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NONLOCAL EQUATIONS OF THE GREASING LAYER OF SUSPENSION
P. Cuetkovié, D. Kuzmanovié, Z. Golubovié
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1. Introduction

It is well known that the clasical continuum mechanics is based on the prin-
ciple of local action as one of the basic principles. The domain of applicability
of such continuum theories is determined by physical reasons which allows that
the material properties at a given point of the body in consideration depend
only of the infinitesimal neighborhood about that point. In other words, in che
clasical continuum mechanics only short range interactions among the particles
are considered.

But, there exists a whole range of physical sitiuations in which the dimen-
sions of the system in considerations are compatible whith a characteristic inner
lenght of the material. This means that such system can be studied by the theory
in which the fundamental equations depend on the properties of the whole body,
i.e the constitutive equations involve integrals of the state variables as functions
of space and time.

A whole range of effects appearing in experiment has been noticed which
the classical continuum mechanics cannot explain. Papers [9]-[15] point out a
necessity of describing such effects from the stand point of the nonlocal microp-
olar theory. The examples of such effects can be met in mechanics and liquid
crystal physics, polymers, as well as in turbulence in fluids. The agreements of
the theoretical results with experimental studies is the reason for the increase of
the volume of literature on the subject of nonlocal continuum mechanics.

The previous remarks motivate an extension of the nonlocal theory to the
consideration of the suspension, which is the main idea in the present paper.

Considering the suspension as a two—phase mixture the following fields are
defined: velocities, microrotation velocity, pressure and concentration. The equa-
tions of balance are formulated for each phase separately, and for the mixture as
a whole. The nonlocal effects are included through the constitutive equations.

The aim of the present paper is to include the nonlocal effects into the
micropolar continuum theory of suspension flow. The theory has been applied to
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the case of the motion of the thin layer of suspension between two approximately
parallel surfaces with radius curve sufficiently large in comparison with average
depth of the layer §.

2. The balance equation

Generaly, the problem of suspension is very difficult. Because of that we
limit our consideration to the case when a suspension is considered as isotropic
mixture of two components of chemically nonreactive constituents. We proceed
further refering the reader to [1] for the balance laws stated below:

2.1 The balance of mass of the a-th constituent and the mixture as a
whole

dE"{a]

7t T e@VV(a) = &a) (2.1)
% evv=4, (22)

where g(4), V(a), 2 and v are the mass density and velocity of the a-th con-
stituent and the mixture as a whole, and where

i i)
o= Z &a)y  OV= D O(a)V(a)- (2.3)
a=1 a=1
Let us introduce the flux of the diffused mass of the o-th constituent:
J(a) = €a)(V(a) — V) = 8(a)U(a), (2.4)

where u(,) is the diffusion rate of the a-th constituent. If the concentration of
mass of the a-the constituent is

O
(o) = %, (2.5)

then, by applying (2.1), it is possible to establish the relationship between the
concentration of mass and the flux of the diffused mass of the a-th constituent

= -‘i'.? - ‘][a} . (2.5]

2.2 The balance of momentum of the mixture

d )
F:r—:?-t+9f+gf—§v, (2.7)

where t and f are the nonsymmetric stress tensor and the body force.
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2.3 The balance of moment of momentum
diler g L) e
ol = + 017+ 3V (0@ l(@)P(@)(a) =
3

fxf+?+rﬁ+Zg{a](Fx}{a}+rﬁa), (2.8)

where v is the microrotation vector, and m is the couple stress tensor, respec-
tively.
Now, the phenomenological equation can be derived in the following form
3]:
oD(Ve, + kpVp) = 3, + a1a2d, x (v = Q)+ (2.9)
+ a1a3(V x v) + a1a4[(V x v) x (v — Q)]
where D is the diffusion coefficient of the disperse phase, k, = a1v/(¢D) and

Q = 1V x v, whereas a1, a2, a3 and a4 are the scalars which characterize the
isotropic features of the medium.

In nonlocal theory nonlocal residuals of various fields, denoted by carring a
carat """ are introduced to localize the global laws.

