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Introduction

The paper deals with coaction in composite beams consisting of a finite
number of aging linear viscoelastic materials. This is a generalization of the
problem existing in the theory of composite and prestressed beam structures.

The considerations are limited to the change of strains and stresses in the
cross section and the generalized displacements of the beam when the axial force
and the bending moment follow the prescibed laws. The results are stated in
the form of three theorems.

Lazié’s and Bazant’s theorems, known in extant literature, represent the
special cases of those theorems set in the present paper.

1. Assumptions and the basic equations

A composite beam structure of variable cross section is considered and sup-
positions of engineering beam-bending theory are retained. The cross section
consists of f different aging linear viscoelastic materials symmetrically arranged
with respect to the loading plane.

The uniaxial aging creep law can be symbolically written in the form:

—_—

e—gl=

1 E}. 0

Plaj, §i=12...1, (1.1)
i.e. i

op = EpQife—€0)y F=42us], (1.2)
(see Appendix and Notations).

The linear integral operations, the creep operator ﬁ'; and the relaxation
operator ()., are inverse satisfying the known relation:

ﬁj@j:Qj v=ly g=hlenlk (1.3)
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In a special case when the k* material is linear elastic the following 1s valid:
=1, Q.=1. (1.4)
Bernoulli’s assumption of plane cross section:
£ =1+ UK, (1.5)

and the equilibrium equations:

I !

Z/”ﬁ dA =N, nyaj dA= M, (1.6)

_;':lAJ j=1A_1;
yield the basic equation [4] given in the operator form, too:

Ey A; 1?11 n+ By S: f‘?'m k=N+N",

(1.7)
E,S: Ry n+ By Ji Rags = M + M°,
where the operators R, are defined as follows:
=y 1 f ~ i - 1 / -y
Ry, = EZA,-,QJ-, Ry, = Z Jir@;, (1.8)
b =1 Fi=1
T R - S
Ry = Ry = gzb}ir 41
1 J::I-
and:
f o f L
N =B, A;,Qe], M°=Eu) Si-Qse; (1.9)
j=1 i=1
The system of two inhomogeneous integral equations Eq.(1.7) has the solu-
tion:

]. == I l i
Eun= 2 Fn(N + M)+ ?Flz(ﬂ’f + M?),

(1.10)

l = 1 = i
Buk = o (N + N9+ = Fyp( M + M.

g

Further. we will deal with materials the relaxation operators of which Q;
have the form:

1
]
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¢; being time-independent quantities and R the relaxation operator correspond-
ing to an arbitrarily chosen aging linear viscoelastic material. It can be one of
f matenals coacting in the composite cross section.

Let F' be the creep operator on the same material. Then the following is
valid:

= | = -

FR=RF =1. (1.12)

The basic equations Eq. (1.7) and their solution Eq. (1.10) have the same
form as the corresponding equations of the mathematical theory of composite
and prestressed beam structures [2]. Only the elements of the matrix ||yasll, 4,

appearing in the operators R;s (h, s = 1,2), are defined by different expressions.

The operator matrix “f_ﬁ;u “ of Eq.(1.7) has the individual forms:
2,2

L

Ri=nmi +mR, m=1-m h=12 (1.13)

The quantities yx represent the individual values of the matrix |[yasls
assoclated to the composite cross section. Its elements depend on the cross
section geometrical properties and, through the coeflicients p;. on the rheological
properties of coacting materials (see Notations).

The individual forms of the operator matrix Hﬁ};;l

of Eq. (1.10) are de-

2.2
noted by ﬁ}; (h=1,2). Operators .E'; and ,F_E;‘ satisfy the expression corresponding
to the inverse operators:

PR, =R F, =1, h=1,2 (1.14)

The operators ‘E';.:: appearing in Eq. (1.10), are directly expressible in terms

of the individual forms of the operator matrix ‘ F,,

i
== ]_ =l | =
e (5T2F: + 571Fz)1

(1.15)

T X
Fio=Fy = 2 (R -F),
(see Notations).

