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1. Introduction

The members of light slender structures, under increasing external load,
often undergo considerable elastic deformation. Elastic instability of this type
of structures may occur before they exibit any nonlinear material behaviour.
For this reason, geometrically nonlinear analysis for these structures has great
importance. The problem of geometrically nonlinear analysis of frame struc-
tures has been extensively studied by numerous authors [6], 8], (11], [13], [18],
[20].The approach is mainly based on finite element method and the analysis
may be formulated in either Lagrangian or Euler description. Both these types
of formulation have been extensively used for nonlinear and stability analysis of
structures.

The basic purpose of this paper is matrix formulation of the second-order
elastic analysis of frame structures which is much more simple than general
geometrically nonlinear analysis, and, at the same time, accurate enough for
practical purpose of structural design. The stress-strain and buckling analysis of
structures based on the second-order theory has been studied by various authors
[2], [7], [9], [14]. A review of earlier literature on the subject may be found
in the article by Goto and Chen [9]. They presented three different kinds of
stiffness equations that can be used according to the value of axial force of
the member. The simplified form of those equations can be derived from finite
element procedure assuming polynomial displacement functions [1].

Further extension of the former considerations with regard to formulation
of stiffness matrices and nodal force vectors of a member for various boundary
conditions, and the practical procedure of buckling analysis of frame structures
have been presented in this paper. The stiffness matrices and nodal force vector
are derived for various beam end connections (rigid-rigid, rigid-hinged, rigid-
free, rigid-symmetrical).

The stiffness and stability matrices are derived using two different approachs:
analytical solutions of the governing differential equations and finite element
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method assuming polynomial interpolation functions. The stiffness matrices de-
rived from the analytical solutions are first expressed in series expansion and
than reduced by some simplifications. The convergence of power series and the
accuracy of the obtained solutions are examined.

The governing differential equations

The governing equations for the second—order analysis of a prismatic member
can be easily derived using the direct approach. Herein, the variational approach
is employed, as much more general. The governing differential equations are
formulated through the principle of stationary property of potential energy.

A plane member - i,k - subjected to distributed force, p(z), acting perpedic-
ular to the member axis before deformation, is shown in Fig. 1.

"|’* v V+dV

Fig.1. Member notation (end actions, displacements, internal forces)

A cartesian coordinate system, (z,y), and displacement components, (u,v), are
defined at the initial configuration of the member. The notation for end actions,
displacements and internal forces is given in Fig. 1.

By using the usual assumptions of classical beam theory, the displacement
field of a beam can be given by
u(z,y) =u—yvg, (1)
viz,y) =9,
in which: u,v= the displacement components on the centroidal axis, both are
the function of r; and ( ), denotes differentiation with respect to z.

The nonzero component of the strain tensor (extensional strain) is expressed
by the displacement components as

e(z,y) =e+xy, (2)
where
1
E=Uu-+ Eui. y (3}
K = U.II-' o

in which; £, k= one-dimensional stretching and bending deformation measures.

The introduction of the nonlinear term %UE;_. in (3) reflects the couplng between

the axial and bending deformations.
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The axial force, N, and the bending moment, M, are related to the defor-
mations by

N = EA(e - eo) = BA(us + %-ui Lol (4)

M = EI(k — ko) = EI(v 2z + Ka) ,

in which E= Young’s moduls; A= cross-section area; I= moment of inertia
about z axis, and €. ko= the initial deformation measures. In case of temper-
ature influence. 1t 1s defined by
€0 = at (5)
At
Kp =0—),

h

in which a= coefficient of thermal expansion, t= temeperature chaige on the
centroidal axis, At= temperature difference between the upper and lower sides,
h= height of the member.

The transverse shear force, T, is related to, M, by
T=-M.,=-V+Hyg. (6)

The principle of stationary property of total potential energy is appled to es-
tablish the governing differential equations and appropriate boundary conditions,
1.e.

Ol = 6U — 6W

in which

)
SU = f (Née + Méx)dz (8)

o
1 6
§W = | p(z)évdz — ) Rigi .

? i=1
In the preceding expressions, Il is the total potential energy, [/ is the strain
energy, while W is the work of external forces (distributed force p(z) and gen-
eralized forces R; corresponding to the generalized displacements g,.1 = 1...6 at
the ends of the member); & i1s variational symbol.

Taking variation of Eq. 3, the following can be given:
de = du g +v vy, (9)
K = —0U oz .

Substituting (4) and (9) into (8) and (7) leads to:

I
1 1
/ {EA {(ﬂ,: -+ Evi —ep)bu . + (u,+ Ev?r - Eg}leﬁv.r] F ;

! fi
FEI(0ce +m)ivec} do = [ p(@)oods = Y Ridg =0, (1)
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Carrying out partial integration of (10) and taking care about (4) lead to:
- ¥
Now b +Nv v | — Mbv g |, +Mabv [, — > Rifgi—

=1

{
: 1
o ﬂuf {Efl{ug + ;ju?_r = Eu]‘l dr+ I[ll}
o T

r
—l—EiuJ {[E!{u,u Fiko)) . — [Efi{u., + %u:'; - En}ult] - p{::)} de =10.