3. Differential equations of motion

In the case of incompressible suspensions, without body forces, couples and
temperature influences, the balance equations can be written in the following
forms:

%e=0, (3.1)
E% = tij,i, (3.2)
d[i:ﬂ = mij j + Eijklej, (3.3)
022 = — I, (34)

where the nonsymmetric stress tensor and the couple stress tensor are [10], [16]:
ti = (=7 + Avpp) S+ p(veg + vip) + k(vie — €parve) +

+ f[d'{lx»’ - x|) bj + M (|27 = z]) vr p (X)) 001 + o/ (|27 — 2[) - 2di+  (3.5)
+kt (v e (1x1]) = erirvy ([x7[))]dv(|x!])

mg =
= aVpp b1 + By + Y01+

f (et (s = x )i, (|2]) + Br(lxr — x[)vea(Ixr]) + yi(lxr = x v, (Ix11)) do((xr])

(3.6)
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where k, a, 3 and ¥ are the coefficients of the micropolar continuum viscosity,
and k’, a’, #’ and v’ modulus nonlocal viscosity. By substituting (3.5) in (3.2)
and (3.5), as well as (3.6) in (3.3), in the case of a stationary flow, the equation
of motion in the vector form will be obtained:

(Avig)  + [o (v + vip) + k (vie — €rrve)] , — it

f {6 + N ;6 + 20 drt + K (vie — €rirvy)] bt} dv =10 (3.7)

(avi)1j + {181".&,! + T”,k).k + i:{Eil":'lmur:."l'-"'r.l,,ﬂ'.m = 2”{) +

[ [e'vi ibet + (B'vieg + 7' viz) Okt + K (Etmntnm — 205)] dv =0 (3.8)

To the above equations the continuity equation is added:

Wi = 0. [39)

4. Approximate equations of the greasing layer of suspension

It is well known that machine members often rub. In order to prevent inten-
sive friction, the engine oil put between them. This effect is called lubrication.
It is most frequently used with shafts revolving in bearings.

Prior to revolving, the shaft will touch the bearing surface at the lowest
point (Fig. 1a). While revolving, the shaaft will move radially to the right. The
consequences of such movement are the resulting forces of pressure Pr and Pry of
the region I and II, which are not balanced with the vertical loading (Fig. 1b).
The movement of the shaft towards the right will last until the direction of the
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resulting pressure upon the shaft becomes parallel to the vector direction of the
external loading. Such balance will be reached when the line of the smallest
clearance n-n between the shaft and the bearing becomes horizontal (Fig. lc).

The engine oil sticks to the hard surface of the shaft and the bearing; thus,
the problem reduces to the study of the flow of a viscous suspension (the oil
and the metal dust) between two approximately parallel planes at the point of
the smallest clearance. "

Hence, let us consider the stationary motion of a viscous suspension with
a nonsymmetric stress tensor in a thin layer between approximately parallel
surfaces with the radius curve sufficiently great in comparison with the mean
thickness of the layer § (Fig. 2). In the Fig. 2, Uy, U; and V; are shown the
corresponding projections of the vector of the point velocity in the first and in
the second surfaces.

The component V results from the assumption of very small oscillations in
the rotation of the shaft at the point of the smallest clearance.

Uz

h(z, z)

Fig. 2

In order that the mean thickness of the layer be small during motion, it
is necessary to assume that the transverse component of velocity V3 is small
enough as compared with velocity Uy (V3 € Uy). Therefore the ratio of the two
velocities has been designated by £, where € < 1:

7
== (4.1)
U

Let us denote the mean value of the curve radius of the given surfaces with
Lo. Since it has been assumed that the thickness of the layer é is small enough
in comparison with the radius of curvature, the ratio of those values could also
be designated with ¢, ie.,

6 —
L =¢ (4.2)
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According to the way of motion of the suspension described above, the
velocity vector, the microrotation velocity vector, pressure, diffused mass flux
and the angular velocity will have the following components:

U= ﬁ.[u(msyls v{::,y], ﬂ]s

V= 17[[! 0, U(r,y)],

p=p(z,y) (4.3)
Ty = T Lyl ) Lon (%:9),. 01,

Q=600,0, UAz,y)]-

By using (4.3), the equations (3.9), (3.7) and (3.8) can be written in the

following form:

du Ov
e 4.4
dz E dy 0, )

