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CONSERVATION LAWS AND NOETHER’S THEOREM IN A PARAMETRIC
FORMULATION OF MECHANICS
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1. Introduction

As it is shown, the energy conservation law E = T 4+ U =const. in general is
valid only for the scleronomic systems, but for the rheonomic ones it is not valid.
For these K. Jacobi [1] and P. Painlevé [2], [3] have obtained the corresponding
energy law in the form T — Ty + U = F(t) + h, where T =Ty + T} + Tp is the
kinetic energy and U the potential energy of the system.

However, recently V. Vuji¢i¢ [4]-[7] has given a modification of analytical
mechanics of rheonomic systems. Here a convenably chosen function of time
go = 7(t) is taken as an additional generalized coordinate, by which the nonsta-
tionary constrains and the Lagrangian of system are expressed. On this basis
an extended system of Lagrange’s equations is formulated, with an additional
equation corresponding to the quoted quantity go. Hence, inter alias, the energy
law is obtained in an integral form & = T + U + P+const., where P is so—called
rheonomic potential of system, arising from the nonstationarity of constraints.

But, one other way of approach is given by the author himself [8]: a para-
metric formulation of the mechanics of rheonomic systems, which is founded on
the family of varied paths and on the transition to a new parameter, depending
on chosen path. In this paper we shall study the conservation laws and Noether’s
theorem in this parametric formulation, and compare these results with those

2. A Parametric Formulation of Mechanics

Let us consider a system of N particles, under the influence of arbitrary
forces, with k holonomic nonstationary constraints

LA EH T P N 6 M T . (2.1)

described by a set of generalized coordinates (q1,¢2,...,9n), where n = 3N — k.
We can imagine a family of possible varied paths of system, drawn from the
initial position of the system in the instantt (see the graph)
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Here M, and M, denote the position of v—th particle in the same instant { + dt
on the actual and virtual path respectively, following by virtual displacements
from M,p.

In the mechanics of rtheonomic systems the time ¢ has the double role: this is
an independent variable (as in the mechanics in general), and in certain specific
relations it has the character of a parameter (for example in the constraints).
Instead of time as parameter let us introduce a new parameter 7, in dependence
of the chosen path

ozt A) e b=t A) (2.3)
and keep the time ¢ as independent variable. In this way, to each varied path,
corresponding to a value )¢, corresponds certain function of time = (¢, A¢) =

7¢(t), so that for the same instant ¢ + df we have the different values of this
parameter 7 on the actual and varied path.

In all relations where the time t has the role of a parameter we can pass
from time to so introduced parameter along a fixed path. So for A = A¢ we can
express the constraints in the form

fu o t(r, M) = fa(Fu,7) =0 (2.4)

and if we take r as an additional generalized coordinate go = go(t), the form of
Lagrangian is transformed into

L= L[“Ii:’ii!f‘{r:if)] = L* {‘Iﬂr:‘ja}' [25)

In this parametric formulation of mechanics the total work of ideal reaction
forces on arbitrary virtual displacements is different from zero

R4. 67, = Robr, Ro=—Ay %%, (2.6)
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where the summation over the repeated indices is understood, by the aid of
which d’Alembert-Lagrange’s principle can be obtained in the form

(F‘, + R —m, a.,) G S0 (2.7)

From this principle, transformed in generalized coordinates, follows the corre-
sponding extended system of Lagrange’s equations

d 8T 8T d 8T T
Rl O _moape BG4 - . 2.8
TS T T Q+R, 3 e Qo + R} + Ra, (2.8)

here Ry represents the generalized reaction force corresponding to go and is given
by (2.6). If we separate the generalized forces into the generally potential and
nonpotential ones, and if Rodgo is a total differential, those equations can be
transformed into

oo i o =9
where
-‘C(‘Ia:‘ia]:L_F:T_V'—P (2.10)
and P is given by
p -fRqun - (2.11)
dgo

The corresponding canonical formalism can be formulated in analogous way
as in habitual case. Namely, if we introduce the generalized momenta by
arl :
pa:g=ﬂaﬂq;j—bﬁ, (o =0,1,.c0nm) (2.12)
Lagrange’s equations (2.9) can be substituted by an equivalent system of differ-
ential equations of the first order