Cross sections consisting of ¢ (¢ < f) aging linaer viscoelastic materials and
f — q linear elastic materials are examined [4]. It is shown that a composite
cross section can be considered as homogeneous made of a hypotetical aging
linear viscoelastic material, too, the propriies of which depend on the rheological
properties of coacting materials and on the cross section geometry. Two creep
functions Fj or two relaxation functions R} (h=1,2), (see Apendix), determine

Y

the rheological properties of the hypothetical material. They are called the cross
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section creep and relaxation functions, respectively. The same conclusion can be
applied in the case we consider here,

For linear integral operators the laws of algebra of ordinary numbers are
valid including, in our case, the commutativity law. Keeping in mind the fore-
going we can derive the following operator expressions.

Starting from Eq. (1.14), where Eq. (1.13) is applied, we arrive at:

=) = 1 i o=
'R = ;:(1 rThFh), h=12 (1.16)
le.
L 1 * ' s
FiR :—(1 ~wFi), h=1.2, (1.17)
Th

(see Appendix). Multiplying Eq. (1.16) by the operator F', and substituting
Eq. (1.12), after integration we get:

F P = -_:—,(F' —wF), h=12 (1.18)
h

When Eq. (1.14) for h = 1 is multiplied by the operator F;, using Eq. (1.16)
for h = 2, we derive:

' 1 * -
FyRy = ;(Tll — AvF3). (1.19)

Finally, by the similar procedure we obtain:
M o 1 - *
Flﬂz:nr—f"rzl + Ay FY). (1.20)
1
The operator relations will be applied to proove the desired theorems.

2. Theorems

We suppose that the axial force N + NY and the bending moment M + M?,
Egs. (1.7) and (1.9), depend linearly on the cross section relaxation functions R}
(h=1,2) and on the relaxation and creep functions R* and F* of the introduced,
arbitrarily chosen, material:

N + .ND = nn]* + ﬂ|RI -+ TIEHE + naR* +naF",
(2.1)
M+ M% =mgl" + m R} + maR; + maR" + myF”,

n; and m; (i=0,1,2,3,4) being time-independent quantities. Here is included the
assumed law, referring to the stress-independent strain E? Eq. (1.1), in the form:

E?:Eg_]']-*‘i's?j-‘h-“s J = lszr"'lfl {22]

] 1] .
gg; and £y; being constants.
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Theorem 1. If the axial force and the bending moment follow the law given by Eq.
(2.1) then the strain £ at an arbitrary point of the cross section depends linearly
on the cross section creep functions F; (h=1,2) and on the creep function F*:

Euwe = 81" + 51 F] + E2F; + Ea3F7, (2.3)
g (1=0,1,2,3,) being time-independent quantities.

The proof of this theorem is developed using Egs. (1.10), (2.1), (1.15),
(1.14), (1.17) - (1.20) and (1.5). After some transformations we get:

Eva =@pl" + @ F; + 02 F5 + asF", (2.4)
fora=n& =% and a=k, @ =% (i=0,1,2,3). Introducing:
E’::r_ji'l'yﬁis i:G11r213: (2‘5]

Eq. (2.3) is obtained. The values 7; and %; are defined by the following expres-
slons:

¥, =g Mo Ni M,
Mo = Tn:'l'i_ 7 le“S‘_—, T = §73A—i E': le?‘-,
Ny =16 JM:'}— ﬂ ‘—._'N3 Ms
2 T A T12 S’ 3= 722 A + 712 S’
(2.6)
= Tllﬂ - “r12ﬁ1 K= é':’iMl + ’)‘12&.
J.‘ 5;' Jl. Si
= ET?'—A{E - T“’&' K3= 7;1& + 'ﬂzﬁ
/s Si Ji T
where:
1
Ao = — (a1 + 7203 +a3),
Y172
= ?11?'1 3% (.”T; an +m Ay a2 =7’ a3 —':fm) :
(2.7)
A = : —l-m(Tz'}"ﬂ“—-T;& AT, [T, )
Tﬂ-} Ay . 284781 — Y2 Q3 — Yy a4,
As = —.an.
Ti72

For Ai=N;, aj=n; and A; =M;, q;=m; (i=0,1,2,3), ( =0, 1,2,3,4) the
expressions for time-independent quantities A and M;, appearing in Eq. (2.6),
are defined.