Pu  H%v d*u  d*u dv  dp
[ﬁ+p}( aa) (;‘J+£‘}( +a;§)+ka—y—£+
’ 8%u v
f f l“’ il )( o€ +8€ﬁn)+

32 2
ot (B 53) e

]k’ d-f 3Pd£—ﬂ,
8%u 8y d*v 8% v dp
(Hp)( 5F+Q)+( o }( +6y) R
[lj .-}( ) +{P +,|E;
ff [ GmdE * (4.6)
8% ; Y op
(352 )] dndé — j k—d{ j —dn =0,
8%y f%v v Ou
(G4 5e) ++ (B a) -2
v Hv
[ [l (G )] omier
/k’ dg - /k’—dn /ﬂk'vdﬁ-f 2k'vdn =0,
1]

Let us introduce dimensionless coordinates, taking into account the fact that
the order of magnitude of the coordinate and velocity in the direction of the

(4.5)
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normal upon the first surface is small in comparison with the order of magnitude
of the coordinates and the velocity in the z direction:

z=L,2*, y=0y, (4.8)
u=Uu', v=WVv*, v=Q', J=00Jp, Jpw= oValy,. (4.9)
Substituting these coordinates into the equation (4.4) one obtains:

du®* Va Ly dv*
= 0. 4.10
2 T U0y (4.10)

Since all terms of the this equation should be of the same order of magni-
tude, it follows:

Va Lo
—_—=1. 4.11
U5 (4.11)
Reynolds’s number, dimensionless pressure and the microrotation velocity have
the form: . ¢ U2 i
10 eV . P
= —_— = — — - 4_
Rl u+k1 P E’R{p ' v 5” ( 12)

If the dimensionless variables (4.8),(4.9) and (4.12) are introduced into the
equations (4.4)-(4.7) and if all the values not containing the multiplier 1/¢®
are neglected as much smaller than the ones containing this multiplier, the
approximate equations of the lubricating suspension film are reduced to the form:

u Ov 18p
+k) =+ k- ——+
(rtk) gz +hg = 2os A
[ [ wsmrsanns [w3ian-2 [ Fhac=o |
uu# 5’?2rjquaﬂn£’uaﬁ_'
dp /"31:'
dy Jo On 7 (1)
T%—k(2v+§£)+
’ (4.15)

vy ¥ 52, Y Bu y
2% dnd -/ ¥ dan— [ 2wvan=o.
./ujo-faﬂznﬂ naﬂﬂ 0 v
In the case when ¥ = 0 and ¥ = 0 and neglecting the nonlocal effects
(classical viscous fluid), equations (4.13)-(4.15) become Reynolds’s differential
equations for lubrication layer [18].

For the solution of the differential equations (4.13) and (4.15) it is necessary
to define the boundary conditions for the velocity and the velocity of microrota-
tion.

According to the assumption introduced, the points upon the first surface
move at the velocity of U; only in the direction of the z-axis (Fig. 3). In
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adition to that, let us assume that the curve radius of the first surface is also
large enough to consider it as flat.

The boundary conditions for the velocity and the velocity of microrotation
upon the first surface read:

for y=0: u=U;, v=0, w=0, v=0. (4.16)

Fig. 3

The points of the other surface move at the tangential velocity U5 and the
normal velocity of V5. If a is used to designate the angle of taper of the second
surface in relation to the first, the velocity components for the variavle layer

thickness h:

for y=~hi(z,z): u=Uzcosa- Vosina,
v =Ussina + V3 cos o, (4.17)

w =0.

Since, according to the assumption, the angle o small, it follows that

) h
sinae =Etana = —, cosa=1

Jz

Then the velocity components take the form:

oh
u=U, - V}*g;.
dh
v =UEE+V21 (4.18)

w =().

Regarding the fact that the velocity V5 is small, the product V28h/0z can be
neglected as a small value of the second order, so that the boundary conditions
on the second surface for the velocity and microrotation velocity finally read:
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for y=h(z,z): u=U,,

dh
v =U2-§; + Va, (419)
w =0,
p =0.

In this way, we have obtained a complete equation system. The given system
of intego-differential equations is very complicated for solution. Due to the fact
that this problem has not been solved even in the case of the local theory with
a nonsymetric stress tensor, let us solve it neglecting the integral terms.

