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1. Introduction

The state of art of the above problem is described by Zienkiewicz [1], p.333
as follows: "It is ... possible to derive elements that ezhibit complete continuity of
the appropriate components along interfaces ... Extenston to the full stress problem
is difficult and as yet such elements have not been successfully used’.

The main formal problem with such type of continuity folows from the
common opinion that "the disconnection of stress variables at corner nodes can
only be accomplished for all varables”™ ([1], p 332.).

In the present, and in some previous papers, [2], [3], [16], [17], this problem
is completely resolved by considering only the nodes at the boundary surfaces
(and interfaces) as a points where the stress variables are to be prescribed or
disconnected, what appropriate.

To handle stress components adequately and conveniently, we accommodate
the boundary (interface) nodal coordinate surfaces to be coincident or at least
tangent to the local boundary surfaces and/or interfaces. Then it is possible, in
addition to the displacement constraints, to treat also the stress constraints as
essential boundary conditions. As it can be concluded on the basis of the existing
(iterative) computational evidence of Cantin et al. [15], (Loubignac method [23])
where the stress boundary conditions were satisfied in an iterative manner, such
an approach can significantly improve the results, especially at the vicinity of
a boundary, or when the number of elements is small. Hence, this approach is
a very promising way towards improvement of the performances of mixed finite
elements.

Although either the authors of [11] and [13] were aware about this possibility,
as it can be concluded by careful reading of these papers, none of them used it
practically, and in both papers the mechanical boundary conditions are treated
as the natural ones. It looks that theoretical and practical aspects of the direct
treatment of stress constraints as essential boundary conditions, at least in the
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most general case, remained an unsolved problem until the paper [2] appeared. In
that paper the coordinate independent (tensorial) interpolations/approximations
[4] are—used allowing easy adjustment of the local coordinate systems to be
tangent to the boundary or interface.

Albeit important for the correct task definition, the problems discussed in
[2] are of, more or less, "technical” nature. and, once formally solved, induce the
appearance of some fundamental difficulties.

It has been indicated in [16] that mixed FEM problems in elasticity, espe-
cially if the polynomials of the same order are used for both the displacement
and stress shape functions (an obvious choice), and if the boundary traction con-
ditions are fulfilled as the essential ones, usually do not satisfy Brezzi conditions,
and hence cannot be solved. The problem can be superseded formally, by the use
of higher order interpolation functions for the stresses. Hierarchic interpolation
(Appendix B) is proposed, because in this case the addition or elimination of
the particular basis functions does not influence the remaining functions.

In the present paper solvability of a problem is studied in detail. Special
care has been devoted to some quantitative properties (sizes) of the finite element
subspaces under consideration. Superconvergent numerical results justified the
proposed approach.

2. Field equations

Let us consider a complete system of the field equations in the linear elas-
ticity, where

divl+f—pa=0 inB (2.01)
e—3(Vu+Vu’) =0 inB (2.02)
T—-Cie=0 inB (2.03)
T-n—-p=0 ondB (2.04)
u-w=0 ondB, (2.05)

are respectively the equations of motion, strain-displacement and stress-strain
relationships, boundary traction conditions and geometric boundary conditions.
In these expressions, T is the stress tensor, ¢ the mass density, f the vector of
the body forces, a the acceleration vector, e the strain tensor, u the displacement
vector, L the elasticity tensor, p the vector of the boundary tractions, w the
vector of the prescribed displacements. Finally, B is an open, bounded domain of
the elastic body, n is the unit normal vector to the boundary dB; 9B, and 8B,
are the portions of 9B where the stresses or the displacements are prescribed,
respectively.

3. Boundary traction conditions

As it has been already mentioned, if one wants to treat also the stress
constraints as essential boundary conditions, it is necessary to introduce special
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coordinate systems, having coordinate surfaces tangent the boundary surfaces
of a body. In this special case it is possible to determine some of the stress
tensor components from the boundary tractions at the point of consideration.
Per instance, if y!")=const. is the equation of a boundary surface, then [2]

t'") = p'al"), (3.01)

Hence, if the boundary tractions p' are known, one can easily determine the
corresponding stresses t'") at the boundary surface y!™) =const.

In practice, it is convenient to introduce local right-hand Cartesian systems,
having axes y! and y? in a plane tangential to the boundary surface at the
boundary node under consideration, say L. The remaining axis y* can be taken
in the direction of the outer normal to the boundary surface. Then the above
equation becomes:

tL*Ll"J — th1 (3_(}2)
In the plane stress case the above expression reduces to
!LI[:T] :pLi1 {SUS}
or, more detailed
ELI[EJ s FL11 tLE(E}I e pL21 (3['4}

4. Weak form of the field equations

Let us suppose that both boundary conditions (2.04) and (2.05) are essential,
and hence exactly satisfied by the trial functions of a problem. Then we need
to consider only the weak forms of the equations (2.01-03).

