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ON VISCOPLASTICITY OF IRRADIATED STEELS
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The irradiation of steels by neutrons appears during many modern techno-
logical processes. Experiments promoted division of neutrons into [9] super cool,
very cool, thermal, resonant, intermediate, fast, high-energetic and relativistic
groups according to their energies. As one of the most important examples we
may mention periodic intensive neutron bombardment of the first wall blanket
of nuclear reactors. During such a process there appears the class of thermal,
resonant, intermediate and fast neutrons where nuclei may be treated as fixed
with respect to moving neutrons. This permits application of classical mechanics
concepts. From the whole bundle of processes which accompany neutron irradi-
ation we are mainly concerned here with their interaction with dislocations (as
microscopic cause of plasticity) as well as voids (microscopic cause of damage
like thermal creep). For continuum mechanics type considerations their influence
on inelastic constitutive equations is of primary concern. Such an influence
is the subject of this paper where we analyze finite thermoplastic strains at
time rates which do not allow time independent idealization. Microstructural
changes of steel structure are here described by internal variables approach with
incompatible strains as opposite to the approach with compatible strains and
inelastic memory.

1. Introductory comments on deformation kinematics
of continuously damaged steels

Consider a crystalline body, B, with continuous distribution of line and point
defects as well as of voids and impurities - Fig.1. Such a body is observable in a
family of deformed configurations (1) and also in an initial reference configura-
tion (xo). In configurations (1) the body is subjected to surface tractions as well
as to an inhornogeneous temperature field 8(X*, ¢) where X¥ (K € {1.2,3}) are
material coordinates and ¢ is time. Removing the surface tractions and bringing
the temperature to its constant reference value 8y which B has in (ko) we attain
a partially unloaded configuration (k). In such a configuration dislocations and
voids are not removed with the consequence that an equilibrated residual stress
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(often named “back-stress” and denoted by B) still exists. It is worth noting
that, in general, By exists even in (k).

Penoting by F, Fg and Fp, ie.
F: (k) — (), Fg: (Ke) — (1), and Fp: (ko) — (Ky) (1)

total, quasi-thermoelastic and quasi-plastic deformation gradient tensor, respec-
tively, we arrive at the corresponding objective strain measures:

2E = FTF -1, (2)
2cp = FEFp — 1, (3)
¢ =E—cp =F; (FfFg —1)Fp = FhepFp (4)

Fig. 1. Basic configurations and corresponding deformations

Another approach to deformation geometry would be to take into account
microstructural changes rendering lattice rearrangements. To do this we imagine
that {#:) is cut into small volume elerients [1] (¢¥) relaxed from action of
their neighbors with voids but without dislocations. Exhausting voids form
these elements we would get the corresponding "natural state elements” (vy)
(already introduced in [2]-[5] and elsewhere). According to this terminology (v¢)
- elements might be called "damaged natural state elements”. The corresponding

mappings - second rank tensors
Ap:(Ke) = (1), Au: () — (1), and Ap: (v¥) — (%) (5)
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are mcompalible and for this reason are called here plastic', damage® and elastic
distortions, respectively. For simplicity in the sequel it is assumed that damage
distortion is spherical (somewhere called also "isotropic damage”) which means
that A, = (1 4+ w)1.

Analogously to (3), (4) thermoelastic Lagrangean strain is represented by
Bg = AgTAgp —1, (6)

whereas inelastic Eulerian strain accounting for simultaneous damage and plas-
ticity equals:
2ep =1—(1+w) 2Ap~TAR™L. (7)

Such two measures are convenient for the formulation of constitutive equations
because they are defined with respect to the same reference configuration (v2).
The appropriate corresponding measure of plastic strain time rate again referred
to (vf) is plastic stretching tensor

2Dp = Lp+ L} (where Lp=ApAp~t). (8)

whose trace corresponds to damage rate i.e. trD, = 3w(l 4+ w)™ "