ﬁa=~%+Q;+R;, da:%, b=l Ly i) (2.13)
where
H(¢asPa) = Pafa — L. (2.14)
Those are the corresponding Hamilton’s equations and .hi= Hanaitonian repre-
seats the extended energy of system in the sense
H(ga\Pa) =T + U + P. 12.15)

3. Energy Laws and Differential Equations of Motion

a) In this aim, let us depart from the fundamental equation of motion

iy = s A BEA R, =15 8) (3.1)
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where the reaction forces are decomposed into the ideal R'd and nonideal ones

R;. As it is known, from this eauation, by multiplication by df, = v,dt and
summation cver v, one obtains the ciictic energy theorem of the system [9]

m,7,-d¥, = dI" = F,.d7, + R4 dF, + R:-dF, (3.2)

If we still divide the active forces iuto generally potentiai with V = b,-4, + U
and nonpotential ones F* by application of Euler’s theorem for homogeneous
functions and by utilization of condition for virtual displacements, this relation
passes into

de,  d av d

U3 gy OV, O,
dt  di at gt
Here the second term on the right hand-side expresses the influence of the non-
stationarity of constrains to energy relations, what is specific for the considered
problem.

(ﬁ; o E;) 4, (3.3)

b) Ii we start from Lagrange’s equations, with Lagrangian including the
general potential V = b;q; + U
d dL GL
e e i T R', .:1,2‘_,_1 &
where Q7 and R; are the nonpotential active forces respectively nonideal reaction
ones, in the similar manner (multiplying by dg; = ¢;dt) follows

d& d {dL . dL .
E-El?(@_mqi-L)_ 5ﬂ+(Q +R]'I: (35)

But, this form of energy law differs from (3.3) and therefore the corresponding
conservation laws are also different. Under the condition that the expression on
the right hand-side is equal to zero, in the first case we have E = T+ U=const.,
and in the second one £ = Ty ~Tp+ U =const. ( Jacobi-Painlevé energy integral).

¢) However, if one departs from extended system of Lagrange’s equations
(2.9), one obtains an another energy law, as it is shown by V.Vujigié [5]. His
proof can be generalized to general case of potential forces, by multiplication of
these equations by dg, = ¢,dt, from where one yields

d&ex* d /dC . - S
3 (aTn!Ia f,) = (Qg + R3) da (3.6)

If (Qf + R.)ga = 0, 1.e. if the effect of all nonpotential forces is equal to zero,
we get an energy integral

£ = — ¢, — £ = const. (3.7)

and the sense of this quantity can be perceived by application of Euler’s theorem
to homogeneous functions T and Vi = bgga

EX*=T+U+P. (3.8)



Conservation laws and Noether’s theorem in a parametric formulation of mechanics 91

this result remains valid also in the most general case.

But, so formulated energy integral differs from habitual energy conservation
law and does not represent the first integral in the usual sense. Namely, the
quantities R and P = — [ Rodg, in the general case can be founded only after
finding the solutions of first n Lagrange’s equations ¢; = gi(t) (n=12,..., n).
This quantity (3.8) represents an integral (or constant) of motion in such sense
that his total derivative with respect to time is equal to zero, no matter whether
this quantity can be found or not without finding these solutions g;(t).

The distinction of this energy law from the one obtained from n Lagrange’s
equations arises from the fact that in this parametric formulation of mechanics
is included also the contribution of the nonstationarity of constraints (through
the term Rg). Therefore this form of energy law is essentially equivalent to the
first one obtained from the kinetic energy theorem, but expressed in respect to
one extended system of generalized coordinates.