As any variation of displacement unequal zero the next differential equations
foilow Trom (11):
L5
duF0 : [EAI:HII 2 Eg]] —i (12)
= X
> < L. ]
06 #£0 1 [El(ves +Ko)] o, — [E.-'—il:'ﬂlx g E.-}}v_:,,.] —plx)=0.

It

and the corresponding boundary conditions at nodes i and k:

J.nl"‘i‘H.':D
for =04 Nv.+ M, +V;=0
ﬂr’f—;\nlr;:l}
(13)
N—-—Hy=10
for e={{ Nv,+ M_-V, =0
.E‘rf-i—ﬂ’h.:{]

By using the relations between the internal forces and strains, equations (12)
can be transformed into:
NJ: =0 {l‘}.}
M —(Np)z:—p(z)=0.

The first of equations (14) represents the equilibrium equation in z direction,
while the second represents the combination of two other equilibrium equations,
1e.

Ve—plz)=0, (15)

M;-V-+Neg=0.
It derives from the first equations (12) and (14) that the axial strain and the
axial force along a-direction of the member are constant because there are no

distributed forces in the axial direction. Therefore, the internal force component

N can be shown as

_ 1 :
N=FEAle—¢ey) = =(u,+ Eui — o) = k*ET . (16)
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where k? is the constant (k® = N/ET).

Substitution of (17) into (12b), in case of the uniform prismatic member
(El = const.), leads to:

r) At =
"1-?..173:;'::&'_":2 rr — E.“E-;T “{ﬂ?}.rr . {-h}
The coupling between axial and bending deformations, respectively between axial

and transverse stiffnesses is evident from (16) and (17). The nonlinear term 3v?

which exists in (16) is the reason for that. By neglecting this term, the axial
and transverse deformations and corresponding differential equations become sep-
arate.

The basic difference between these two types of equations is whether or not
thay consider the bowing deformation (the effect of flexure and chord rotation)
in the calculation of axial displacement. As the bowing effect generally has little
influence on the final results, the simplified form of the governing equations will
be used.

Analytical solution of the governing equations

In general, the analytical solution of the differential equations (12) can not
be found for nonuniform beams. It is possible to find analytical solutions for the
simplified form of the governing differential equations (16) and (17) which are
well known from numerous texts. The solution for axial displacement u is the
same as the solution of classical (linear) theory. The solution of equation (17)
with respect to transverse displacement v consists of the two parts:

v(z) = vg(x) + vp(z) | (18)

where v,(z) and vy(z) are general and particular solutions, respectively. The
general solution of this differential equation depends on whether parametar k-
(or axial force N) in the governing equations produces compression (k* < 0),
tension (k? > 0), or zero (k? = 0) axial strain, can be written as

ug{r] =0y + askz + asgsinkr + agcoskr, N <0,

uy{m} = @y + fskr + agkr + aschkz N=>0, (19)

vg(T) = 1 + Gax + G3z® + Gaz N=0,

in which a;,@; and &;, 1 = 1...4, are generalized coordinates (unknown constants)
which can be determined from the boundary conditions at ends of the member.
In the case when the boundary conditions are given on the left end, i.e.

)
M{x]) = A (20)
)
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after elimination of the constants a;, it follows from (17):

sin kx | —cos kzx kx — sin kx :
(2) = vo + po— —MHT_LD———Z( Fi(z), (21)
where
Fl[l’} = l y
1.
Fa(z) = z Sin kz (22)
Fi(z) = N — (1 —coskz) ,
=9
Fy(z) = .ﬁ:;"\"[kr — sin kz) .
The constants C;,i = 1...4, have the clear mechanical meaning (displacement,

vg, rotation, g, bending moment, My, and transverse force, V4, at the start or
left end of the member respectively). For this reason, these constants are called
the starting parameters. The functions Fj(z),7 = 1...4, also, have quite clear
geometrical meaning [16].