The aim of further investigations will be the solution of this complex system
of equations, and, therefore, the results obtained in the present paper could serve
as their testing.

First of all, let us demonstrate that, in this case, without neglecting the
integral terms, the pressure p is not a function of y. By applying the Laplace’s
transformation to the relation (4.14), we obtain:

o0) + ([ s
L|—=— i —dn| =0,
(ﬂy + o On .

P(s) + lP(s] =0= Pls)=L (?—) =10
' A v (4.20)
- » =
£(3) =sL@) -p(z,0) =0
= e |
L7HLR) = £74(5p(=,0)) = p(z,0)
By differentiating (4.15) along y, and by using (4.13), we obtain:
Pv  Lov
5~ %5 = P (4.21)
e kou+k Eood
P Sl o B o e
STy hEE (=)= vo(p + k) dz
From this, by integration , we obtain:
v = Ai(z) e + Ag(z)-e=? = £ {:Jy Gl (4.22)
c c?
By substituting the microrotation velocity v in (4.15), we obtain:
u yc? vc? = 2 2
a = (T - 2) Ay-e + (T - 2) Ag-e™Y 4 c_IP(:) v+ c—z'cl_{-t) (4.23)
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From there, we get:

b b " 1 2
u= —Ay(z) e — ~Aa(z)- ™% + 7 P(2)- v’ + 5C@) v+ Cofz),  (4.29)

where .
yc
b= —-=12.
k

By using the continuity €quation (4.4) as well as relation (4.24), we obtain:

difion oo we Py G
u:-E(Ale"—Age ¥) - S+ -Cw-Ca(z)  (42)

where d = b/c and (') = d/dz. The funtions A, A3, C;, C3, and Cs be able to
derive from boundary conditions (4.16) and (4.18) (see Appendix).

The concentration distribution will be obtained from Eq. (2.9), by using
(4.3)4 and (4.14), so that it is reduced to:

aC, p _ v 1 (dv Ou
ED Bz + ED&PE = Jp_g + [ﬂlﬂ-ng, — ﬂlﬂh;a.' [I-"— E (-a; -— %)" 5 (42'5]
aCp dv 1 (0v Ou
DG =y~ [merte—maigy] -3 (52 5)] - @

If the dimensionless variables (4.6), (4.7) and (4.8) are introduced into the
above equations, and if, as previously, only the members of the highest order are
taken into account, one can obtain:

dp
@Dkp 2= = Jpe, (4:39)
aC d
%o = [Faasdye - marge| - @), (4.29)
1 du
where @ = 551-.'

By using the expressions (4.28) and (4.29), one can obtain the concentration
distribution law for the motion of a thin suspension layer:

ac, a a
QD--a—;E — [—ﬂlﬂggﬂkpa—z" — ﬂ1ﬂ4a—:] (V -_ ﬂ] . (4.3[})

The determination of the influence of nonlocality in some problems will be
the subject of a further investigation.

Note. In this paper a set of differential equations are derived for fields of
velocities, microrotation velocity, pressure and concentration, (4.13)-(4.15) and
(4.30), for nonlocal theory.
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If we ignore the nonlocal effects, the present set of equations reduces to the
system given in [8].

Note also, that Equation (4.30) is formally the same, as the corresponding
one from [8] and [9]. The essential difference is that the pressure p and the
microrotation velocity v differ in the local [4], [8] and the present nonlocal theory.

Appendix.

From the boundary conditions (4.16) and (4.18), and the relations (4.22),
(4.24) and (4.25) we obtain:

ul,_o = d(A1 + A2) + C2 = U1, (A-1)
Vlyo = -g (41 - 4;) = Cs =0, (A-2)
Uly=n(z, 20) = d(Ay-e® + Age™®) + %ﬁz ~ Eglh + Cy = Uy, (A-3)
Vlyci(s, ) = —§ (*‘yre"‘ — Ay e“") - Paf - Ci.fz ~Coh—-Cs=Va+ L{iii,}
V]y=o = A1 + A2 — f—; =0 (A-5)
Vyaitongy = Are + A=t - =2 — L=, (A-6)

Now, we have the system of six equations for six unknown functions A,
A, G1, Cz, Cs and P.