4.01. The equations of equiltbrium

By the use of the Galerkin procedure, one can seek the weak solution of the
static counterpart (a=0) of (2.01) from the scalar product

]v-dideV = —fv-fdl-". (4.01)
<) B

where v is taken from the space L? of all square integrable vectorfields.
4.02 The strain-displacement and the stress-strain relationships

We will consider the standard case, i.e. invertible constitutive equations
(2.03), when one can write

e= AT, (4.02)

where A is the elastic compliance tensor. From the comparison of (2.02) and
(4.02) it follows that

1 r
AT = 5 (Vu+ vu”). (4.03)
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If the test functions S are taken from the space T? of all square integrable
symmetric tensorfields, the weak solution of (4.03) can be determined by the
help of a relatively simple expression

/s;m:fr — Vu)dV = 0. (4.04)

B

4.03 Weak formulation of a mized problem

By the simple summation of (4.01) and (4.04) one obtains a new and far-
reaching expression (4.05), which allows asymmetric weak formulation of a mixed
problem, associated with the mixed (Reissner’s) variational principle:

Find TeH(div) satisfying Tn|sp,=p and ueH' such that u|sg, =w and

/{S:ﬁs:T —S:Vu+ v-divT)dV = -~-[v-de (4.05)
B B
for all S € T? and all v € L%,

In this expression H(div) is the space of all symmetric tensorfields which
are square integrable and have square integrable divergence [5], while H! is the
space of all vectorfields which are square integrable and have square integrable
gradient.

However, it i1s presently a common sense that asymmetric formulations are
impractical from the computational point of view. By the use of the divergence
theorem over the second integral in the above expression, we obtain the well-
known [6] symmetric weak formulation for the mixed problem:

Find T € H(div) satisfying Tn|ss, = p and u € L? such that

][S:ﬁa:T + divS-u + v-divT)dV = —/v-de - ‘/ (Sn)-wdA (4.06)

5 B 8B,
for all SeH(div) satisfying Sn|sz, =0 and all ve L.

Although symumetric, this form is not very popular amongst the finite ele-
ment practitioners, at least for the two reasons. First, both the stresses T and
their variations S are taken from H{div), the space unfamiliar for an average
finite element user, and second, the use of the discontinuous displacements from
the space L? and natural displacement boundary conditions is awkward for the
same people. Nevertheless, this interesting formulation is frequently elaborated
by mathematicians [5], [6].

At variance with the preceding case, application of the divergence theorem
over the third term of (4.05) gives a more popular (especially amongst the
engineering oriented scientists [1], [10]) form of a mixed problem:

Find T € T? and u € H' such that ujsp, = w and

/(S:.&:T—-S:?u—‘?v:T)dV:—]v-de— f v-pda (4.07)
B B a8,
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for all S € T? and v € H' such that v|ss, = 0.

If the constitutive equations are locally satisfied (see (2.03) and (4.02)) the
above equation straightforwardly reduces to the primal (displacement) problem:

Find u € H! such that ulss, = w and

fe(v):nc:e(u)w=fv~fdv+ ]v-pde (4.08)

B B anB,

for all v € H' such that v|ss, = 0.

Note also that a finite element model based on (4.07) for the linear dis-
placement — linear discontinuous stress triangle is numerically equivalent to the
classical linear displacement (constant stress) triangle based on (4.08). Some
authors even regard (4.08) and (4.07) to be equivalent, or simply neglect (4.07).

However, if the bilinear displacement - five term stress quadrilateral 1s
considered, from (4.07) follows one of the most successful quadrilaterals - a
Pian-Sumihara [7] mixed-hybrid element.

5. Finite element approximations of the field equations

In this section and in the rest of the paper we will consider only the problem
defined by (4.07).

5.1. Classical mized approach

We let C, be the partitioning of B (B closed) into elements £ and define
the finite element subspaces for the displacement veetor, the stress tensor and
the appropriate weight functions (variations) respectively as

Up = {ueH'(B) |ulos, =w, ule =UX(E)uk, YEeln}, (5.01)

T = {T € T¥(B)|Te = TL(E)TE, vEEe {:h} : (5.02)
Vi={veH'(B)|vlss, =0, vl|e=VM(E)vy, VEECL}, (5.03)
gy = {seTz(B] | S|e :SN(z')s”,vge{:h}. (5.04)

In these expressions, ug and T are the nodal values of the vector u and tensor
T, respectively. Accordingly, UX and T are the corresponding values of the
interpolation functions, connecting the displacements and stresses at an arbitrary
poiit in £ (the body of an element), and the nodal values of these quantities.
The complete analogy holds for the displacement and stress variations v and S

respectively. The test subspaces V, CUj and Sy=T; in this particular case.
Note that v|sg, = 0.

