
complex velocity can not be an analytical function), because when we deal with
real (viscous) fluid flow, we always have 2w # 0. The other part in the equation
(23) is, however, equal to zero because of incompressibility. In other words, the
deflection B, would be equal to zero (i.e. the complex velocity would be an
analytical function) if it were 2w = 0, which means if the flow were potential.
The methods for stream function determination are, in this case, well known.

Since B, is, in general, a nonanalytical complex function, its deflection from
the analicity may be defined also (that is the second order deflection from the
analicity for a complex velocity):

B, =298 _ [a{dwm N a(zw}] - [a{dwv] B awm] |

az dx dy dy dx %)

In case of the real fluid incompressible flow (div‘[:’ = 0), the deflection B; may
be equal to zero (i.e. B; may be an analytical function). Then the vorticity
condition 2w = —At =const. as well as the equation (21) is satisfied. As it 1s
well known, the stream function in this case represents a complex flow which
consists of an arbitrary potential flow and a vorticity flow along concentrated
circles or straight lines.

The third order complex velocity deflection from the analicity for incom-
pressible flow is:
0B; _ &°Ay Ay, .0°AY
gz dx? dy? dzxdy
The condition B3 = 0 shows that the second order deflection B, is an analytical
complex function and leads to the following two partial differential equations:

Ay AY 0 Ay
dx? oy: ' 8zdy
From the second equation (26) follows that

AY = fi(z) + fa(y)-

53‘22

(25)

(26)
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The first equation (26) determines these two functions in the form of a second
order polynomial and, therefore, it can be written:

AY = Ci(2® + y* + Caz + Cay + Cy).

This equation may be by using an appropriate position of a coordinate system
and by introducing polar coordinates rewritten as follows:

ﬂ.lﬁ[’ = (_;17'2 + (?5

The solution of this differential equation is:

1 1
V=191 + Ecﬂ'q ot 1(','57-2, (27)
where v, is a harmonic function. The polar angle # may appear in the expression
for v, which is not the case for the remaining part on the right side of the
equation (27). When the equation (27) is written in the following form:

1 1
?j; = 1,{);(2,’,?) + EclzzEz =+ 4—(:52'3,
and then replaced into (21), it will be obtained:

¥i(2,Z) = —ivin(z/7).

The coefficient Cs may be equal to zero or proportional to the In(z,Z)/zZ form
of function. If Cs is taken to be proportional to this function, it will definitely
be obtained that:

1
¥ = —ivin(z/7) + Eclz?zﬁ + Cs In(23),
and by returning to polar coordinates:
1
v =2v8+ Téclrwzcﬁlm. (28)

This solution satisfies the dynamic equation (21), ie. (20). The very same
solution has been attained by Jeffery [8], who started with the assumption that
in the incompressible fluid flow field vorticity depends only on r. As it is easily
seen, this assumption is equivalent to the condition that the third order complex
velocity deflection from the analicity is equal to zero.
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DIE ANWENDUNG DER KOMPLEX-FUNKTIONEN
IN DER FLUID MECHANIK

Vor allem behandelt diese Arbeit den Beitrag analytischer Komplex-
Funktionen zur Untersuchung ebener potentiellen Stromungen des inkompress-
iblen Fluids. Weil der wirkliche Fluid nicht mit dem Geschwindigkeitspoten-
tial stromen kann, sucht man iiblicherweise eine andere Klasse der Komplex-
Funktionen um die ebene Stromung des viskosen Fluids zu erforschen. So
erscheinen die areolar—Polynome, die aus allgemeiner Klasse der Komplex—
Funktionen mittels von Bilimovitch [1] definierter ”Abweichungstufe” unana-
lytischer Funktionen von der Analytizitit abgesondert sind. Die Benutzung
dinamischer Gleichungen und der ” Abweichungstufe” des Geschwindigkeitsfeldes
des wirklichen Fluids, Voronjec [2] definiert hat, hat uns eine neue Menge von
Losungen der Navier-Stokes” schen Gleichungen zu findem ermdglicht.

PRIMENA KOMPLEKSNIH FUNKCIJA U MEHANICI FLUIDA

U radu se najpre govori o ulozi analitickih kompleksnih funkejja u
prou¢avanju ravanskih potencijalnih strujanja nestisljivog fluida. Realan fluid ne
moze da struji sa potencijalom brzine, pa je bilo prirodno potraziti neku drugu
klasu kompleksnih funkcija koje bi mogle da posluze za proucavanje ravanskih
strujanja realnog (viskoznog) fluida. Pokazano je da su to areolarni polinomi koji
su iz opéte klase kompleksnih funkcija izdvojeni koris¢enjem "mere odstupanja”
od analiti¢nosti neanalitiénih kompleksnih funkcija, koju je definisao Bilimovic
[1). Koridéenjem dinamickih jednaina strujanja realnog fluida i "mere odstu-
panja’ brzinskog polja realnog fluida od Laplace-ovog polja, koju je definisao
Voronjec [2], nadena su nova refenja Navier-Stokes-ovih jednacina.
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