The particular solution wv,(xz) depends on external loads and the temper-
ature. For distributed external load p(z), Fig. 2, vp(z) can be expressed as

(7]:

(@)= [ g bz =€) = sink(z - )] o(€)d (23)
a) b)
Mo I p{/{),l I Mo F
N = | | T : N {\.._\ M

£ ar - _f L | a I @

T i I ol
Fig. 2. Member loads: distributed and concentrated

For further considerations, especially for defining the stiffness equations, 1t
is convenient to have the analytical solution transformed in the following form:

v(z)=Nq= Zm z)g; | (24)

where Ni(z),i = 1..4, are interpolation (shape) functions. When the axial force
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is compresive (N < 0), the shape functions are:

Ni(§) = A™'[l — cosw — wsinw + (wsinw)é — sinwsinwf+

+ (1 = cosw) coswt | ,
Ny(€) = {Aw)™! [wcosw —sinw +w(l — cosw )€+

+ (1 — cosw — wsinw)sinwf + (sinw — wcosw) coswf | (25)
N3(§) = A7 [l — cosw — (wsinw)€ + sinwsinwé — (1 — cosw) coswé]

Na(€) = l(Aw) ' [sinw —w +w(]l — cosw)€ — (1 — cosw) sinwé+
: ¥

+(w —sinw)coswé |, &= T WS ki .
The shape functions for the tensile member (N > 0) can be obtained from (25)
replacing w = iw and using the relations shw = isinw and chw = cosiw. The
geometrical meaning of the shape functions is analogous to their meaning in the
classical theory. However, the difference between them exists. In classical theory,
the shape functions are polynomial, while in the second-order theory the shape
functions are trigonometric and hyperbolic functions, for compression and for
tension, respectively. Besides, these shape functions depend on axial force of the
member.

Stiffness equations

A stiffness equation of a member has usual matrix form:
R=k q-= Q i
where

RT = [-H;, Vi, M;, He, Vi, M{],
q” = [w, v, @i, uk, Uk, ¥,
QT =[Q1, @2, Q3 Qs Qs, Q6] .
k=[ kij )z -

and signify: the vector generalized forces, the vector generalized displacements,
the vector equivalent nodal forces and the stiffness matrix of the member, re-
spectively.

The stiffness matrix and the nodal force vector can be derived from analyt-

ical solution obtained in the preceding section.

Starting from analytical solution (24), (25) and taking into account (4) and
(6), based on well-known mechanical meaning of the elements of stiffness matrix,
the next form of stiffness matrix (Sekulovic 1978), can be given:
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[ ata 0 0 -ala 0 0
wlsinw lw?(1 = cosw) 0 —wisinw lw?(1 = cosw)
El Pu( sinw — wcosw) 0 =il —cosw)  Puwfw = sinw)
~Pa symmeiric i‘i;-"- 0 0
wlsinw —lw?1 = cosw)
L Puisinw — wcosw) |

w=kl, A=2(1-cosw)—w sinw

It is suitable to transform the stiffness matrix (28) into the form which is given
by Goto and Chen [9]:

2 E

[ AU 0 0 -4C 0
12¢, 6l 0 —12¢, Glg-
L - BI | o3 0 —blo; 2¢, (29)
3 | symmetric % 0 0
12909 —6lgs
i 4193 |

in which ¢;,7 = 1...4, are the functions-multipliers of the corresponding elements
of classical stiffness matrix. The analytical form of these functions is given In
Table 1.

Function Axial force l
compressive | N =0 | tensile
: w S0 w w sh w
91 124, L _124, |
; -..r‘gl—cns-;u 1 w (chw—1)
P2 E 5A_ ] Rl
s WISIN W= COS W chw—s5h w
@3 - 1 e )
; wiw—sinw} w(shw—-u!
Table 1. | P4 A 1 24,

N N
w=1 E;:TV“W w‘:ﬁg,

A:=2(l —cosw) —wsinw, Ay =2(1—-chw)+wshw

The dependence ¢; from the ration w*,(w” = %,Pg = Euler buckling load), is
shown in Fig. 3.
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Functions

a1 =
g I

Fig. 3. Functions ¢;

The stiffness matrix (29) is derived for the member whose boundary condi-
tions correspond to rigid connections in frame joints. Moreover, other different
boundary conditions at member ends can exist. Four types of the member,
which are nemed according to the marks of the right end of member, are shown
in Table 2.

The stiffness matrices are derived for all types of members by using bound-
ary conditions on the right end of member.

Type of End Generalized
member connections displacements
(forces)
) . . N @
| i Q T T
M,=0 5
4 } - Q - >
i g | Q QET Yy |
VS =0 |
£ | b ) 93 QE £
F ;:j Q - {—
i s L T Q, Q,
M.=0
!
5 , vi=0 N\
k >
1 f ¢ [ Q,

Table 2.
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The final forms of the stiffness matrices of members are:

Memter of type g

[ AC d 0 =42 1§ ]
El Jos 3o 0 —3ds
2
kg = 1'_3 Sf C)‘bs ﬂ: -3{¢ﬁ. 1
symmetrical % 0
5 3¢s |
Member of type s
[ 4 0 0 -4~ 0 0 ]
0 0 0 0 0
k. = E ¢’T 0 0 —¢s
g = I ATF ﬂ D 1
symmetrical 0 0
L o7 |
Member of type f
> 0 0 V)
k_,r = E{'{' D D 0
0 0 —wigw

The functions ¢;,i = 5...8 are given in Table 3.