Because the displacement spaces are the same as in the classical displace-
ment approach, and the stress space can be discontinuous at the element bound-
aries, it is a straightforward task to construct the elements of the above type. '
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5.2. Conlinuous stress and displacement mized approach

The_stresses and stress variations here are taken from a smaller space, the
same as in (4.06), or even more restricted T € T' ¢ H(div) C T# je

Ty = {T € T'(B) | Tle = TL(E)TE, YEEG), (5.05)

Sh = {S € T'(B) | Sle = Sn()S", VEeC). (5.06)

Technically, the boundary traction conditions are treated as the natural ones
(identically as in the displacement method), while at the interfaces the stress
components are disconnected (again as in the displacement method). From the
point of view of known finite element techniques, the part of a mesh limited by
the boundaries and interfaces of a body under consideration (Regular Part of
Structure, RPS in [13] and [14]), can be understood as a large composite mixed-
hybrid [7], [10] element, having continuous stress and displacement fields in the
interior, and requiring only the displacement continuity at the boundaries.

The advantage of the described approach is in a fact that for the displace-
ments and stresses one can use interpolation functions of the same type, and that
for an average finite element user the stress continuity, where appropriate, i1s an
obvious and attractive property of a model. This approach has been succesfully
used by Mirza and Olson [11] for linear triangles, and by the present authors [13]
for bilinear quadrilaterals, and the numerical results indicated superconvergent
properties of a model. Eigenvalue analysis performed by Olson [12] for the
triangular and rectangular elements of this type is also very useful for the further
development of a model.

5.3. Satisfaction of the boundary traction conditions

The purpose of the present, and of some previous papers, [2], [3], [16], [17],
is to discuss, at variance with the preceding case, the situation when stresses
satisfy also the boundary traction conditions. Although this approach is not
necessary from the point of view of the variational principle (4.07), where the
stress boundary conditions are satisfied as the natural ones, we will see that,
in the finite element equations (5.09), one can separate known and unknown
nodal stress values, and hence also satisfy the stress boundary conditions as the
essential ones, i.e. equilibrate the boundary tractions (components of the stress
vector).

Hence (only) at the boundaries and interfaces we allow that our TeH!
behaves as TeH(div), instead of T€T? from the preceding case. Finally, the
stress and its variation subspaces will be

T e {T € TY(B) | Tnlss, = p, Tle = TL(E)TE, VEE :::h} (5.0T)

Si= {s € T'(B) | Snlss, =0, T|e = Sn(E)SY, VEe ch} . (5.08)
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As it has been already mentioned, in the paper of Cantin et al. [15], where
the stress boundary conditions were satisfied in an iterative manner, it has been
shown that such an approach can significantly improve the results.

5.4. Compact matriz form of the finile element equations

As it has been shown in [2], the finite element equations based on (4.07)
can be written in a form

[ 1e)=[or wlle]-[ata] oo

In this expression unknown (variable) stresses t, and displacements u,, and the
known (prescribed) ones t, and u,, are separated. The members of the matrices
A and D, and vectors (column matrices) F and P (the discretized body and
surface forces) are, respectively:

At = T / SN 9%ya 9trye Aabed 0605 9oy Tz AV, (5.10)
Muu Z/SNL' g(N‘,Iu dVgEJ{::}}Er (5.11)
=2 f oM VM o av, (5.12)
P Zf (M)e yM pe gV, (5.13)

(K)q (M)g

In these expressions 9(N o and ga are the Euclidean shifters. Computation of

these quantities is described in the Appendix A. Furthermore, UK = UK /5&,
and & (a,b,c,d = 1,2,3) are local (element) coordinates, usually convected (para-

metric, isoparametric). Agpeq are the components of the elastic compliance tensor
A.

A full flexibility of the present, coordinate independent formulation allows
that nodal coordinates z(¥)" and y(L)* (see Appendix A) can be chosen arbi-
trarily and independently at each node, and hence enables the exact enforcement
of the (essential) boundary conditions. In addition, some or all of the stress
components, which are already prescribed, can be kept variable, which allows a
lot of experimentation with the boundary conditions. Note that in the last case,
when all stress components are retained variable, the spaces (5.07) and (5. 08)
reduce to (5.05) and (5.06).
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6. Solvability and stability of a system

6.1. Fundamentals

Let us consider a system (5.09), and rewrite this expression shortly as

o VI =6] 6o

In this expression, D is an n; x n, matrix. ' maps an n; dimensional vector ¢
into a n, dimensional vector g.

