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1. Introduction

The differential equation of vibration of a single degree of freedom system
has been a subject of investigation by many authors. A particular problem
represents the solution of this equation in the case of arbitrary external load, like
earthquake ground motion, and the analysis of non-linear systems. In such cases,
a numerical step-by-step method of solution has to be applied. For solution of
this problem there are several numerical methods. The most of them are based
on the assumption of constant or linear variation of the response acceleration
during the time step of integration. Between the most well known methods of
solution are the Newmark’s 3 method, the Wilson's ©® method and the Clough’s
method of linear variation of the acceleration [1].

However, the application of these methods requires short time intervals of
integration, resulting in large number of integrations, and sometimes the solution
could be unstable. This is particularly true in the case of non-linear analysis and
short period systems. The Willson's © method is considered as unconditionally
stable, but its application implies an iteration process and long computational
time of solution. A simple and unconditionally stable method of solution would
have some advantages over the presently available methods of solution of this
problem. Such a method should be the one which is going to be presented in
this paper.

The method is based on the numerical solution of the differential equation
of the problem. The procedure of solution is similar to the derivation of one-
dimensional finite elements for analysis of beam problem, which recently also has
been applied in the development of two- and three-dimensional elements [2,3].
The derivatives of the differential equations are approximated by the derivatives
of the interpolation function, yielding the time finite element matrix. The one
element solution gives the step solution. The analogous one-dimensional beam
bending and stability element always gives excellent or even exact results, and
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consequently, the time finite element for solution of the vibration problem, also
should give very good results.

2. The method of solution

As already has been mentioned, the method of solution is similar to the
derivation of finite elements and therefore it could be called time finite element
method. The time interval of integration is represented by one element and the
derived element gives the solution of the problem at the time step.

2.1 Derivation of the solution

The differential equation of equilibrium of the forces acting on a mass of a
single degree of freedom system is as follows,

mu + cu + ku = p t2:1)

where m is the mass of the system, ¢ is damping coefficient, k is stiffness, p
1s external load, function of the time, u is relative displacement, and the dots
mean derivatives on the time. In the case of multi-degree of freedom systems
the differential equation in matrix form will be the same. The solution of such
system can be represented in terms of the solution of single degree of freedom
system. Thus, the solution of single degree of freedom system presented here,
can be applied on the solution of multi-degree of freedom systems also.

Equation 2.1 with the first term on the left side only, is the same as the
beam bending equation, with beam stiffness ET instead of m and distributed
load p. With the third term on the left side added the differential equation
defines the beam stability problem. The derivation of the time finite element
should be similar to the derivation of the beam element.

By differentiation of eq.2.1 twice is derived,

dtu i d3u " .E:dzu d?p
m e =

dt? di? dt? dt?

The main point in the numerical solution of differential equations by the applied

method, which yields finite elements, is the approximation of the derivatives of

the equation as a product of lower order derivatives of the interpolation function.

The derivatives of this equation can be approximated as follows,

(2.2)

A __dodu
dt2 —  dt dt

d3u d?gﬁ du

B a (2.3)

du d?e d?u

ded — de? de?
where # is assumed interpolation function, u = ¢ u; and u; are nodal parameters.
The best assumption for this function is the solution of the homogeneous portion
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of the differential equation, or the highest order polynomial which satisfies the
homogeneous portion of the differential equation [4]. In this case that is the
following third order polynomial.

u:u1+ﬂ.gf+{13f2+ﬂ4!:i (2.4)

The coefficients of this expression can be defined by the values of the displace-
ment u and velocity (first derivative) at the beginning and the end of the time
mterval At ("nodal” values), which is equivalent to their defining in the case
of stiffness beam element. Another approach could the assumption of the dis-
placements and accelerations as primary unknowns, which is equivalent to the
mixed beam element. The expression of the coefficients of the polynomial 2.4 in
terms of the nodal displacements u and velocity u vields the well known beam
function, or Hermitian polynomial, as follows,

u =uy (1 —3t2/A8% + 28 /AL) + uy (32/A12 — 263/ A4%) +
(2.5)
+uy (8 — 22 /At + 2/ AL?) + s (—t2/AL + 3/ AL?)

The interpolation function ¢ is defined by the associated terms to the nodal
parameters of this polynomial.