Theorem 2. If the axial force and the bending moment follow the law given by
Eq. (2.1) then the stress o; at an arbitrary point of the part j of the cross section
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depends linearly on the cross section creep functions Fy (h = 1,2) and on the creep
and relaxation functios " and R":

a; :Euj1.+E1J'Fr+EngE+E:'3,_J'F*+E4jl£f«*, j:l,21---1f| [28}
7ij (1=0,1,2,3,4) being time-independent quantities.

The proof of this theorems is derived using Egs. (1.2), (1.11), (2.2), (2.3),
(2.5)-(2.7), (1.17) and (1.12). After some transformations we get Eq. (2.3)
where:

. Ly ' - — — A

Toj = .“;,, {Ej'rm (o + Euel; )+ 05 [1281 + B2 + 172 (Es + Euel)] }

pa— VI - r— u E

G'l_i:T_JI(Tl_Fj]Eh ﬂ'-;':_r_i(?‘?—gi)gzr 222
73 = vio; (Ea + Buglj) Ty = vjoj (Bo+ Buchy), j=12,....f

Theorem 3. If in a composite beam structure the axial force and the bending
moment depend linearly on the relaxation and creep functions R* and F* then the
reduced generalized displacement of the beam A" depends linearly on the creep

functions of a finite number of beam cross sections Fj'* (h = 1,2) and on the
creep function F*:

&* e Z (Ef;l'.] 1t +3{lﬂ} Fl*{.ﬂl] +E{24} F;{ﬂ_} +E:;l'} F-) , (2-1[])
(a)
£

(i=0,1,2,3) being time-independent eqantities.

We proove this theorem starting from the expression for a generalized dis-
placement of the beam based on the principle of virtual forces:

a’l. - E.,IJU/ [JM[C1 2} h‘.(c, t. !:1]] + 1'{F{C| Z] T‘](C, ﬂ, t;}]l d{:, (211)
L

where M and N are the bending moment and the axial force, respectively, at
point ¢ due the corresponding unit generalized force P =1 at point z.

We adopt the beam model with constant cross section in a finite number
of intervals. To the interval (a) correspond the length L'*), the values Ti.a}.- the

cross section creep functions Fl.:[a] (h =1,2) and so on. Then we can write:

&"‘:E,,JUZ[ [M{C, 2kt L)+ N )¢t )| dC. (2.12)

fa‘L':']

The axial force and the bending momient change according to Eq. (2.1)

where:
ny =ng=m; =mg=0. (2.13)
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Then Egs. (2.4), (2.6) and (2.7) retain the same form, only in Eq. (2.7) the
quantities a; and a» no longer exist.

When we substitute Eq. (2.4), referring to the interval (a), into Eq. (2.12),
we arrive at Eq. (2.10) where:

A =, f [M1(¢, HRVQ) + NG, DT (Q)] & (2.14)
Lis)

Time-independent values EEG] and ﬁE‘” are defined from Eqs. (2.4), (2.6) and
(2.7) where all quantities, except a; (1 = 0,3,4), receive the superscript (a).

3. Special cases

From the derived theorems we can develop, as special cases, the known the-
orems and expressions of the mathematical theory of composite and prestressed
beam structures. In this theory it is supposed that concrete (c) 15 an aging
linear viscoelastic material, prestressing steel (p) has the relaxation property, the
relaxation function of which depends linearly on the concrete relaxation function,
while two other kinds of steel, steel parts (n) and reinforcing steel (m) are linear
elastic materials [2]. Then the relaxation functions Q} for f =4 Eq. (1.11) are
defined as follows:

Q;:R;:R* o1= 1’ Q;:R;:Ep l'+9p R*1 DE=£?p|

Q=R =1% ps=0; Qg=FR,=1", os=10;

where Eq. (1.4) is used (see Appendix).