4. General Criterion for the Integrals of Motion

For any function of canonical variables F(ga,pa) the total time derivative,
with the aid of Hamilton’s equations (2.13) can be written in the concise form

% = [F,H], + (Q% + RY) da (4.1)

where the extended Poisson’s bracket is introduced by

_OF 3G _ OF 8G
a 04« Opa Ipa {3an

On this ground one can formulate a general criterion for the integrals of motion
in the above quoted sense: if the following condition is satisfied
dF P - - L. =
e [F,H], +(Q5 + R.)da =0 < F(ga,pa) = const.. (4.3)
this is the necessary and sufficient condition for a quantity F' to be an integral
of motion. Because of the same structure of this Poisson’s bracket, from here
follows also the corresponding Poisson’s theorem: if Fy and F, are two integrals
of motion, their Poisson’s bracket is also an integral of motion.

[F, G,

(4.2)

By applying this criterion to the quantity (2.14)

dH . .
_.{-li_ =(Q: + Ra] fa =0, [4&1)

one can conclude that under condition (Q}, + R )¢a = 0 this function represents
an integral of motion

dH

T =0 < H(ga,Pa) =T+ U + P = const. (4.5)
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This result coincides-with that which was obtained from n + 1 Lagrange's equa-
tions, but in this parametric formulation the habitual Hamiltonian H(g;,pi,t) is
not an integral of moticn.

As "a second rxample let us take the case of cyclic coordinates, when

q1,92,° *  Om are missing in Lagrangian and are linear functions of time g =
agt + 0. 1k=01,...,m). Then :he Hamiltonian -an be de ocmposed in two
corresponding parts and if one introduces the "truncated” Hamiltonian

: L.

I=H~par = —q,— L, (p=m+1,...,n) (4.6)
af}n

since o = /04 =cuast., this quantity satisfies the criterion (4.3), ie. it
represcats ar 'utegra' of .notion

aI |

= (H — prax, H] = — [Const., H] = 0, (4.7)
in accord uce with Lie result obtained by Vujiéié [10].

5. Couservation Laws from D’Alembert—Lagrange Principle

We can demonstrate, analogously to the method of B. Vujanovié [11], that
one can obtain here the conservation laws from transformed d’Alembert- La-
grange's principle. In considered formulation of mechanics this principle has the
form (2.7) and we can transform it in generalized coordinates, decomposing the
generalized [orces into potential and nonpotential ones. In this manner, after
identical transformations one obtains

d [ 3L
6L+ (QL + R,) 090 + Robgo = — (—rﬁq,,) (5.1)

dt \ 9¢a
and this is the corresponding central Lagrange’s equation. Let us still pass from
synchronous to total variations putting 8g, = Aq,—q,At, bearing in mind (2.11),
and add to the both sides the term dA/dt, where A can be any function of g,
and gq

; dA
AL + ,C.;E(ﬂht} +(Q% + R.) (Aga — daAl) + T °
d |8t .
= — | — — Qo t+ A ;
i [Bq,a (Aga — GuAt) + LAL + (5.2)

From here we can deduce the following conclusion, concerning the conserva-
tion laws: if
dA

AL+ L3 (A) +(Q3 + Re) (Ada — dabt) + 7 =0, (5.3)

then exists an integral of motion of the form

= %C— (Aqa — gaAt) + LAt 4+ A = const. (5.4)
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Consequently, to each transformation of generalized coordinates and time with
suitable chosen gauge function A, which satisfies the condition (5.3), corresponds
an integral of motion (5.4). This statement represents an indirect generalization
of Noether’s theorem to nonconservative systems in this parametric formulation
of mechanics, as a result analogous to quoted one obtained by Vujanovi¢.

6. Total Variation of Action

However, this generalization can be realized also directly, by analogy with
the one in the habitual formulation of mechanics [12], departing from the total
variation of action and taking go = 7(t) as an additional generalized coordinate.
This variation is given by

'l_-l iy
W:fﬂiq;.aa.n df-fciqm@mn dat (6.1)
g ia

and if we effectuate the transformations similar to ones in the usual analytical
mechanics ([13], pp. 142-146), passing from ga(f) and t to ga(t) and t, as well
as extending the summation over the index a from 0 to n, one obtains in the
first approximation

1y

d [ 4L

= el By o — Gad

AW f{dt[a%mq q t}+£m]+
ig

(6.2)

ac d oL .
Pt A o g TN

Let us choose the transformations of generalized coordinates and time in the
form of a r-parametric transformation group with r infinitesimal parameters