The combinations of relations (A-1), (A-5) and (A-3), (A-6) yields:

dCy + ¢*Cz = *U, (A7)
2(h + d)Cy + ¢*Ca = Uzc? — dPh + Ph?. (A-8)

Hence, from (A-7) and (A-8), we get:

_ A (Uz=Uy)+ Ph(h —d)

B 2h y

d 2 (U — U1) + Ph(h - d)
] 2h

Ch

(A-9)

Ca=U,-

(A-10)

From (A-5), (A-6) and (A-10) we are able to calculate unknowns A; and
Ag:

A

o Pho o Ty =T 4 Bihsd) 1~
'~ 2¢Zsinh(ch) 2h 2sinh(ch)

_ 2Ph(h —d) + ¢ (1 = e®) (U2 — U1) + Ph(h - d)]
o 4c?hsinh(ch) 1 ¢ (A-12)

) " (A-11)
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Now, from (A-2), we determine Cs:

L} L}

d d /
Cs=2 (4;-4;) = = (A2 A1) . (A-13)
But, from (A-11) and (A-12), we have:

Up—Us _P(h—d)

= S k:

and from that, we obtain for Cs:

d [(Ui—tf;)(h—dj—h’(m—ﬂz)

Cy=— 2

5 -P(h-d)-Ph}. (A-14)

At the end, we obtain, from (A-4), the differential equation for P:

pydep=tr

fa fs'

and solution for P:

_ i e fio fo 3
P =axp ( 7 dz) [ 3 exp ( 5. da:) dr + C'] , (A-15)

where are

N h h—d 1—ech
h= oot 2 (1 ¥ EEE(T,-:T}) '

_ U=l 1 1—eh _[h—d}[2+c’(1—e"“)]
h= == ( 2—11(»:})  BE T amway
_(1=-eP) (U2 —Th) _ A (Ua=Th) d(Uz — U1)
i dhsinh(ch) ' “°= 2n ' 2h

_d (UQ'U;) (h=d)—h' (U= Us)
f'f: E h2 '
d d 5h3 dh* dh

s =i T =2 —ch o R b Pkt
=it e S e e T
d d

) , h®h  dn ., dR
= ——pth i T .
fg = cﬂ f]. + CE f;; 962 + h +
d d

fe=sU1—

2¢2 2c’
(] r hz e * i
fio = Eechfg - -Ee_":h,ﬂ + c—2f5 +hfs+ fr+Va+Uzh .

From the boundary condition for P, or equivalently for pressure p (see 4.2),
we can determine C. Than substituting P in (A-9), (A-10), (A-11), (A-12) and
(A-14), we have the solutions for A, Az, C1, C; and Cs.

Acknowledgement. This research was supported by a grant from the
National Science Foundation of Serbia, Grant No. 0402.



Nonlocal equations of the greasing layer of suspension 21

REFERENCES

[1] Eringen, A.C., Continuum Physics, Vol.IV, Academic Press, (1976).
[2] Eringen, A.C., Simple microfluids, Int. J. Engng. Sci.,2 (1964), 205.

[3] Eringen, A.C. and E.S. Suhubi, Nonlinear theory of simple microelastic solids, Int. J. Engng.
Sci., 2 (1964), 189.

[4] Merpocjaun, JI.T'., Hexomops eonpocs Meranuxu NOUIKDCTE € NECUMMEMPUTHOLM TEN-
sopoM manpsmcenud, ManaTenscTeo Epebanckoro yHMBepCHTETA, (YCCP) (1984).

(5] Ahmadi, G., A generalized continuum theory for multyphase suspension flows, Int. J. Engng.
Sci., 23 (1985), 1.

[6] Cvetkovi¢, P., Continuum theory applied to suspension flows, XVII Yugoslav meeting of
theoretical and applied mechanics, Zadar (1986).

[7] Cvetkovié, P., On hydrodynamics of miztures with nonsymmetric stress tensor — the case of
suspension flows, Bulletins for Applied Mathematics, BAM, 627 (1989).

[8] Cvetkovié, P., Kuzmanovi¢D., Golubovié Z., On the motion of suspensions with nonsymmetric
siress tensor, Theoretical and Applied Mechanics, 17 (1991), 45.