Let us apply now the QR decomposition over the matrix B:
D=Q lﬂ , (6.02)

where @ is an orthogonal matrix, and R is an upper (right) triangular matrix.
(2 can be partitioned [6] into Y, whose columns span the range space of D, and
Z, whose columns span the null space of D:

D=[Y 2Z] [fﬂ_ (6.03)

Consequently, one can write that
D=YR, (6.04)
Any n, dimensional vector can be expressed as a linear combination of
ny=ny +ng, (6.05)

linearly independent orthogonal vectors-columns of ¥ and Z and hence

t=Yp+Zq=[Y z][ﬂ. (6.06)
After some algebra the equation (6.01) can be rewritten as
—-R Y'AZ Y'AY u Yf
0 2Z'AZ Z'AY gl = |-&F (6.07)
0 0 -R p g

6.2. On the effective solution of a system

It is evident that, at least in principle, one can determine p and ¢ from
(6.07). Hence, it is possible to determine the stresses t from (6.06), before than
the displacements u, which can be found a’pesteriory also from (6.07).

Consequently, we can call such an approach by the traditional name ”the
force method”, where p and q are, respectively, " statically determinate” and 7 stai-
tcally indeterminate” generalized forces.
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Although (6.07) can be used for the effective solution of (6.01) or (5.09),
especially when A is a singular matrix, the examples considered in this paper
have regular A matrices, and hence can be solved by the symmetric solver
described in [14]. Note also that the system matrix in (6.01), although not
necessarily positive definite, is nonsingular and symmetric, and hence also can
be solved by the symmetric Gaussian elimination.

6.3. Solvabilily of a system

According to [9] the conditions for solvability of (6.01) and hence of (5.09)
are now clear: we need that

R', as a mapping: Y — R™, is invertible. (6.08)
On the other hand
Z'AZ, as a mapping: Z — Z, is invertible. (6.09)

Note that from (6.07) it follows that R' is a lower triangular and hence square
matrix. Consequently

Ny = Ny (6.10)

However, if one wants for R to be invertible, it is necessary also that
rank D = n,,. (6.11)
Note also that from (6.09) it follows that

rank A > nz. (6.12)

Now we can express the conditions (6.08) and (6.09) respectively in terms
of the matrices D and A, and of the null space Z:

Du=0 = u=0, (6.13)
vAy >0 Vye Z. (6.14)

Due to (6.03) and (6.05)
m=nz4+ny =nz+n, > ny, (5-151

which is (obviously) a necessary condition for the solvability of (6.01). How-
ever, it is not sufficient. Already, solvability can be defined by the following
proposition:

Let A be an n¢ x ng square matriz and D an ny x ny matriz. Furthermore, let 7 be
defined as in (6.03). The linear system (6.01) s uniquely solvable for every f € R"
and for every g € R™ 4f and only 1f conditions (6.13,14) are salisfied.

However, from the practical point of view, the rank conditions (6.11-12) also are
a useful check for solvability of (6.01). '
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6.4. Stability of a system

The stability and solvability are closely related. l.e., the system (6.01) is
not solvable if its matrix
T - [ A ‘D], (6.16)

-DT ¢
1s stngular (not invertible) i.e. if the determinant of M is zero. Analogously, the
solution of (6.01) is unstable, if the determinant of (6.16) is small, i.e. if the
matrix M is ul-condilioned.
Anyhow, the stability deserves to be more precisely determined. According
to Arnold [5], the stability property of (6.01) refers to the continuity of mapping
from the data f and g to the solution u and t.

The stability constant

The stability constant S is a smallest constant such that

[[6¢]] -+ [[oull 8 Sl + (189l
el =+ Ml = AN+ gl

for all ¢, u, 6t, du and f, g, 8f, 6g with At— Du= f; Dt = g; At — Déu=§6f;
Dét = ég. Roughly speaking, the relative error of a solution is bounded by the
relative error of the right side multiplied by the stability constant S > 1. In the
problem under consideration, the stability constant can be defined as a product
of norms of M and of its inverse [9].

(6.17)

Brezzt's theorem

The Brezzi's theorem will be explained following Arnold [5], without proof which
can be found elsewhere [9]. Let us denote first the integrals from (4.07) as

alS, T} :]5:1‘4‘&:Tdv, d(S, u) :/S:Tudl’. (6.18)
&1 5

In the next step we define the quantity

: d(S, u
Bh = Slensfh us\gu&:ﬁﬁ, (6.19)
and supposé that there exists a positive constant ap such that
a(T, T) = ai||T||* VYT € Zs, (6.20)
where
Zp = {T € Tu(B) |d(T,u)=0 Yue Ui(B) VY€ ECy}. ' (6.21)

Then the stability constant S may be bounded in the terms of reciprocals of the
constants ap and Fp. Thus if for a sequence of problems of type (6.01) the ay
remain bounded uniformly above zero (this is the first Brezzi condition) and the
B do likewise (second Brezzi condition), then the resulting method is stable.
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According to Arnold [5], the first Brezzi's condition simply asserts the invert-
ibility of the operator Z*AZ in (6.07). Similarly, the second Brezzi’s condition
just asserts the invertibility of R.