In the mentioned mathematical theory two Lazi¢’s theorems are derived [2]
assuming that:

1]
£;

I

0, 1ie. EngE?j=U1 i - S, {3.2)
see Eq. (2.2).

1. If the axial force N and the bending moment M depend linearly on
the cross section relaxation functions R (h = 1,2) then the functions 5 and «
depend linearly on the cross section creep functions Fy (h =1,2).

In that case in Eq. (2.1) four coeflicients do not exist;
fig:= N = Wiz = Mg = 1. (3.3)
From Egs. (2.7) and (2.6) it follows:
Ns=0, M3z=0; 73=0 Ra=D0. (3.4)

Then Eq. (2.4) represents the statement of the theorem.
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2. If the axial force N and the bending moment M depend linearly on the
concrete relaxation function R* then the stress o; at an arbitrary point of the
part J of the cross section depends linearly on the cross section creep functions
Fi (h=1,2) and on the concrete relaxation function R*.

In that case in Eq. (2.1) we introduce:
M =Ne=Ng=mM=ma=my=0. (3.5)

Applying Eqs. (2.7) and (2.6) we show that Eq. (3.4) is valid again. Now Eq.
(2.5) produces:

"]

3 = ﬂ, (36]
and from Egs. (2.9) and (3.2) it ensues:

Eﬂ_l.:ﬂ, j:112,,f {3?)

Then Eq. (2.8) represents the statement of the theorem,

In Ref. [3] it is shown that a generalized displacement of the composite and
prestressed beam structure depends linearly on the cross section creep function
of a finite number of beam cross section F;'*) (h = 1,2) if the axial force N +N°
and bending moment M+ M depend linearly on the concrete relaxation function
K.

From Egs. (3.5), (2.6), (2.7), (2.4) and (2.14) we get:

A =0, (3.8)

for all values of the superscript (a). Then Eq. (2.10) is in accordance with the
expression for generalized displacement given in Ref. [3].

Bazant’s theorem [1] refers to concrete as an aging linear viscoelastic mate-
rial and it reads: if the strain depends linearly on the concrete creep function
F* then the stress depends linearly on the concrete relaxation function R*. Ref.
[2] shows that Bazant’s theorem represents the special case of Lazié’s theorem,
quoted in item 2, so that it certainly represents the special case of theorem 2
developed in the present paper.

Coneclusions

In a general case, when in the cross section of a composite beam f aging
linear viscoelastic materials coact, the basic equations and their solution have
the same form and the same conclusions may be derived as in the mathematical
theory of composite and prestressed beam structures. Only the elements of
the matrix, representing the reduced cross section geometry, are defined by the
different expressions.

The theorems determine the change of the deformations and stresses in a
composite cross section and generalized displacements of the composite beams
when the axial force and the bending moment follow the preseribed laws. Lazié's
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theorems, referring to composite and prestressed beam structures, as well as
Bazant’s theorem, concerning an aging linear viscoelastic material, known in
existing literature, are derived from the general theorems as their special cases.

Appendix — Some mathematical explanations

The linear integral operator G is associated to a function of two time argu-
ments ¢t and 7, G = G(t, ) which satisfies the condition G(t, 7) =0 for t < 7.
The linear integral operator G is defined for any function I/ = U(t, 7), T > tq,
by the following expression:

I=1I(t7) = ]G{t, 8)U (0, r)do = GU. (A.1)

In the functions [ and U the second argument becomes a parameter if T = ty.

The following notations are used:

aG(t, T)

G =G(tr)= =

1'=1(, 1) =6(r —1),

eI =HE-N={y o (2]

where §(7—1t) = 6(t — 7) 1s the Dirac function and H(t— ) is the Heaviside step
function.