Function Axial force

compressive | N =0 | tensive

- T —arichw

b | e [ 1 | -gdw

¢' wisinw 1 _wishw

f 34, 34,
7 wigw 1 —wethw

Table 5. s !i:u.l 1 *ﬁ

' N g
w=1 %, A.=sihw —wcosw, Ay =shw —wchuw.

Stiffness matrices expressed by power series

The stiffness matrices expresed by such analytical functions as shown in
the preceding section are differed according to whether the axial force N is
positive or negative. Moreover, the coefficients of the stiffness matrices become
indefinite when the axial force approaches zero. In that case, the stiffness matrix
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from the classical theory must be used. To avoid the mentioned disadvantages
and numerical difficulty, it is suitable to have the stiffness matrices expressed
by power series. These expressions are convenient for numerical analysis because
those are the same regardless of whether axial force is tensile or compressive, and
thay also are stable when axial force becomes zero. The functions ¢; ¢ = 1...8
expressed by infinite series are shown in Appendix 1.

s] =]
|
| "4
g = L Fi
e | K
- = | . [#,— ¢, i
a -3 @ =0 5 compressive | -g:‘ -2 !u'-: 0 compresmiuve L
BT -
d T,
- = |
=
- o =10 | |
-1 number of terms| ) number of lerms
) T T T T Y T T T 1 T T T T T T T T
1 2 = ; 4 -] 5 7 S 9 1a 1 2 3 4 ] 5 7 L] L ] ]

w* =20 compressive |

|
':]
T [4-9
‘ w® = 1.9 compresfive
- number of lerms o number of ferms
T T T T i J 1 ¥ 1 T T T T T T T 1
1 2 k| & -1 & 7 B 3 12 1 2 ] 4 L & 7 | 9 1a
2

number of lerms number of lerms

1 1 T 1 T T T T T
& 7 -] 9 U] 1 2 k| 4 5 & ' -] 3 ]

Fig. 4. Convergence of power series
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The convergence of the infinite power series is very important for efficient
numerical analysis. Therefore, this problem is especially examined and some of
the results are shown in Fig. 4. As ¢;,i = 1...8, are the functions of N,
the necessary number of the series terms also depends on the axial force N. It
1s evident from Fig. 4. that the convergence of series is slower for the larger
values of N. Moreover, the convergence of series is faster for tensile than for
compressive axial force. For this reason, the necessary number of terms for
numerical computation is necessary determined by examining the convergence of

the power series with regard to the maximum compressive axial force and the
required accuracy.

MNodal force vector

The loads applied along the member must be converted into a set of equiv-
alent joint loads (nodal forces). The nodal forces corresponding to the member
loads can be obtained from analytical solution of the governing equations. Herein,

the final expressions from which the components of nodal force vector can be
determined are given [16]:

Distributed member load (Fig. 2a)

U{I] =1+ ;‘on{I] + J"'r‘faF;a.{I:] + VOF4I:$) =3 f.;l.':!:] 1

BT VoFs(z) - Io(z). (33)

M(z) = —Elvz: = g Elksinkz + M, coskz + V, Fa(z) — I2(x)
V(z) = —Elvggp + Nv, =V, = Ii(z),

w(z) = pocoskx — M,

in which

Fi(z - €)p(€)de |

Fa(z — €)p(€)dE , (34)

Fy(z = §)p(£)dS .

/
/

1a(2) = | " Fa(z — E)p(€)de
i
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Concentrated member load (Fig. 2b)

v(z) = vy + woFa(z) + M, Fa(z) + Vo Fs(z)+ | MF3(z —a) — PFy(z — a) .

P{I] = o coskz — ﬂiroksin kr + Vo Fa(z)+ | —
M .
- Tfkslnk{z—u}— PFs(zx —a) . (35)

M(z) =g, Elksinkz + M, cos kx + V, Fa(z)+
+ | Mcosk(z —a)— PFa(z —a),
Viz)=Vo+ | =P.

It is necessary to take into consideration the terms after vertical line in (35) only
for + > a. End actions of the member can be obtained from (33) and (35) and
from the corresponding boundary conditions. The end actions are transformed
into the nodal forces by a simple change in sign. The componentes of the nodal
force vector for various member loads are shown in Appendix 2.