6i.5. Some special properties of the system under consideralion

Before of all, let us note that norms of the particular importance for the
present case are:

TR aivy = ITI2 + |divT|2, (T3 = |TI3, (6.22)

where the appropriate seminorms [6] are

IT)2 = Z/lTFdV, |divT|? :Z[|div‘1‘|2dl-’. (6.23)

If the weak form (4.06) is used, it follows that ([5], p. 294) "Since it s
possible to find T which s bounded by | everywhere but for which the divergence
of T 1s arbitrarily large, there cannot erist a constant o such that a(T, T) >
C'h”THEH{div} for all T i H(div). So the "a” form 1s indeed not coercive”.

By contrast, in the present paper a weak form (4.07) and hence a norm
||T||p2 is used. Moreover, in the analysis of the regular mixed (T, u) formulation
of elasticity problem, A is positive definite and (6.19) is satisfied for all T €

I

Tx(B). Consequently, in the present problem "a” 1s coercive.

Remarks on the solvability

In the accordance with Oden [10] p. 134, if the second Brezzi’s condition is
to hold, so also must a condition on the rank of D, (6.11). Then an B exists
such that (6.19) holds whenever

Dv =0 implies that v=0. (6.24)
This means that we should have
dim Ty > dim VUy, (6.25)
where
th = {2&}‘ = T-f'uh + "?u;, uy £ Uh} (ﬁ?ﬁ]
For the problem considered, VU} is evidently a strain space.

Let us discuss now the dimensions of the spaces under consideration. In
ther absence of the boundary conditions, and if the same mesh is used for both
the displacements and stresses, taking also into account the symmetry of the
stress tensor, the dimensions of the displacement, strain and stress spaces will
be respectively:

ny =dimUy =nN,; n¢=dimT, = %n{n + 1) Ny;
n. = dimVU;, = %n[n 4+ 1)N,. (6.27)
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Evidently, T) and VU)j are the spaces of the second order symmetric tensors.
Each of these tensors has in(n + 1) components, where n is a number of the
spatial “dimensions of the problem under consideration. Furthermore, N; is the
number of nodes of a stress mesh, while N, is the number of nodes of a dis-
placement mesh. From (6.25) and (6.27) it follows directly that, in the absence
of the stress boundary conditions, the rank condition (6.11) will be satisfied if

Ny 2 N, (6.28)

This relationship justifies the success of the scheme defined by (4.07), (5.05) and
(5.06) and described in [11]-[14], where N, = N,,.

Let us note also that, because at each node K, of a stress mesh we have
(due to the symmetry of a stress tensor) in(n + 1) stress degrees of freedom,
and at each node K, of a displacement mesh n displacement degrees of freedom,
the relationship (6.15) can be rewritten as

1
sn(n+ )N, 2 nh,. (6.29)

If (6.28) holds, (6.29) will be satisfied for any and every value of n. However,
the reverse is not true. Consequently, (6.28) is a much stronger condition than
the popular rule (6.15) and hence more helpful in giving ideas how to construct
and modify the trial space to maintain solvability.

Furthermore, if (some or all) of the stress boundary conditions are enforced,
the condition (6.28) can be replaced by somewhat conservative heuristic rule

Ny — NP > Ny. (6.30)

In this expression, N; is the number of nodes having at least one of the stress
components prescribed.

It 1s evident that (6.30) cannot be satisfied for V; = N,,. Hence, if the stress
space (5.07) 15 used instead of (5.05), it 1s necessary to enrich the elements by
the additional nodes (or eventually to enrich nodes by the additional degrees of
freedom). More details will be given in the discussion on the numerical examples.

Remarks on stability

According to Arnold [5] p. 224, if "a” is coercive and if we choose a sequence
of T, and H, for which 3, stays bounded away from zero, the corresponding
method is stable. Moreover, as the space T, increases, for fixed Uy, the constant
34 increases. In other words, for problems for which the "a” form is coercive,
enrichment of the space Tj increases stability. Practically any such scheme can
be rendered stable by the sufficient enrichment of the Tj space, the only limi-
tation being the cost associated to the extra (stress) degrees of freedom. Hence,
if the stress space of the present problem is enriched in the accordance with
(6.30) due to the solvability reasons, one also can expect that the computational
scheme will be stable.
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7. Plane stress problem

Numerical experiments will be conducted for the plane stress problem. Let
us for a moment neglect the boundary conditions. Then at each node there are
two displacement degrees of freedom, and three stress degrees of freedom. Hence,
if the same mesh is used for both the stress:s and displacements, from (6.27) it
follows that

e = Lidng. (7.01)

However, in the absence of the boundary (and any other) constraints on the
stresses and displacements it 1s required, due to (6.25) to have

ne < 1.ong, (7.02)

and, in the accordance with (7.01) the use of the shape functions of the same
order for the stresses and displacements is barely sufficient to maintain solvability
and stability of a system. In other words, the matrix D of the size n; x n, has
only n, linearly independent rows, minimum necessary to satisfy (6.11). This
result is closely related with the fact that the strain (and stress) components in
elasticity are not completely independent due to the compatibility conditions.