Aga = €€ (ag,dpst), Al =eably(aoidoit) (@=1,2,...,7) (6.3)

By inserting these expressions in (6.2), ‘lLe total variation of actien can be
presented through the functions {3 and Efu]

t
d [8L - d 8 8L =}
il = | Ex e a B e e N e 2 .
aw= [e{g AR R O i L O
to

where instead of £3 we iutio_uced the quantilies

fa =fa—dakpy (a=12,...,7 (6.5)

7. Generalization of Emmy Noether’s theorem

If one applies the formula (6.2) to any nonconservative system, the varia-
tional derivative according to Lagrange’s equations (2.9) can be substituted by
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d [8r
AW 2_}; {E [Er (Agn = Ga Ab) + E.ilt] —(QL + R.) (Aqa — éaﬁt]} dt (7.1)
I.n 1r

By adcing and subtraciing the term dA/dt, where s« introduced gauge functicn
A can be any function of g, and ¢4, this relation passes to

d rac
Bl — G AL+ LA _
f{dt (5. (Aga — gadi)+ L t+ﬂ]

(7.2)

2 dA
(@4 B2 (Ao — ) - S5 Lt

On the ~ther hand, the total variation of action can also be transformed by
application of the standard operations

(%1 ty
AW = fa(;:dtj = f [&ﬁ+£%{&:)} dt
1o fo
and by inserting this expression in (7.2), one obtains

L3
/ { L [l (Age — qaAt) + LAL + ﬁ] -

dt | 84a
to

(7.3)

d P , dA

- AL+ L‘d—t{ﬂ.t) +(Q5 + R%) (Aga — daAAt) + e dt =0
Therefore, if the following condition is satisfied

d ; dA

AL + EE(&E} +(Q5, + R,) (Aga — quAt) + e 0, (7.4)

since the time interval (fg,?1) is arbitrary, the integrand must be equal to zero,
whereby it results

_ oL
~ 04a
By substituting here Ag, and At by expressions (6.3) and putting A = £,A%, be-

cause of independence of parameters £, this conservation law will be decomposed
into r independent ones

= %EEZ + L&y + A" = const.  (a=1,2,...,7) (7.6)

(Aga — gaAt) + LAL + A = const. (7.5)
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Consequently, to each r—parametric transformation of generalized coordi-
nates and time, which satisfies the condition (7.4), correspond r mutually in-
dependent integrals of motion (7.6). This statement represents the direct gen-
eralization of Emmy Noether’s theorem to any nonconservative systems in this
parametric formulation of mechanics. In the special case when (Q}, + R5)ga =0
the total variation of action is reduced to

]

L

1y
dA
— —_—— _t
AW &fﬁdﬂ fdtd
to

tg

(7.7)

.

lf E = 'E' H ﬁW = U.
and we obtain as a special case the habitual formulation of Noether’s theorem,
namely the well known condition under which this theorem is valuable, with the

same integral of motion (7.6).

8. Generalized Killing’s Equations

Finally, let us still find the equations which must be satisfied by functions
£% and E&,], analogously to the procedure given by B. Vujanovi¢ [11] in the
habitual formulation of mechanics. In this aim, depart from the condition (7.4)
in the developed form

aLc e d
—a'—q:ﬂq-:: =+ Ea‘ﬂqa + £E[ﬂt}+ (8.1)
3 dA
+(Q% + Ry) (Aga — 4aE) + T 0

and apply the relation between the total variation of time derivative and vice
versa in the inverse sequence ([14], pp. 11)
. _ A d¢a d . d
Ada = A== = 7(Ada) — da 37(A2)

So, if we substitute Ag, and At by expressions (6.3) and put A = £,A®, one
obtains a linear combination of the parameters £,, and because of their indepen-
dence each coefficient of £, must be equal to zero

L i B (dfg 3 dﬁf‘u]) défo)