Simplified stiffness equation

The stiffness matrices obtained in the preceding section can be accepted
as exact as they have been derived from the analytical solution of differential
equations of the second-order theory. Consigently, the matrices expressed by
the infinite expansions, can be used whatever the quantity of axial force my be.
Except that form of the stiffness equation. another sunplified form exists which

15 commonly used. In such a case, the matrix stifiness equation analogous to
(27), can be written as

R =(ko+ks)qg-Q (36)

in which ko= conventional stiffness matrix, kg= geometric striffness matrix
(stability coefficient matrix). The geometric matrix can be obtained following
usual finite element procedure, assuming polynomial displacement functions. In
such a way, using the polynomials satisfying the differential equations of linear
(first-order) theory as the interpolation functions, the approximate solution of
the differential equations of the second-order theory is obtained. Therefore, the
stiffness equation (36) is approximate, but it is simplier and easier to use than
the exact stiffnes equation. The procedure for finding the geometrical matrix
is herein omitted. Only the final expressions for various types of members are
given:
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Member of type k

Sekulovié, M., Maléevid, I

i 0 0o 0 0 0 0 7
36 3 0 -36 3
N 41 0 -3 -9
kgr = —
“F = 300 0 0 0 (37)
symmetrical 36 =3
L 417
Member of type g
0 0 0 0 0
N 6—-A (L=A) 0 —=(6-2X)
kg, = — (1=A)%2 0 —(1-2A) (38)
symmetrical 0 0
6— A
q, 2
Yo o
8(30 +w?)
Member of type s
i 0 0 0 0 0 7
0 0 0 0 0
_ N 2-2 0 0 (1-X)
kg, = 61 | symmetrical 0 0 0 (39)
0 0
L 2—X
ji - 5|’.n'2
4(10 + w?)
Member of type f
00 0
RINE
=NI{0O O O Ao —————— .
k(_‘,’j N i B yix 1 8{3{}—|—w3} '[*‘-1[]')
G X

Geometric matrices given by (37-40), can also be obtained from the cor-
responding stiffness matrices expressed by power series retaining the first two
terms (Allen and Bulson, 1980). Eq. 36 has quite a simple form and is suitable
for the eigenvalue analysis of frame buckling. In the stress- strain frame analysis
Eq. 36 can be used only for moderate value of the axial force, N, and lateral
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load, p(z). When, N, or, p(z), become large, Eq. 36 loses its accuracy and, in
such a case, a member must be divided into smaller elements. The division of a
member has a disadvantage as it considerably increases the member of equations
(degrees of freedom) in structural analysis.

Solution procedure

The structural stiffness equation can be obtained using the usual assembling
procedure. This equation is nonlinear algebraic equation because the member
stiffness equations are nonlinear. The axial force is present in both the member
stiffness matrix and the nodal force vector. An iterative procedure is neces-
sary to solve such problems. There are more than one solution procedure for
geometrically nonlinear structural analysis, which have been described in many
references (see, for example [10]).

Herein, a simplified procedure may be applied by utilizing the two following
qualities: 1) the member stiffness equation is nonlinear only in terms of axial
force, which is the linear function of the nodal displacements 2) the member axial
force calculated by the second-order theory usually does not differ greatly from
the corresponding force calculated by the first—order theory. It has been made
posible to reduce the number of cycles in the iteration procedure to just one.
The value of member axial force may be obtained from the firsi—order analysis
(using the same second-order formulation with N = 0). After the axial forces
are obtained it is posible to calculate stiffness matrix and force vector for each
member, and to attain structural stiffness equation. In the next. final step, it is
necessary to solve stiffness equation and to determine the nodal displacements
and member forces. Regarding applicability to structural design analysis, the
procedure with only one cycle is the simplest and, at the same time, mainly
accurate enough for practical purposes.

Bifurcation stability analysis

Bifurcation stability of frame structures may be examined by emploving
the homogeneous structural equation of the second-order theory. According to
the well-known stability criterion, the structure becomes unstable at the load
intensity w (bifurcation load) when structural (tangent) stiffness matrix becomes
singular. The critical buckling load is determined by finding the smallest value
of w for which the determinant of the structural stiffness matrix is equal to zero,
Le.

det K(w) =0 . (41)

"

This procedure gives exact values for critical load. However, a large quantity
of caluclation is generally involved because the elements of stiffness matrix are
transcendental functions of w. Therefore, for investigation of the bifurcation sta-
bility problem, the simplified form of stiffness equation is much more convinient
to use. Then, according to the stability criterion, it follows:

det [Ko +w.Kg]=0. (42)
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in which w. is the critical (least) intensity of load. Eq. 42 has the form of the
classical_eigenvalue problem. The eigenvector corresponding to the eigenvalue w.
gives the mode shape of the system and can be determined from the following
equation

[Kﬂ"I‘WnKG}El =l y

in which q is the generalized displacement eigenvector. The critical load obtained

from (42) is approximate, but usually accurate enough for a wide range of frame
structures.

Computer program and numerical results

On the basis of teoretical consideration presented in the preceding sections,
the programe (NAK-2) for PC has been developed. The program is intended for
static and buckling analyses of plane frame structures subjected to external load
and the temperature influences. This program creates opportunity for two kinds
of the second-order analysis: "exact” and "simplified”. The first— order analysis
as a special case of the second-order analysis is contained, too. The critical
(bifurcation) load and the corresponding buckling form can be determined.

Using this program two of typical plane frames have been analyzed.