The fulfillment of the displacement boundary conditions, reducing n, is
favorable from the point of view of (7.02), in contrary to the satisfaction of
the stress boundary conditions, which reduce n,. Only in some very special,
few-element cases (where the influence of the boundary conditions is decisive)
(7.02) can be reduced to the algebraic minimum (6.15).

8. Illustrative examples

The particular example (Fig. 1.), has been used because its complex bound-
ary and state of stress places a difficult requirements on the element behavior.
The problem under consideration is a square plate of the unit semispan, with a
central circular hole of the unit diameter. The plate is loaded along its sides by
the unit load, tensile in z = z!, and compressive in y = z° direction. Modulus
of elasticity and Poisson’s coefficient are taken to be £ =1 and v = 0.3. Local
coordinate systems for the determination of the stresses at nodes situated along
ED on Fig. 1. can be cylindrical or local Cartesian, having one axis tangential
and other orthogonal to the interior contour circle at the boundary node.

For the comparison of the present results with the standard finite element
ones, the first (lowest) curve on a Fig. 1. corresponds to a bilinear isoparametric
foutr node element, labeled by 4DIS. The next curve, labeled by 4+4, corresponds
to a standard mixed FE procedure with bilinear and continuous at the element
interfaces both the displacements and stresses [13], [14]. Note that for very coarse
meshes model 4+4 is not a much superior over 4DIS. Anyhow, for the realistic
mesh densities the superiority is clear. Per instance, the displacement up for
5 x 5 mesh 4+4 is 5.99, while for 10 x 10 mesh 4DIS is 5.98. At this point let
us notify that the converged value of up (dotted line on the Fig. 1.) is 6.09.
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Fig. 1. Displacement convergence at D
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However, relatively unsatisfactory behavior of the element for coarse meshes
induced an idea of the improvement of a model by the introduction of the stress
boundary conditions as the essential ones, described in detail by the present
authors in [2].

Unfortunately, the satisfaction of the stress boundary conditions reduces n,
because some of the stresses become predicted, and move to the right side of
(5.09). In the sequel (7.02) is violated, and (6.01) cannot be solved. The "brute
force” remedy of a problem is to increase n, by the use of the complete quadratic
(nine node) stress distribution in the interior of an element. The results are
promising (see curve 449B, where B denotes fulfillment of the stress boundary
conditions). The improvement is noteworthy especially for very coarse meshes.
A more detailed study of 449B model, not presented here, indicated the possible
presence of the membrane locking due to the self-equilibrated stress modes in
a model, and the possible improvement if only a central, "bubble” mode of
the second-order stress distribution is retained. For easier manipulation with
the stress modes, hierarchic (Appendix B and [1] p. 140) stress distribution is
accepted in the present study. The results of this approach, shown at the curve
4+5B are more than satisfactory.

In addition to the qualitative discussion based on a Fig. 1, some quantitative
measures (estimates) of the convergence rates (Fig. 2) can be very helpful.
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Classical bilinear displacement (4 DIS) model obeys almost optimal convergence
rate for the displacement value, i.e. error in the convergence is close to the
approximation error in the Euclidean or in maximum norm, O(h?), or, the
convergence rate is close to 2. However, if the model 4+4 is considered (4DIS
+ bilinear continuous stresses), one can see that the superconvergence properties
are exhibited, i.e. rate approaches 3. Finally, if the model 4+5B is used, an
average rate of convergence is close to 4. Mean convergence rates shown in Fig.
2 are determined by the least squares fit of the numerical results.
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Fig.2.

An important measure of the quality of a model is also the comparison
(Fig.3) of the present results for the Cook’s skew cantilever benchmark problem
(EZ1, v = 1/3, t=1) with the best available contemporary elements, four node
quadrilateral 4-SRGE of Simo ef al [18] and nine node quadrilateral 9-ACS of
Jang and Pinsky [19], (or equivalent of Ma and Kanok-Nukulchai [20]). The re-
sults are compared with converged solution. The tip displacement most probably
closest to the theoretical value is the converged solution computed by Cannarozzi

[21], v = 23.96, which is slightly at variance to the original result v = 23.91 of
Cook [22]. i
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Fig. 3. Displacement convergence - Cook membrane problem
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9. Concluding remarks