- L—
94a " | B4a e

51:! + dt 'Iar dt
(8.2)
dA®

¥=ﬂ, [ G5 M U,

+(Q + Ry) (€3 - datlyy) +

If we develop all time derivatives, bearing in mind that the functions £3, &)
and A® depend on g, and g., after grouping the similar terms these equations
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can be written in the form A® + ggBj = 0. Since the functions A and Bj do

not depend on §,, these equations wl.ll be satisfied only if A® =0 and B; =1
Le.

i c gEs gea a
(00, K, A 0k
Cia N\ g A4y d4p
(8.3)
(o =0 Y my el R r]
as well as
__:_.’I‘_,, aLc f"’“. 5'530}. o Lafflm
Ba, ™ * BB 0 By By T gy, WY
(8.4)

dAc

+(RQa + E"')( Taf{n}) é};

ga =0, (a=12;5:7]

These equations represent the corresponding generalized Killing’s equations
for the functions £ and éf‘ﬂ}, and their sense consists in the following. If ex-
ists at ic:st one particular solution of this system of r(n + 2) equations, the
condition for the existence of integrals of motion will be satisfied, and to each
such transformation of generalized coordinates and time correspond r mutually
independent integrals of motion. In this manner, the finding of integrals of
motion is reduced to discover the particular solutions of this system of generalized
Killing's equations, corresponding to the fundamental Vujanovié’s idea for finding
the conservation laws of nonconservative systems in this parametric formulation
of mechanics.
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LES LOIX DE CONSERVATION ET LE THEOREME DE NOETHER
DANS UNE FORMULATION PARAMETRIQUE DE MECANIQUE

Dans cet article on a étudié les loix de conservation dans une formulation
paramétrique de mécanique des systéms rhéonomes, qui est basée sur une famille
des trajectoires variées, tirées a partir de leur position initiale et sur la transi-
tion 4 un parameétre nouvel, qui dépend de la trajectoire choisie. D’abord sont
analysées les formes diverses de la loi d’énergie, obtenues a ’aide des équations
differentielles du mouvement, dans habituelle et cette formulation de mécanique.
En outre, ici on a formulé un criterium général pour les intégrales du mouvement,
exprimées au moyen des crochets de Poisson étendus.

Dans la seconde part de cet article on a obtenu le théoreme de Noether
généralisé dans cette formulation paramétriue de mécanique, a partir tant du
principe correspondant de d’Alembert et Lagrange, ainsi que de la variation
totale d’action. En applicant cela aux cets systémes rhéonomes, la loi d’énergie
est trouvée dans la forme £ = T+ U + P= const., oi P est le potential rhéonome,
de méme qu’a 'aide du systéme étendu des équations de Lagrange. Ces résultats
sont en accordance avec tels obtenus par V. Vujiéi¢ dans sa modification de la
mécanique des systémes rheonomes.

ZAKONI ODRZANJA I NOETHER-INA TEOREMA U JEDNOJ
PARAMETARSKOJ FORMULACIII MEHANIKE

U ovom radu prouéavani su zakoni odrZanja u parametarskoj formulaciji
mehanike reonomnih sistema, koja se zasniva na familiji variranih trajektorija,
povuéenih iz njihovog poéetnog poloZaja 1 na prelazu na jedan novi parametar,
koji zavisi od izabrane trajektorije. Prvo su analizirani razni oblici zakona en-
ergije dobijeni pomoéu diferencijalnih jednalina kretanja, u uobitajenoj 1 ovo)
formulaciji mehanike. Sem toga, ovde je formulisan i jedan opsti kriterijjum za
integrale kretanja, izraZen pomocu prodirenih Poisson-ovih zagrada.

U drugom delu ovog rada dobijena je generalisana Noether-ina teorema
u ovoj parametarskoj formulaciji mehanike, polaze¢i kako od odgovarajuéeg
d’Alembert-Lagrange—evog principa tako 1 od totalne varijacije dejstva. Pri-
menjujuéi to na ove reonomne sisteme, naden je zakon energije u obliku £ =
T+U + P=const., gde je P reonomni potencijal, kao i pomoéu prosirenog sistema
Lagrange-evih jednacina. Ovi rezultati su u saglasnosti sa rezultatima koje je
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