Portal frame - The structure-load system and load-deflection curves are
shown in Fig. 5. The solution is compared with the solutions obtained using
finite element analysis (FEA) and the geometrically nonlinear analysis. It is
obvious that it is well in agreement with these solutions. The load- deflection
curves for various values of lateral (horizontal) load is shown in Fig. 5b. and
compared with the solution given by Conor et al. [6] (the second-order theory
with taking into consideration the bowing effects). It is evident that these two
solutions are practically the same, thus, neglecting the bowing effects has been

justified. The bifurcation load for the frame is deterrmined.

Two-story frame - The second analyzed example is two—story and two- bay
frame with uniformly distributed load and concentrated lateral loads (Fig. 6).
The load—deflection curve for the horzontal displacement on the top of frame is
shown in Fig. 6. The critical load 1s determined and the corresponding buckling
form is shown in Fig. 6. The comparative results obtained by the second—order
theory and the first-order theory for maximum column moment (at node 1),
according to different load levels are given in Table 4.
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Fig. 6. Two story frame
Table 4.
Load p Moment at node 1 (kNm) i
(kN/m) | Second order analysis | Linear
‘exact’ | 'simplified’ | analysis |
10 2.401 2.399 2.265 |
50 15.299 1523 | 11.325 |
100 42.834 42.741 l 22,649
150 05.689 95.42 33.974
175 141.681 141.178 J19.636
200 213.743 212.104 45.298
225 339.359 333.614 30.961
250 598.064 377.018 56.622
275 1389.267 | 1275.843 | 62.285
290 3810.537 | 3031.167 | 65.682
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Conclusion

The elastic second—order analysis of the plane frames has been considered.
The matrix formulation for two basic kinds of the second-order analysis: the
stability matrix approach and the geometric matrix approach are presented.
The stiffness and geometric matrices for different types of nodal connections
of prismatic member are derived. The problem of bifurcation stability and
finding critical load is discussed. The corresponding computer program has been
developed and two numerical examples solved. From the numerical results and
discussions presented in the preceding text, it appears that the proposed method,
with only 6ne element per member, may be used with reasonably good accuracy.
The proposed method is strongly theoretically founded and, at:the same time,
it is simple enough, so it may be recommended for design analysis.
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TEOPWUSA BTOPOI'O MOPAIKA 1JA AHAJIM3A
PAMHBIX KOHCTPYRKLMWNA

llenbo HactoAmen paboThl ABNAETCA KOHCMCTEHTHOE WM3JIOMEHME Ma-
TpuuHoi dopmynuposBkr Teopuu BTOpOro nopaika ¢ NpUMeHeHHMeM B Ipak-
TUYECKOM aHaliM3e M pacyeTe pPaMHBLIX KOHCTpyKIMi. Manoxkena papua-
uHoHHaA dopmynupoeka Teopuu BToporo Nopsaka, Kak CrielMalbHBIA CIydaii
00IIero reoMeTpUUYECcKOro HelIMHeHHoro aHalu3a.

[Ipenebperaa afpdexkroM conmpaAKeHMs AKCHMALHBIX M MoNpeYyHaXx aedop-
maimii (bowing effect) u3 ofummx BHIMpaskenuid nonydeHa ynpolneHHasa dopma
aMddepeHumManbiblX ypaBHeHMH 3agaud. BuBeaeHbl MaTpulbl MECTKOCTH,
reoMeTpuYecKad MaTpHlla M BeKTOD SKBUBAalleHTHBIX CHJ B y3lax A pa-
3MMYHHLIX Clly4YaeB KpaeBblX YCJOBMM Ha KoHLAaX cTepwHfa. B kadecTBe MH-
TEPHOAAUMOHHBIX (YHKIMHA MCIOJMb30BaHbl MOJWUHOMEI U TPUIrOHOMETPUYECKHE
(runepBonudyeckue) GyHKIMM, COOTBEUTBYIOLIME pellleHMID JMHEApPWU30BaAHHOM
Teopuu Broporo nopsAmaka.

Paspa.ﬁo’raua obimasn nporpamMmma JIJA HOMIOBHOTepa, TIMpHMMeHeEHWe KO-
TD[JDF'I MINCTPpHUPpOBEAHO Ha HECKOJBEMX KOHKpPpeTHaX NpHMepax. Pemennsa
COMoCTaB/eHbl COOTBEUTBYHOUMMH pellleHMAMA obulero reoMeTpuyecKM He-
JIMHEHHOTD aHAIM3a U C pelleHHUAMA ElaccHYeckKol nMuHelHol Teo PHHK.

TEORIJA DRUGOG REDA ZA ANALIZU OKVIRNIH KONSTRUKCIJA

Cilj ovog rada je konzistentan prikaz matriéne Teorije drugog reda sa pri-
menom u praktiénoj analizi 1 proraé¢unu okvirmih konstrukecija. IzloZena je vari-
jaciona formulacija Teorije drugog reda kao specijalan sluéa) opste geometrijski
nelinearne analize.