There has been recently a considerable interest in the literature concerning
arbitrary rotations of natural state elements. This item is elaborated in detail
in (17].® In all cases quasi-thermoelastic and quasi-plastic deformation gradient
tensors may be expressed by the following objective microstructural deformation
variables w, Ap and Eg i.e.

tg =¢cg(w, Eg, Ap) and ep =cp(w, Ap). (9)

2. Evolution of the Process and Constitutive Equations

In formulating a constitutive theory one of essential questions is how to
choose constitutive variables and corresponding response functions. If we adopt
strain measures (3) and (4), then additional quantities describing inelastic mem-
ory are indispensable. In [18] these measures are applied while inelastic history
is simply taken into account by two scalars: accurnulated plastic deformation
path length = and maximum plastic strain distance 8, from (k,) as a measure
of discrete memory [10], [11] (under tacit assumption that 6, (0) = 0 in the first

UIf instead of real crystal con figuration (#,) an ideal crystal is chosen then the corresponding
plastic distortion is not unique. This is promoted in {6] to be replacement mvariance. Obviously
mapping (5); is replacement-invariant.

?Incompatibility of damage distortion A, is often neglected in the literature on continuum
damage mechanics (cf. eg. [7] where overall closing of voids is assumed to give a fctitious
undamaged global configuration).

*However, a short comment is worthwhile: making polar decompositions of tensors in (3)
we may either choose 1. iseclinicity of (1) with the corresponding global ideal crystal [19] 2.
elimination of rotation tensor of plastic distortion [17] or 3. elimination of rotation tensor of
thermoelastic distortion as made in [20]. The important outcome of all these methods is that only
six components of inelastic distortion are mutually independent.
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cycle and > 0 during subsequent cycles). These two quantities are determined
by the following expressions

7= |lep|| = (€p : € ] >0 and 6, := max §(r) = max ||Ep[7']||
rE[t t] TE[I,,,,
where the superposed dot signifies the material time derivative. This approach
Is convenient for inelastic cycling processes accompanied by neutron irradiation.
Some history measures must be introduced due to ”blindness” of the method for
microstructural changes.

An alternative to this method is to take into account so called mnternal
varwables replacing in such a way inelastic deformation history by microstructural
deformation measures. Such an approach is applied in [9] to rate-independent
plasticity of irradiated materials where microstructural measures (6) and (5),
and scalar dislocation density have been selected as internal variables.

The second approach is adopted here with the following objective (frame
indifferent) constitutive variables selected as appropriate to form the set

[ = {Ep, ep,w, T, Grad, T, N,, G, A} (10)

named temperature- dr:furmatmn mnﬁgum!mn pomnt, where T - absolute tempera-
ture, Grad, T = ;lg gradT - its ( ‘i] defined gradient, A - a scalar dislocation
density defined as length of disl:}catmn lines in a representatlve volume element
of (v¥) divided by it, Q, = JgAg~'§and N, = JgAg~'7 - are (vd) - defined
heat and neutron flux vectors (with Jg = detAg). A seemingly sma.ll but very
important difference with respect to ' in [9] is that here ep is taken instead of
A1

To the above configuration point I' there corresponds reaction point given
by the set (strictly related to (vd)):

T, ={sy,u, 5, & (11)

where S, = JeAgp " 'TAg~7 is the Piola-Kirchhoff stress tensor of second kind,
u - the internal energy density, s - the entropy density and d = JeAE" 6 - the
entropy flux vector. In this way constitutive equations are simply stated as the
bijection: )

R:8 — S8, or I;=X,(T) (12)
with I' € St and £; € §g,. Also, an additional but very important constitutive
equation which delimits elastic from inelastic behaviour is introduced by the
following dynamaic yield funciion

f=h(S,, T ep, A, N,)= f(T) (13)

tThis is simpler, only ep is ohservable during experiments and justification comes from the
fact that only six components of Ay are independent as discussed in previous footnote,
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and the corresponding static yreld funclion
fi= h(8°, T, ep, A, N,) = f(T'F)
with 8° = S,|;_, being static stress chosen to have the same direction as S and

AS =8, -5 1s called overstress tensor. Here p = ||D,|| and the above functions
allow the following classification:

e f>0, fo =0, p>0 - viscoplastic behaviour,
o f=f,=0,p=0 - elastoplastic boundary and
o f=f,<0, p=0 - elastic behaviour.