The operator 1, associated to the Dirac function, is the unity operator.
From the definition of the Dirac function it follows:

iv=vu, 16=Gi =¢G. (A.2)
If G is substituted for G (G #1') and 1* for U in Eq. (A.1) we get:
1
P mis g o B 0)
=6 1"=GH: 1)= 50

T

H(0 —7)d0 = G(t, t) — G(t, 7). (A3)

The function G* is called the integral of the function G'. In such a way to the
operators R, F', R,, F,, (h=1,2) and so on correspond the functions R*, F*,
wi Fpy (h=1,2),... respectively.
In particular, the integral of the Dirac function is the Heaviside step func-
tion:

iil.,: 11‘. [Aq_}
Each of the operator relations can be integrated. That is symbolically rep-

resented as the right side multiplication by the Heaviside step function. For
example:

G0y= &l +.8G,, (A.5)



140

Lazic, V.B.

(e and $ are constants) upon integration yields:

GG = al® + 863 (A.6)

The reader can operator relations, appearing in the present paper, substitute
by the corresponding one where the integrations are carried out.

i. v 0

z,
E=¢elz g1.6.)
g7 = g7(t,t,)

n=mn(zt1)
k=wlz;bts)

a; = oi(z,y,1, 1)

F; = P;'[I,f:,:}, P> = 1)
Q; = Qj(t, i), = B
0j, €}

N=Nl{s11.)

M= M(z,t,t;)

Eja: Eu

L

Aj = A;j(2), I; = Ii(2)
AJ',- = :1.jr|:2}1 I_fr = lrjr{z}
A; = Ai(2)

Yi

Sj,— — S}'r(:)

L= Jilz)
Ju
5 =.9il2)

MNotations

= time mesured from a prescribed instant,

=time of the first load application,

—ordinate of an arbitrary point of cross
section referring to the centroid of the
transformed cross section area

=coordinate along the beam axis

= strain of an arbitrary point

= prescribed stress-independent inelastic
strain

= normal strain of the beam axis

= change in curvature of the beam axis

= stress in part j of the composite cross
section

= nondimensional creep function

nondimensional relaxation function

defined by Eq. (1.11)

axial force

bending moment

= Young's moduli: at {, and arbitraily
chosen

l

ll

Eso
Ey
— area and centroidal moment of inertia
of part j of composite cross section
= Ajp = V¥ A5; Jyp- 22 ujfj
= transformed cross section area:
= ordinate of the centroid A; referring to
the centroid A;
= first moment of A4, :
Sir = yj Aje; gy Sir =0
= moment of inertia of transformed
Cross section:
Ji = Z_{:l Jir = E:::l (I_,-,. 8 y:? Ajr)
= moment of inertia arbitrarily chosen
AT

= elements of the matrix ||y, ,

= reducing factor:
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l v
T = EEJ’ZI 2; Ajr,
1
| E_L. 2; Jir,
H

m=m=z 1105 Sir

T = Ta(2) = individual Vallileﬁ of the matrix
, ) “Ths“?.?
Th = Ya(2) = 1=
Ay = Ay(z) = 71—
6vn = 6a(z) = coefficients: &7, = 71 — 711,
62 = 111 — 72
x = Hplrn;t.te) — nondimensional cross section
relaxation function
Fy = Filyst.ta) — nondimensional cross section
creep function
KT = AN z.0, 1) = reduced generalized displacement

defined by Eq. (2.11).
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LE FLUAGE VIEILLISSANT DANS LES CTRUCTURES MIXTES

On a dérivé trois théorémes concernant la co-action dans la structure mixte
composée par les différents materiaux viscoélastiques linéaires vieillissants. Les
cas particuliers sont les théorémes connus dans la litterature: les théorémes de
la théorie mathématique des structures mixtes et précontraintes et la théoreeme
concernant le matériau viscoélastique linéaire vieillisant.
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PUZANIE I STARENJE KOD SPREGNUTIH GREDA

lzvedene su tri teoreme koje se odnose na sadejstvo spregnute grede sacinjene
od razli¢itih linearnih viskoelastiénih materijala s osobinom starenja. Kao nji-
hovi specijalni sluéajevi dobijaju se, u literaturi poznate, teoreme matematicke
teorije spregnutih i prethodno napregnutih linijskih nosaéa i teorema koja vaii
za linearan viskoelasti¢an materijal s osobinom starenja.
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