Zanemarujuci efekte sprezanja aksijalnih 1 transverzalnih deformacija (bow-
ing effect) iz opstih izraza dobijen je pojednostavljen oblik diferencijalnih
jednaéina problema. Izvedene su matrica krutosti, geometrijska matrica i vektor
ekvivalentnih sila u évorovima za razlicite slucajeve konturnih uslova na kraje-
vima Stapa. Za interpolacione funkcije koridéene su polinomi 1 trigonometrijske
(hiperboli¢ke) funkcije koje odgovaraju resenju linearizovane teorije drugog reda.

Razvijen je opsti program za raéunar £ija Je primena ilustrovana na nekoliko
konkretnih primera. Resenja su uporedena sa odgovarajuéim reSenjima opste
geometrijske nelinearne analize 1 sa resenjima klasiéne linearne teorije.
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APPENDIX I.

- NOTATION

The following symbols are used in this paper:
£ = extension in z direction

k& = bending deformation

gp = inmitial extension in z direction

xo = initial bending deformation

A = cross-section area

I = moment of inertia

E = Young’s modulus

a = coefficient of thermal expansion

w = axial force parameter

R = generalized force vector

q = generalized displacement vector

Q = generalzied loads vector

k = member stiffness matrix

ks = member geometric stiffness matrix
k, = stifiness matrix for member of type g
k; = stiffness matrix for member of type f
k, = stiffness matrix for member of type s
[/ = strain energy

W = work of external forces

[ = total potential energy
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APPENDIX II.

- NE}DAL FORCE VECTOR FOR DIFFERENT MEMBER TYPES

II. 1. - Member of type 'k’

Load Components of nodal force vector
compressive tensile
| Distnbuted | Q, =0 Q2,=0
loads (s -J[ 2sinwly - (1 - cosw)iy | Q2 = %[[ Sshuwly - (1 - chw)ly |
and
temperature | @y == L(w - sinw)ls - (1 - cosw)ly | | Qs == L{w - shw)ly - (1 - chw)ly |
changes | Qy = 0 Q=0
Qs = "T[ “sinwly - (1 - cosuily | + I.l | Qa- ET[ #shwl, - (1- chutly | + [,
Qs =5 L(weosw-sinw)l+(1-cosw), |-I3 =3[ Lf{wchw-shw)fy+(1- chw) Iy -1y
Q!I = Q]_ e U
Q: = E[(ka’ - sinka')sinw Q: = E[(ka’ - shka')shw
P - (1 - coska')(1 - cosw)| - (1 - chka')(1 - chw)]
J, @ = L£L{(1 - cosw)(ka’ - sinka’) Qs = EL[( chw - 1)(ka’ - shka’)
— - {w - sinw)(1 - coska')] + (w - shw)(1 - chka"}|
a ' Qt =0 Qi =10
I’! - Qs = 5{{.&:-:1 - sinka)sinw | Qy = %[l:l:u - shka)shw
- (1 - coska)(l - cosw)]| - {1 - chka)(1 - chw)]
Qs = £[(1 - cosw)(ka - sinka) Qs = £L[( chw - 1)(ka - shka)
- (w - sinw)(1 - coska)] + (w - shw)(1 - chka)]
Q; =10 Qt =10
Q: = Ml{(sinw(1 - coska’) - @: = M[(shw(chka' - 1) -
M - (1 - cosw)sinka’ + (1 - chw)shka'|
i_fL‘ Q= %[[l - cosw (1 - coska') Q= %f—[{l - chw)(1 - chka’)
a o - (w - sinw)sinka’| - (w - shw)shka’]
] | Q=0
a 11 Qs = M{(sinu(1 - coska) - Qs = M{(shu(chka - 1) -
- {1 - cosw)sinkal + (1- chw)shka]
= %[{1 - cosw)(1 - coska) Qs = w[{l chw)(1 - chka)
- {w - sinw)sinka] - {w - shw)shkal

A =21 - cosw) - wsinw

A =21 - chw) » wshuw
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II. 2. - Member of type 'g’