Before of all, in this paper a practical procedure for the solution of really
sized mixed problems, having the stress boundary conditions exactly satisfied,
is described. It has been shown that systems having interpolation functions of
the same order for the stresses and displacements, in the general case are not
solvable. For the solvability and stability of a solution it is necessary to increase
the number of the stress degrees of freedom, but not enormously. The reasonable
compromuse for the general use is to retain central, bubble nodes, similarly to
the usual remedies in the Stokes problem [5]. Anyhow, the most important
properties of the present approach are its remarkably high convergence rate and
accuracy. '

Appendix A. Calculation of the Euclidean shifters

Here we quote some of the results already developed in [2], and necessary
in any kind of correct computations connected with the main results in this
paper. In the following expressions 2 (i,7,k,0 = 1,2,3) are the global Cartesian
coordinates, z(K)n (m,n,p,g = 1,2,3) are local (nodal) coordinates, to be used
for the determuination of the nodal displacements. Coordinates for the nodal
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stresses (not necessarily) common for the adjacent elements will be denoted by
y{‘[‘]’ (r.8, 3, w,0=1,2,3),

Note also that the components of the contravariant fundamental metric
tensors, ¢'&)m" with respect to the ()" and ¢ with respect to &°, should
be computed as the members of the matrices [g{;{}mn] ~! and [yab]"': inverse to
the matrices of the covariant metric tensors

a2k az! az*

Iumn = 8t 5y S ab = 151::“66—rl ae’ (A.01)
respectively. Definitively,
oLy, = Buag! ™" affin aftia * (Ac02)
(L) = hrg“*’g—;%. (A.03)
giﬁ’)i’ a 6Hg|:h"]qp %?_:_ aﬁiw - (A.04)

Appendix B. Hierarchic shape functions

In the process of construction and modification of a trial space the use
hierarchic shape functions is extremely useful, because these allow great flexibility
in the addition and removal of the additional (midside, midsurface and body
centered nodes).

If the finite elements we are considering are n-cubes, and the fundamental
shape functions are n-linear, one can cover also the additional degrees of freedom
by the n-quadratic family. Let us define now hierarchic interpolation functions
Wy of the second order over the unit n-cube canonical (master, reference) ele-
ment defined by the coordinates

=1 E <], =120 (B.01)

(a | - [+ 4 bl | 1 L § o 0 o o
Wfr:HWKi K=(1—§15K|)U+Ef-:f ) (1= (1= €& (€7,
a=1 (Bﬂg)
where £% are the nodal coordinates. Note that we can distinguish 14+ n types of
nodes. The nodes of the 0-th type are those for which all nodal coordinates hake
values {% = +1. The nodes of the k-th type are those for which k =1,2,.

of the nodal coordinates take values £% = 0 1n turn. In the accordance wnth the
definition of members of D matrices, the first derivatives of W

aw Wy + aW . 1
o= e T Wiy G = (1- ) ek -20 -1k, (Boy)
cr;ﬁ"r

are also of the computational interest.



34

8y
2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]
[10]
[11)

(12]

(19]
[20]

(21]
(22]
(23]

Berkovic, M., Draskovic, 2. V.

REFERENCES

Zienkiewicz, O.C., and Taylor, R.L., The Finite Element Method, MeGraw-Hill, London,
(1989).

Berkovié¢, M., and Draskovié, Z., On the essential mechanical boundary conditions in two-field
finite element approrimations, Comput. Methods Appl. Mech. Engrg., 91 (1991), 1339-1355.

Berkovi¢, M., On a two-field finite element approrimation in elasticity, Mechanika teoretyczna
i stosowana, Journal of Theoretical and Applied Mechanics 1, 30 (1992), 109-122.

Draskovié, Z.V., On invariance of finite element approrimations, Mechanika teoretyczna |
stosowana, Journal of Theoretical and Applied Mechanics 4, 26 (1988), 597-601.

Arnold, D.N., Mized finite element methods for elliptic problems, Comput. Methods Appl.
Mech. Engrg., 82 (1990) 281-300.

Brezzi, F., and Fortin, M., Mired and Hybrid Finite Element Methods, Springer, New York,
(1991).

Pian, T.H.H., and Sumihara, K., Rational approach for assumed siress finite elements, In-
ternat. J. Numer. Methods Engrg., 20 (1985), 273-289.

Robey, T. H., and Schreyer, H. L., The null space and non-conventional basts funciions in the
mired finite element method, Int. j. numer. methods eng., 26 (1988), B423-855.

Brezzi, F., and Bathe, K-J., A discourse on the stability conditions for mared finite element
Jormulations, Comput. Methods Appl. Mech. Engrg. 82 (1990), 25-57.

Carey, G.F., and Oden, J.T., Finite Elements: 4 Second Course, Prentice-Hall, Englewoad
Cliffs, (1983).

Mirza, F. A., and Olson, M.D., The mired finite element in plane elasticity, Internat, J.
Numer. Methods Engrg., 15 (1980), 273-289.