The first term of eq. 2.2, approximated as eq. 2.3¢ provides, and integrated
along the time At, yields,

12/A8° —12/A¢*  6/At  6/At uq

. 12/At2  —6/At 6/At 1o
Md =+ y 0 i (2.6)
Symm. 1 o

This is the same matrix as the well known beam stiffness matrix, with EJ = m
and beam length [ = A¢. In the standard slope-deflection method, or the finite
element method, this matrix always yields exact results, regardless of the type
of loading and the number of elements of subdivision.

The second term of eq. 2.2. which gives the contribution of the damping,

approximated as eq. 2.3b provides. and integrated along the time At, yields the
following matrix,

0 0 I 27
c |0 O i -1 -
_Etl I A A (27)
I 1 =AEHD =M

The third term of eq. 2.2, approximated as eq. 2.3a provides, and integrated,
yields the following matrix,

=19 B2 v =018 =01
g % 5 (R I 7. 0.1A¢ ;
8 g —2A1%/15  At?/30 (2.8)

Symm. —2At%/15
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This is also a well known matrix, the geometry stiffness matrix, used in the
analysis of the stability of beams subjected to compression by an axial force N,
which in this case is N = k. The use of the eqs. 2.6 and 2.8 in the analysis of
the stability problem. yields critical force with error of the order of one percent.

It is interesting to note that matrix 2.8, usually derived in an energetic
way, is with opposite signs to the signs of the matrix derived here (with positive
diagonal terms). The signs of the matrix derived here are correct.

The initial conditions, at the beginning of the time interval of integration,
—uy and 1, have to be known. The unknowns are u- and wus, at the end of
the time interval. Therefore only two equations are necessary, which have to be
defined by the second and fourth rows of the previously defined matrices. In
matrix form these equations will be,

uy
m|a —a b b us | | P .
At [—h b e {!'] i [ {pg} (2.9)
to
where:
-12 1.2k —6 ke c
o S P Jas TRt il B
. At? m At 0 m m
At? k At At k At
B 0 QT T . I ...
S e o 5 m  2m

The integration of the differential equation yields nodal forces, i.e. forces at the
beginning (1) and at the end (2) of the time interval. The nodal forces due to
the external load p, according to eq. 2.3a will be defined as follows,

dm@

PEsl T

di (2.10)

In the case of linear variation of p,
p=pi(l—t/At) + pa b/ AL

the load matrix becomes,

prss { (p1 —Ew'&ﬂ}

During the derivation of this matrix there was a dilemma how this matrix has
to be defined. For easier understanding of the problem the beam analogy had
to be used. In the case of the beam problem the second term of this matrix
means nodal moments due to the distributed load. And since the moments
(external load in this case) are of linear variation, there 15 no distributed load
and consequently the load term is equal to zero. The present system: known
initial conditions and unknown values at the end of the interval, is equivalent to
a cantilever beam with left end fixed. In the beam problem the second equation
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defines zero total moments at the right hand end. However, in this case the
equivalent to the moment is the end inertial force, which is not equal to zero,
but it is mu. This means that the load vector has to be as follows,

P:{(Pl—Pz.-"ilf}} (2.11)

'il".fi.'!-_;'.g
The inertia force can be defined from eq. 2.1 as follows,
mﬂ_g = Py — C'l‘.ll'_'; — .IE."H? [212}

The second and the third portion of this value have to be transferred to the left
side and the following equation will be derived,

iy
=y (53] Ca 3 usz _ _1__ P — P2 ? 1
—C3 C4 Cs c-;] iy _'m{ pa At } (4:34)
where,

ey = 12/At% — 1.2k/m, ¢3 =4 — 2kAt?/15m + cAt/2m,
cs = —6/At + 0.1kAt/m —¢/m (2.14)
cqg = —6/At+ 1L.1kAt/m+c/m, c5 =2+ kAt/30m — cAt/2m

For convenience, eq. 2.9 has been multiplied by At/m. The main contribution
to the matrix equation (2.13) have the terms 12/At* and 6/At. When the
time step is small, the contribution of these terms is much dominant over the
contribution of the terms associated to k/m = w?. In such case the resulting
values of u, and u, have to be the same as the same values derived by the
method of linear acceleration variation. Thus, in the limit, when the time step
becomes small enough, the both methods have to give same results, which means
that the results derived by solution of eq. 2.13 should be good. More about this
1s given in subchapter 2.3.

Two ways of solution of eq. 2.13 can be applied: (a) incremental, by
derivation of Aus and Aus, and (b) direct derivation of us and 1.