[9] Cvetkovié, P., Kuzmanovié D., Golubovié Z., Approrimate equations of the greasing layer of
suspension, XX Yugoslav meeting of theoretical and applied mechanics, Kragujevac. (In press)
(1993).

[10] Eringen, A. C., Nonlocal Polar Elastic Continua, Int.J.Engng Sci., Vol.10 (1972), 1-16.
[11] Eringen, A. C., On nonlocal fluid mechanics, Int.J.Engng Sci., Vol.10 (1972), 561-575.

[12] Eringen, A. C., Nonlocal Stress Ficleds of Dislocations and Crack, Modelling Problems in
Crack Tip Mechanics, CFC10, University of Waterloo, Ontario, Canada (1983).

[13] Eringen, A. C., D. B. Edelen., On Nonlocal Elasticity, Int.J.Engng Sci., Vol.10 (1972), 233-
248,

[14] Edelen, D. B., Nonlocal Field Theories, in "Continuum Phisics”, Vol.4, (A.C.Eringen, ed.)
Academic Press, New York, London (1976).

[15] Eringen, A. C., Nonlocal Polar Field Theories, in " Continuum Phisics”, Vol.4, (A.C.Eringen,
ed.) Academic Press, New York, London (19786).

[16] Cvetkovié P., Z. Golubovié, D. Kuzmanovi¢., Nelokalna teorija suspenzija, Zbornik odabranih
radova sa Simpozijuma "Konstantin Voronjec", Masinski fakultet, Beograd (1992).

[17] Kuzmanovié D., Z. Golubovié, Cvetkovié P. (1991). " Constitutive Equations on a Nonlocal
Porous, Liquid-Saturated Continua”, in "Constitutive Laws for Engineering Materials” (C.S.
Desai et al., eds.), Asme Press, New York, Third Int. Conference on Constitutive Laws for
Engineering Materilas, Tucson, Arizona, USA (1991).

[18] Saljnikov, V., Dinamika viskoznog nestiiljivog fluida, Masdinski fakultet, Beograd (1969).

HEJIOKAJBHBIE YPABHEHUA
CMA30YHOI'O CJIOfA CYCIIEH3UHA

B pafoTe npuMeHAeTCA MUKPOMOJIADHAA TEOPMA KOHTMHYYMa, B KOTOpOik
HeCUMMeTPUYHBI TeH30p HANpPMKEHNWA MONb3YeTCA IJIA ONMMCAHUM COCTOAHMA
HanpmKeHua. Teopua NPUMEHEHHA WA CJAYYad IBWXKEHMA CYCNEH3NMH B
TOHKOM cJIoe MeXIAy TIpUOIM3UTeNbHO NMapaijielbHEIMM [OBEPXHOCTAMM M CO
paaMycaMsl KpMBM3HEI JOCTATOUHO BEJMKMMEI 110 CPABHEHMIO CO CpemHel ToJ-
mIMHOK cimos 4.

Monayuennsie npobmwkeHHble IMddepeHiMalibHble YpaBHEHMA OBIWKEHWUA
CMa304HOTO CJIOA CYcMeH3Wi, a Takke M NpUb/MKeHHbIe YypaBHEHWA paclpe-
JleleHA KOHUEHTPALMM TOHKOrO CJIOA CYCIeH3HM.
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Ilorom nonyuennan cucrema middepeHuManbHEIX ypaBHeHUH pelaeTcs,
NpH YeM He YYHUTEIBAMBLI MHTErpajibHHe YJIeHHEI.

NELOKALNE JEDNACINE PODMAZUJUCEG SLOJA SUSPENZIJE

U radu se primenjuje mikropolarna teorija kontinuuma u kojoj se nes-
imetriéni tenzor napona koristi za opisivanje naponskog stanja. Teorija je primen-
Jena za sluiaj kretanja suspenzija u tankom sloju, izmedu pribliZno paralelnih

povriina sa polupreénicima krivine dovoljno velikih u poredenju sa srednjom
debljinom sloja &.

Izvode se priblizne diferencijalne jednacine raspodele koncentracije tankog
sloja suspenzije. Zatim se dati sistem jednaina resava, ako se zanemare inte-
gralni ¢lanovi.
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