Olson, M. D., The mized finite element method in elasticity and elastic contact problems, in

S.N. Atluri, R.H. Gallagher and O.C. Zienkiewicz, eds., Hybrid and Mixed Finite Element
Methods, John Wiley & Sons, (1983), 19-49.

Berkovic, M., and Draskovic, Z., Stress continuity in the finite element analysis, in J. Hobin-
son, ed., Accuracy, Reliability and Training in FEM Technology, Robinson and Associates,
{1984).

Berkovi¢, M., and Draskovié¢, Z., An efficient solution procedure in mired finite element

analysis, in J. Middleton and G.N.Pande, eds., NUMETA 85 (Balkema, Rotterdam), (1985),
625-633.

Cantin, G., Loubignac, G., and Touzet, G., An dterative algorithm to build continuous stress
and displacement solutions, Internat. J. Numer. Methods Engrg., 12 (1978}, 1493-1506.

Berkovic, M., and Draskovié, Z., On the hierarchic shape functions in the mired FEM model,
XX Yugoslav Congress of the Theoretical and Applied Mechanics, Kragujevac (1993).

Berkovié, M., and Draskovic, Z., Superconvergence properties of a continuous stress mived FE
model, Ind European Solid Mechanics Conference, B12, Genoa, (1994).

Simo, J. C., Fox, D.D., and Rifai, M. 5., On the stress resuliani geometrically exact shell model,
Part II: the linear theory, computational aspects, Comput. Methods Appl. Mech. Engrg., 73
(1989}, 53-92.

Jang, J., and Pinsky, P. M., An assumed covariant strain based 9-node shell element, Internat.
J. Numer. Methods Engrg., 24 (1987), 389-411.

Ma, H., Development of a Geometrically Nonfinear Shell Element by Assumed Strain Method.
Doctoral dissertation, Asian Institute of Technology, Bangkok, Thailand, {1990).

Cannarozzi, A. A., Private communication, (1994).
Cook, R.D., I'mproved two-dimensional finite element, J. Struct. Div. ASCE 100, 1851-1861.

Wiberg, N-E., and Abdulwahab, F., Error estimation with post processed FE-solutions, in
M. Papadrakakis and B.H.V. Topping, eds., Advances in Post and Preprocessing for Finite
Element Technology, CIVIL-COMP Ltd, Edinburgh, Scotland, (1994), 1-22.



A two-field finite element model related to the Reissner’s principle 35

MOIIEJBb IBYX NOJIEA CBA3AHHASA C IPUHIWIIOM
PEMCCHEPA B METOIE KOHEYHbIX 2JIEMEHTOB

B avoit pafoTe nokazaHHO 4TO CMellaHHbIE MPoHJenbl MK B TEopuM
YIPYrocTH, eciy T[OJMHOMBI O[HOrO ’Ke MNOopAdKa NOAL3YIOTCA IJA MH-
TepHONALMU TMepeMIIEHVA W HanpsfKeHUi, M ecau rpabnMubue yCcJHOBWA 10
HANIPAKEHUAMX BBINONLHAIOTCA Kak 3CCEeHUMalbHBIE, KaK MpaBWilo HE yA0-
piaerBopmoT ycaosuam Bpeuwm (Brezzi). Ilpobaemy BO3MONHO paspelmTh
dbopmalbHo, eciad GpaTh MHTEPIOJALIMOHHBIX (b yHKIMI BHICIIEro fOpAdKa 1A
HANpKeHW. AHANM3MPYIOTCA AeTalu palpemuMOCTH IaHHOW iipoOneMsl.
CrneumaibHOoe BHUMaHWe [M0CBAMIaeTCA HEKOTO PBIM KONMYeCcTEEHHBIM XapaKTep-
MCTUKaM (pa3MepaM) paccMaTphIBAEMBIX [OMANPOCTPAHCTB KOHEYHBIX 5 eMeH-
ToB. (CBepPXCXOMAINMECA YMCJEHHblE pelleHMA CIPAaBIbIBAIOT MpelJaraemyro
pacUYeTHY CXeMy.

MODEL DVA POLJA U METODI KONACNIH ELEMENATA
POVEZAN SA RAJSNEROVIM PRINCIPOM

U radu je pokazano da mesoviti problemi MKE u elasti¢nosti, ako se poli-
nomi istog reda koriste za interpolaciju pomeranja i napona, i ukoliko su graniéni
uslovi po naponima zadovoljeni kao esencijalni, po pravilu ne zadovoljavaju Bre-
cijeve (Brezzi) uslove. Problem moie da se resi formalno, ukoliko za napone
koristimo interpolacione funkcije visega reda. Detaljno se analizira resivost
problema. Posebna painja je posvecena nekim kvantitativnim karakteristikama
(razmerama) razmatranih potprostora konaénih elemenata. Superkonvergentna
numericka redenja opravdavaju predlozen prilaz.
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