The evolution of the considered process is described by the following evolution
equations

Q, =Q%(I) (14)
N, = N*(T) - (15)
Dp = D#(I") (16)
A= A¥(T) (17)
@ = w#(T) (18)

as well as by the balance laws. The evolution functions might be also collected

into the following set &, = {Q—# N# D# A# w#}, Due to the representa-

tion defined with regard to (v®) - configuration instead of corotational time

derivatives, the above evolution equations contain much simpler material time
derivatives.®

The above set of constitutive and evolution equations is too general for
practical use. However, they must obey the second law of thermodynamics in
which there appear time rates and spatial gradients of the constitutive variables.
These rates and gradients are not independent but connected by the balance
laws and by the kinematical constraint < f > f, =0 (with <z >=1 for z > 0
and < r >= 0 otherwise) which is a consequence of properties of above defined
dynamic as well as static yield function. Multiplying these constraint equations
by Lagrange multipliers and introducing them into thus extended second law
we acquire independent rates and gradients (except Grad,T which is already
included into (10)). This is the essence of Liu's theorem [12]. Therefore the
extended dissipation mequality 1s split intc the following constitutive restrictions:

s I
P, = ?Qu (19)
S, = puOe ¥+ < f>Nog,. f, : (20)
s=—p,Or¥—< f>Norf, (21)
0= ﬁ,ﬂgradvf"l’*— S o A OGrad,T fo (22)

5 A transformation of constitutive equations and evolution equations to forms related to (e}
would require the corresponding corotational derivatives.
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and the following residual dissipation inequality:

- oy e o I .5

AV-QF + A N#* £ AAA# 4 A“L# L AP . D# — 77Qu Grad, T >0,  (23)
where p, is the mass density in (vf) - configuration, ¥ = u — T's is the free
energy density and the afore mentioned Lagrange multipliers are determined as

follows

AY==p, 8,9 < f>ANb.f (24)
A = —p, 0,9 — < Fi ﬁfﬁafu (25)
N = —p,65 ¥~ < f > My f, (26)
A = —ppudg ¥—< f> N O fo (27)
AP = —p, 0, ¥+ < f>AN8.f,—S,. (28)

The whole procedure of the explained thermodynamic analysis (standard for
the extended thermodynamics) is presented in detail in 19].

3. Small Thermoelastic Strains of Isotropic Materials

In order to make the theory more explicit the next assumptions are made:®
(A1) all time rates, thermoelastic strain, temperature gradient, heat flur and neu-
tron fluz are small but plastic strain and damage are finite and

(A2) stress vanishes when purely elastic strain equals to zero,

which are realistic for reactor steel behaviour. Due to (Al) - assumption the
thermoelastic strain may be split into purely elastic strain and thermal strain in
the simplified way:

Eg = E, + v01,

where T,/ = T'— T, and v is the thermal expansion coefficient. Under such
assumptions the stress is represented by the generalized Hooke’s law (cf. also

(1], (9], [10])
S, =M :[Eg —v01] =
c1i1l + 2¢;,Eg + csizep + esisep + ¢4 (Egep + epEg) + (29)
cs (Egep +epEg) — (31 + 2¢2) 701 — (cam; + 2¢4) y0ep—
(csma + ?Cﬁ]‘rﬁ‘}ﬂfn.

where the above listed invariants are listed below

3 : . 2
£1=1:EE, taZEp:EE., tﬁZEPZEE,

m=1:ep, pg:l:e?p, P3 :1:e}.