231

Load Components of nodal force vector
compressive tensile
Dhstobuted Q]_ =1 Ql =0
loads Q2 = =2=2([(1 - cosw) + Nlycosw | Q= S2%(h(1 - chw) + Nlichw |
and Q3 = -[NLSLM + Ijfw - sinw)] Q; = '{NLshm + Ifw - shw)j
temperature | {y =0 Q.=10
changes Qs = "‘—‘E;—?{f-:[l - l:ﬂﬁw} + N[cosw ] -0 Q; = %“‘ﬂ:l - ﬂh"&-'} + NIchw 1 - Iy
P Q=0 Q=0
‘L Q= [(1 cosw sinka’ - @2 = L{(chw(ka' - shka’) +
—t— {ku sinka')cosw] 4+ chw(ka' - shka')]
. @3 = LL[(w - sinw)sinka’ Q= %[(u - shw)shka’)
Pty - (ka' - sinka’)cosw| - shw(ka' - shka')]
Qi=10 Qi=0
Qs = E[(1 - cosw)sinka’ - Qs = E[{chw{ka* - shka') +
- (ka' - sinka')cosw| - + chw(ka' - shka)] -
Ql o U' Ql = D
Q2= M2[(1- cosw)coska’ Q: = *=[(1 - chw)chka’
M - :nsu.r{l coska')| - chw(1 - chka')|
ri-c Q: = %[cuskn’{u - sinw ) Q= -E—[sl‘w{l chka')
T - (sinw(l - coska’)] - (w - shw)ehka')]
'-_-'r__-. Qq =10 | Q4 - D
- Qs = =M([(1 - cosw)coska’ Qs = =32[(1 - chuw)chka’
- cosw(1 - coska')] - chw(1 - chka’)]
A, = w-cosw - sinw A, = shw - w chw
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II. 3. - Member of type 's’

Load Components of nodal force vector
L compressive tensile
|_ —— Tt
Distobuted | @, =10 =0
loads Q=1 Q=1
and Qs = —=L[NL + L(1 - cosw)] @y = =[NL + L1 - chw)|
temperature | @, =0 Q. =0
changes | Qs = ——[Nheosw + [i(1 +cosw) |- | Qs = —=[NIchw + {1 +chw |- [
|
|
¢F Q]_ = ‘J QI = {}
Q! =P Q; =P
,I }_H Qi = "._f:_[[cusu - coska’} D = "::w [(chw - chka’)
. ﬂ_% Q.=0 Q=0
1 | Qs = ZE{1 - cos(w - ka')] Qe = g1 - chlw -ka')]
M Q=0 Q=0
|. 2:” Q=0 J Q=0 i
I o Qa:% IQ:,:H:::'“
—— 'y : =Minka o : E_a_:_gﬁ
QE FLL ™ Qﬂ ph

I1. 4. - Member of type 'f’

Load Components of nodal force vector
compressive tensile .
Distributed ]
loads &, =0 ¢y =0
and Q=1 _ Q: =1
tempera.ture Q’; - ﬁ[fi - I| % . Qa = ﬁ[f} = f1. %
changes |
y=l |
@i=0 =0
Qz =P Qg =P

Qy = ffj:[sinka’ - sinw| | G = ﬁzsbu - shka’|

Ml

G=0 Q = ‘
= - 2 Qi =4 O Q? B I:'L' hka'
: Q= _H.::_:.:u Qa =3 =7
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II. 5. - Integrals [, i1=1,.4 (r =1, end of member)
_AP
ez 2o (w? - 2 + 2cosw ) FE (L - 2w 4 2sinw ) £ (w2 + 2cosw-37 )
l_.__‘.._.—l JI
;—~—i|:.——'| pa Zcosk(l — a) - £ ka +sink(l — a)- i,?:‘;[w&n . !'?—t
li -cosw | - sinw | -cosk(l — a) + cosw |
_..:'.Zi ! 13 Pa?
3 pias &= (kacosk(l — a) + T ["J L4 ;—:j;[""* -
a a | +sink(l — a)- sinw| | +Ji:usmﬁ:|[f -a)- -kacosk(! —u.‘,|
— -cosk{l — a)+cosw| -sink(l — a)+ sinw |
-p [wkia? kst
__‘AF 2 | Er(k*a’cosk(l - a) ?'f"*[ 7 i b Tt
a - b e +2kasink(! — a) smkl[f - a] - -k*atcosk({l —a) -
l__,__._ﬂ—l 2
| S DA -2cosk(l — a) -Ekucmk{l —al -2kasink(l — a) +
: +2cosw | -2sink(l — a) + 2sinw | | +2cosk(l — a)-2cosw |
l |
at |
i v 18 Elasif] . cosw) 22tsing | 28¢(1 - cosw)
_t

|




234 i Sekulovi¢, M., Maléevié, 1.

APPENDIX III

- FUNCTIONS ¢;,i = 1..8. EXPRESSED IN THE FORM OF POWER
SERIES

1 = K
';5! == TE'E 1+Z (2ﬂ+ 1]|[iu2} H

66 |27 4~ (2n+2)

L[, &2+ L]
%=1 L3+§(2n+3)1{ )

f fr & 1 s
= 58 b+r§[2n+d]1{i“"}_ !
¢ ~i‘1+i (2"
P73, | & (2n) ol T
@ —L-Hi;{ﬂ: >
°T 36, | T & (@n+ D) 2 ’

=L 1+i;{:b Eh
e T
oo -
8_:::51
where
| 2Ant D) ooy
= Z oy @) )

1 T T

ﬂf"i’_iJrz_:l{_-.z]rhuu!'::t“”} |

a1 2yn
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