2.2 Incremental solution

The general solution of the differential equation (2.1) can be represented
as a sum of the solution of the homogeneous portion of the equation and the
particular solution, as follows,

w

u= sinwt + up coswt | + Au (2.13)

where up and g are initial displacement and velocity. The first portion is the
well known contribution of the initial conditions, and the second portion is the
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particular solution, contribution of the external load. This portion can be derived
from eq. 2.13, by substitution ug = ug = 0. In that way eq. 2.13 becomes,

o es] fAul _1[p-p +
& alat =%l a1

The solution of this matrix equation yields,

Ay = L 2Pt —pa) — caprAt

(2.17)

m C1Ca2 — C3Cy

; 1 Al — - Do

Ag = L P2 ca(pr — pz) (2.18)

i C1C2 — C3C4

The total solution 1s,
Ugp = ug -t Au

(2.19)

Uy = ﬁg + Au
where uj is transient response, derived by substitution f = At into eq. 2.15, as
follows,

0 _ g-twat U1t LWt

s sinwAt + coswiAt (2.20)

ke’

where u; and %, are the values of the previous step. The derivative of this
expression defines the velocity,

1) = —fwud + e 78 (4 + fwuy) coswAL — ujw sin wAt] (2.21)

The last 2 expressions seem rather complex. However, the time step of integra-
tion At usually is taken as constant and once these expressions computed for
t = At they become simple.

The acceleration at the end of the step will be computed on the base of the
previously computed displacement and velocity, according to eq. 2.12, as follows,

t:'.g = Ilpg = ﬂg ] kuz]fﬂl {222}

Here the following question can be arisen: can the contribution of the transient
response, represented by first portion of eq. 2.15, of the all previous history, be
represented by the contribution of the initial conditions at the beginning of the
time interval, as defined by eq. 2.207
The answer to this question will be given by consideration of the undamped
transient response, which at a time t will be defined as follows,
u? = Eiﬂsil'ln.ai + g coswi

At the time t, = t; + At this expression yields,

ul = uisinw{tl + At) + ug cosw(t; + At)
wt
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The following substitutions:

sinw(t; + At) = sinwt, cos wAt + coswt, sinwAl

cosw(f; + At) = coswt coswAt — sinwty sinwAtl

nto previous equation yield,

Ug 3 : ug .
ug = |—coswt; — uy smwtll sinwAt + {—smutl + up cmutl} coswiAt =
w w

= % sinw At + uy coswAt
This means that the total transient response can be substituted by the con-
tribution of the initial values at the beginning of the time interval. Thus, the
procedure applied in this, called incremental method, is correct. And in addition,
1t 1s important to note that for constant At the contribution of the transient
response is defined by a simple expression.

2.3 Direct solution

The displacement u, and velocity 1y at the end of the time step of integra-
tion can be computed directly from eq. 2.13. The values of the previous step
uy and u; as known can be transferred to the right hand side of the equation
and the following solution of the equation derived,

_ c2Apy — c3Apy
Us = DT (2.23)
: c1Ap; — caAps
T 2
s DT (2.24)

where

Apy = (p1 —p2)/m+cruy —c3iy
&pg:pg&tﬁn+c3u; — €5 g {225:]'
DT = C1Co — C3Cy

The acceleration us again is computed according to eq. 2.22.

It is interesting to compare the solution by the linear acceleration method
and’ the solution presented here. The acceleration at time t, (i;) can be defined
as follows,

muy = py; —cuy — kuy
The substitution of this value into the linear acceleration method solution yields,

5 p1(2 + cAt) + pa + uym(6/At — C?.ﬁf.:] — up(3k + JkcAt)

L k+ 6m/ALZ + 3¢/Al

(2.26)
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The same increment derived from eq. 2.23 is as follows,

: € af A _ L ol o8

0.4k + 6m/At2 + 3Je/At + falk, At, ¢)

Ny =
(2.27)

!.f,l [%n—; + fﬂil".‘, r{.llf, F}] — Hl[gk "|"'.f2{k, i!’, I:'.':]']

)z 0.4k + 6m /A2 + 3e/At + fa(k, AL, )

This expression is rather complex and therefore some terms of minor importance
are not given explicitly, but they are stated as functions. The comparison of the
eq. 2.26 with eq. 2.27 shows that some terms in eq. 2. 26 are not present. But
the main contribution terms, associated with Af in the denominator, are the
same. Thus, in the case of very small time step interval the both equations will
give approximately the same results. However, in the case of a long time step
comparing to the system period, the results will not be the same. The linear
acceleration method in such cases does not give good solution. The results of the
analysis of the numerical examples which follow show that the method presented
in this paper gives good and stable solutions even in the cases of long time steps
of integration.