SLarger plastic stretching may be included into this framework but this requires introduction
of logarithmic plastic stretching tensor via its principal directions. Such an extension is far from
trivial and will be the subject of subsequent research in this field.
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and M is the fourth rank tensor of elastic "constants” [9]. In the above consti-
tutive equation for stress all the coefficients 1.e. ¢1,... cs are functions of

Y= = {p1, P2, p3. 8, w, A}.

As the next step, by means of tensor representation procedures (cf. [13, 14])
evolution equations (11) and (12) with the assumption that the heat relaxation
time is negligible (cf. [9]) are simplified into

§ = Qu+ [kol + krep + kzep] - Grad,0 — [ksl + ksep + ksep] - Ny, (30)
r,,.lfi'p = [-—1 + njep + ngzpl s g [?131 + ngep + ?1513?;] -Grad, 0+
[ﬂ51+ﬂ-TEP +ﬂﬁei‘l] 'Q'w [31}

where 7, is the neutron relaxation time and the heat relaxation time is neglected

(1, = 0 on the left hand side of (30) Le. 7@, = ...) which is good assumption
unless extremely low temperatures are considered. The equation (30) generalizes
Fourier law: taking into account thermal anisotropy induced by plastic strain
(for ky, ky different from zero) and heating by neutron irradiation (by means
of coefficients k3, ks and ks). Its important feature shows thermal anisotropy

induced by plastic strain unless ki, ..., ks are all equal to zero. Indeed, magni-
tudes %:-,...,%: should be quantified by some new experiments in order to judge

whether such an anisotropy is really important for applications.

The evolution equation for plastic strain rate expressed by nonpolynomial
tensor function of stress and plastic strain reads

Dp = < f > [di1 +d2S, + d3S? + dsep + dsep+
ds (epS, + S.ep) + d- (epS, + S,ep) + (32;)
ds (epS2 + Slep)]

whereas the corresponding damage rate 1s given by

& =< f>[3d +datrS, + datr{S}} + depy + dspat
2dgtr{S,e,} + ‘E.d-;t.r{S,,eﬁ} - ‘Edgtr{SEeF}] (14+w). (324)

Again, the scalar coefficients ko.... ks, n,,...,ng, 7, dy,...,ds depend on the
elements of the set v,.

The above flow rule is non—associate i.e. plastic strain rate is not necessarily
perpendicular to the yield surface. Indeed, such a normality does not follow
from plastic work extremum (c.f. [21]). This has been confirmed by multiaxial
experiments (cf. [15, 16]) at small strains and small as well as medium strain
rates. In [15] for such a case scalar material coefficients dy and d3 being dominant
were calibrated as functions of plastic strain magnitude and direction showing
strong directionality effect as well as impossibility of constructing a “universal”
equivalent plastic strain — equivalent stress curve as essential ingredient of an
associate flow rule. Moreover, the corresponding calibration in the more general
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case of finite plastic strains has recently been performed finding ds,... dg (c.f.
[22]) including comparison with the most general normality rule derived by Rice
in his papers (c¢.f. for instance [23]). It has been shown that non-associativity
is closer to the data from multiaxial experunents.

Finally, let us consider the simplest case when
(A3) plastic stramn itself 1s small of the same order as elastic sirain.

Then the free energy may be approximated by a bilinear function (cf. also
9)): Sl (% viesdak i
I{J.-,‘I" =3 PU.;[I(EE1 ’f}] g = IIQP'QP + I‘EN::'J:"":;— =+ IBQP‘- a'""'ru- {33:;
where [}, I and {3 are constants. This means that ky, ko, kg, ks, ny, Na, Ng,
ks, nz, ks are negligible in (30) and (31). Now, small deviations from thermo-
dynamic equilibrium permut Onsager — Casimir reciprocity relations. Thus from
the residual dissipation inequality there follow kinetic relations which restrict the
coefficient k5 to be

while n3 and ns may be arbitrary. Since a thermal effect on neutron flux is not
observed experimentally (being small of higher order) it is reasonable to neglect
terms with Grad,# and @, in (31) (ie. n3 2 0 and ng = 0). For such a fully
linear case this would have as a consequence the next known mostly simplified
evolution equation for neutron flux:

Ty J""r:-b.- <+ ..I'I'ry = 'Ij-

4. Concluding Remarks

The results presented in this paper are briefly summarized as follows:

e The theory is convenient for calibration by experiments and accounts for
quite genera. interaction between neutron irradiation creep, thermomechan-
ical damage and viscoplasticity.

e For its application it would be necessary to perform multiaxial viscoplastic
experiments during as well as after irradiation in order to calibrate the mate-
rial constants. These experiments must be escorted by careful measurement
of interacting effects.

e The flow rule is non-associate. It permits an easy explanation of mechanical
as well as thermal anisotropy induced by plastic strain explicitly for the
practically important case of small elastic but finite damage—plastic strain.
Acknowledgement. Discussions with Drs C. Albertini and M. Montagnani

of JRC CEC - Ispra as well as Dr D. Nikezi¢ of Kragujevac University on the
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O BA3KONJACTUYHOCTHU OBJYYUYEHHOW CTAJIHU

Ina NpMHATHUA B pacdeT MOBPeXIEHWW, Bhi3BaHHBIX obnyueHuem, HeoB-

X0OMMO MPUMEHEHUTH TEOPHUIO BAIKOMJIACTUYHOCTH MaTepuaia ¢ dedeKTaMM.
Onna vz Takux Teopuil mpeicTaBieHa B AaHHoW pabote. Ee cnemmduunocts
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- NPMHATHE B pacdeT obuwero ssaumogeiicTBuA ipolecca obnydeHus,
BAIKSILIIACTUMHOCTH. DBOMIONMOHHEIE Y PABHEHMA [JA CKOPOCTH MIAACTHYHOH
dedhopMaliM, TEIJIOBOr0 M HEWTpoHHOro CTPYEHMA BKIOYaloT B ceba mare-
pHajibHble (YHKIMM, 3aBUCAILME OT NJAACTHYHOK dehopMaliid 1 TeMIepaTy pbl.
CreurajbHbid clydail KoHedHOW NaacTUYHOR, HO Maloil TepMoynpyrod ie-
dopmanuu, xapakTepHbell anA cialM, BBOAMT 3HAUYMTElbHOE YIpolleHue
TEOPHU, KOTOPOE MO3BOJIAET Kalubpalumio Teéopiy Ha OCHOBE BbLUUEOCHBIX IM-
HAMMUECHMX BHCMIepUMeHTOB. AHANM3MpYeTCcA Talkke M COBCEM CIelMalbHBIM
CAVHAai MAJBIX [IJIACTMYHBIX OedopMalid.

O VISKOPLASTICNOSTI OZRACENIH CELIKA

Za uzimanje u obzir odtefenja uzrokovanog ozracenjem neophodna je jedin-
stvena teorija viskoplastiénosti ostecenih materijala. Jedna od takvih teorija je u
ovom radu prikazana. Njena specificnost je uzimanje u obzir opsteg medudejstva
ogzracenja i viskoplastiénosti. Evolucione jednaéine za brzinu plasticne defor-
macije, toplotni i neutronski fluks ukljuéuju materijalne funkcije zavisne od
plastiéne deforma ‘je i temperature. Posebni slucaj konaéne plasticne a male ter-
moelastiéne deformacije karakteristican za celike omogucava znacajno uproséenje
teorije koje omoguéava kalibraciju teorije na osnovu viseosnih dinamiékih eksper-
imenata. Sasvim poseban sluéaj malih plastiénih deformacija se takode analizira.
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