3. Numerical examples

For the testing of the accuracy of the presented method some examples, for
which there is a theoretical solution, have been solved

The stability of the solution is governed by the determinant DT(2.25). In
the analogous beam stability problem (with matrix C=0) and DT = ¢j¢2 - 3
this determinant defines the critical force. In this case it is the "critical” k/m,

k 3 '..1'2
— :I'l,ll_

m REENE

or wAi = 7/2. With the damping included and somewhat modified DT, as
defined by eq. 2.25, there is no real "critical” value of wAtf, but the solution of
the problem becomes unstable around the same wAt = = /2. This 1s in the case
of At = T/4. Such a time step length is quite long. It seems reasonable to take
a time step of At = T//8. The length of the step is limited by the external load.
In the case of arbitrary loading, for instance like earthquake ground motion, it
seems reasonable to take a maximum step length of At = 0.05 sec.

The examples following are solved with assumed step At = 0.05 sec. The
period of the analyzed single degree of freedom system is T = 0.4 sec.

The system was subjected to a rectangular (step) impulse, half sinuscidal
impulse and triangular impulse, for which there is a theoretical solution. The
two cases of step and sinusoidal impulses were subdivided and integrated in two
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steps, and the triangular impulse case was integrated in one step. The results
of the analysis are presented in table 1.

The load vector computed by application of eq. 2.10 and 2.13 is given In
the first row. The analysis is carried out for undamped systems (£ = 0), and
damped systems with damping coefficient & = 0.05 of the critical. The results
of the analysis by the incremental method are presented in columns 1. The
increment of the displacement Au and velocity Au are computed by application
of eq. 2.17-18. The contribution of the initial values (of the previous step) u®
and u” are computed by eq. 2.20-21. The total response is a sum of these two
components (eq. 2.19).

Table 1. Response of a single degree of freedom system to impulsive loads;
At = T/8 = 0.05 sec.; multiplication factor 10%.

St ke . | e
t = 24t = 0.1 Sec
1 2 3 1 2 3 | 1,2 3
£=
Loaid vec. {01} {-1.04672 0.05801} {10}
i 0.1186 0.1186 0.1187 0.0557 0.0557 0.0558 l 0.0783 0.0784
iy 4.499 4.499 4.502 2.993 2.993 3.001 2.127 2127
Load vec. {01} i {1.04672 0.00569} 1 0}
uz 0.4050 0.4049 0.4053 0.2676 0.2676 0.2702 0.1893 | 0.1815
iy B.362 5.360 6.366 4.236 4.233 4.244 2.661 2.553
£ =0.05
uy 0.1156 0.1156 0.1159 0.0545 0.0545 0.0544
i 4.328 4.328 4333 2.910 2.910 2.919
uz 0.2851 0.3876 0.3566 0.2604 0.2608 0.2592
iz 5.877 5.852 5.900 3.915 3.939 3.911

1) Column l-incremental solution, 2-direct solution, J-impulse solution.

The results of the analysis of the response by the direct method are pre-
sented in columns 2. In the first step, because of the zero initial conditions, the
incremental and direct solution are the same. The displacement and velocity of
the next step are computed by eq. 2.23, as a function of the external load at
the step time and the previous step values.

The results of the analysis by the impulse solution are given in columns
3. The contribution of the previous step values are computed by eq. 2.20-21.
That is the solution of the homogeneous portion of the differential equation. The
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theoretical solution of the response of the system to a step impulse is as follows,

— : .

Ay = % [l—a_E“"[coswt+ESjnw!}] (3.1)
This is the particular solution of the differential equation of vibration for initial
conditions © = u = (. The substitution of ¢ = Af into this equation yields
displacement increment Aw. The total solution at the end of the time interval

will be,
u=u’+ Au (3.2)

The particular solution of the velocity increment Au is derived by differ-
entiation of eq. 3.1 and substitution of { = At. The total velocity solution
15,

u=u’+ Al (3.3)

By the use of the corresponding impulse solutions, in a similar way the theoret-
ical results for the sine and triangular impulses were computed.

"I'he response to a triangular impulse was analyzed for an undamped system,
but for two cases of impulse length: At = 0.05 sec. and At = 0.1 sec. The time
step of integration is the same as the impulse length, 1.e. the integration is in
one step. [t was interesting to see what would be the accuracy of the computed
response by a step length close to the "critical”. Therefore the second time of
integration and the impulse length were taken At = 0.08, close the "critical”
value At = 0.1 sec. (wAt = m/2).

The comparison of the results in columns 1 and 2 with those in column
3 (theoretical), shows that the results derived here by the presented method of
solution are of excellent accuracy. The errors are a small portion of a percentage,

within the accuracy of computation (by a pocket calculator). Somewhat higher
errors have the results with damping, but still much less than a percentage.

Another illustrative example is the response of the system to a harmonic
(sinusoidal) loading. The results of the analysis of this example are given in
table 2.

In columns 1 and 2 is given the transient response, computed by eq. 2.20-
21, with £ = 0. The increment solution given in columns 3, 4 is the same as
given in table 1. The response at the end of the time interval given in columns
5, 6 is computed as a sum of the values in columns 1, 2 and columns 3, 4. The
theoretical response is given in columns 7, 8..

The analysis of the results presented in the table shows that the accuracy
of the applied incremental method is very good. The difference between the
computed and the theoretical results is very small and can not be represented
graphically. The analysis is carried out for one cycle of vibration of the system
and 2 cycles of the harmonic loading. After that the response is repeated. At
the end of the cycle of vibration the response has to be equal zero. The error
of the computed response is negligible.
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Table 2. Response of the system to harmonic loading; T = 0.4 sec. At =
0.05 sec. £ =0, @ = 2w, multipl. factor 102

Time Theory
u? ul Au Au u u u i
Sec.
1 2 3 4 5 ) T B
0.05 0 o | o00ss7 2.093 | 00857 | 2.993 0.0560 | 3.001
0.10 0.1741 1.4980 0, 0955 2. 738 0.2696 4,236 0.2702 4.244
0.15 03812 0,000 =0.0557 =-2.993 0.3256 -2.992 0.3262 -3.001
0.20 0.0955 -5.7321 -0.0955 =-2.7358 0 -8.470 ] -5.488
0.25 -0.3821 -.002 0.0557 2993 -0.3204 -3.009 -0.3262 -3.001
0.30 -0.3662 1.498 0.0955 2.738 -0.2707 4,236 -0.2702 4,244
0.35 -0.0007 6.002 -0.0557 -2.993 -0.0558 3.009 -0.0560 3.001
0.40 0.0960 2.747 -0.0955 -2.7T38 0.0005 0.009 0 0

The results presented in the both tables show that both: displacement and
velocity are of similar accuracy. The accuracy of the acceleration computed from
the equation of equilibrium (2.22), also should be of the same order accuracy.

4. Conclusions

A method of solution of the differential equation of vibration of a single
degree of freedom system has been presented. In a way the method represents
extension of the finite element method to the solution of this problem. However,
the time finite element 1s developed directly from the differential equation of
the problem, by approximation of the high order derivatives with a product of
lower order derivatives of the interpolation function. Two methods of solution
were presented: incremental and direct method of derivation of the displacement
and velocity. The acceleration is computed by satisfaction of the equilibrium
equation. All of them are of the same order accuracy.

The method was tested by computation of the response of a system to
impulsive and harmonic loading, for which there is a theoretical solution. The
errors of the computed response represent small portion of a percentage. The
method gives practically unconditionally stable solution. Even in the case of
quite long step of integration At < T'/5, the results are good.

The method offers application of long steps of integration and saving of the
computational time. The advantage of this method would be the reliability of
the results and the saving of computational time.
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HYMEPWYECKOE PELIEHUE IU®®EPEHIIMAJTBHOIO
YPABHEHWA BUBPALIWH

PacmarpuBaercii HymMepudeckoe peltenre AuddepeHIMaIbHOTO Ypas-
HEHWA BUOPALMM CUCTEMBI C OIHMM cTeneHeM cBoGonel. Pemeduwe fnocre-
MeHHO, IAr — M0 Iar MHTerpuposaHue. Beicime audepeHUMannyibl ypas-
HEHMA AlPOKCUMUPVIOTCA NPOW3BeIeHHeM HW3IIBIX audepenHumanos. Taxum
0Bpa3oM MMONYyYaeTcsd TaK KaK BpeMeHCHil KoHeuHbl ajiemeHT. Hymepuueckue
pe3ynbTaThl [OKA3LIBIOT O4eH XOPOIIYI TOYHOCT MIPUMEHEHHOrO [OTXOMA.
Pewenne crabuabHOE Oaxe B cly4aidl NpMMeHeHMA [JONroBa IIara MWHTe-
rpupopanma At = T/5.
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