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1. Introduction

During the last two decades considerable progress has been made on de-
veloping computational fluid dynamics (CFD) methods for aerodynamic analysis
[1]. Panel methods for subsonic flow were introduced in the sixties [2, 3], the
seventies have seen major advances in the simulation of transonic flow by the
potential flow approximation [4-7], and recent work has focused in solving the
Euler and Navier-Stokes equations [8—-12].

The development of a suitable method for mesh generation is main problem
involved with analysis of complex geometry. For simple wing-body configura-
tions it is not too difficult to generate rectilinear meshes [8], but it becomes
increasingly difficult to generate a structured mesh that is aligned with all solid
surfaces, for complicated combinations consisting of wing-body-tail-fin. Gener-
ation of structured rectilinear mesh about complete aircraft with pylon mounted
engines, poses extremely severe problems for any such method. An alternative
to overcome these problems is to use unstructured mesh [7]. In this approach
the grid generation techniques involve the use of triangular cells and the grid
points can be distributed using a suitable algorithm.

In this paper, algorithm developed in [18] for the solution of two-
dimensional Euler equations is described. The algorithm was developed for
steady flow analysis about multiple two—dimensional bodies, using unstructured
grid consisted of triangles. The flow algorithm solves the time-dependent inte-
gral form of the equations by means of a cell-centered finite-volume discretisa-
tion. The integration in time is performed using an explicit Runge-Kutta time—
stepping scheme. The solver uses explicitly added artificial dissipation to prevent
spurious oscillations near shock waves and to damp high frequency uncoupled
error modes.
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2. Mesh generation

Generation of an unstructured grid can be divided in two independent steps.
A set of points is first generated around complete configuration, and these points
are then jointed to form a tessellation by triangles. This connection 1s non-
unique, but it is always possible to join the points so that the circle through
the three points forming any triangle contains no other points. This unique
tessellation is known as the Delaunay triangulation [13].

The geometric dual of the Delaunay triangulation is the Voronoi diagram
[14] which assigns to each node the territory of the domain which is closer to that
node than any other node in the set. The boundary of the Voronoi neighborhood
18 formed from segments of the bisectors of the lines joining a point F; to each
of the surrounding points. This is illustrated in Fig. 1. A vertex of the Voronoi
diagram is formed where three edges meet.
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Fig. 1. Voronoi neighborhood around point P

Since each edge of the Voronoi diagram is equidistant from two points, a
vertex is equidistant from three points and is circumcenter of the circle passing
through the three points. The Delaunay triangulation is obtained by joining each
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Fig. 2. Delaunay triangulation Voronoi diagram
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A straightforward method for generating the Delaunay triangulation is
Bowyer’s algorithm [15] which sequentially constructs an existing Delaunay tri-
angulation. All triangles whose circumcircles contain the new node must be
removed because they violate Delaunay triangulation. The resulting convex cav-
ity obtained in this way must be retriangulated in such a manner that the new
triangulation is again Delaunay. This process is shown in Fig. 3.

Fig. 3. Bowyer’s algorithm

A new node is added in a Delaunay triangulation. Now the circumcircles of
the large triangle and its three neighboring triangles contain the new node and
these four triangles violate Delaunay triangulation. A convex cavity is obtained
removing these triangles from domain, so that all boundary nodes of the cavity
are visable to the new node. Connection of the new node with all nodes of
the cavity boundary completes the triangulation which is again Delaunay, and
Bowyer’s algorithm is prepared for the next node to be introduced.

The efficiency of Bowyer’s procedure is dependent on the time to search the
first circumcircle which contains the new node, all remaining circumcircles are
easily found by tree search. The set of point is in general randomly orderd, a
simple search would require O(N') operations to locate the first containing cir-
cumcircle for each node, leading to O(NN?) operations for complete triangulation.
It is necessary to use a data structure that allows an efficient search {or the first
triangle that violates Delaunay triangulation, no matier of the points ordering.
A quadtree structure [16] have been used to store the points that have previously
been inserted. In this way the final triangulation can be reduced to O(N log N)
operations.

3. Governing equations and spatial discretization

Two—dimensional flow of an inviscid fluid in a domain 2 with boundary 4Q
is described by the Euler equations in integral form
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] %4/ Wdrdy+f(de—de] =0, (1)
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where the vector of conserved variables W and the ccnvective fluxes F and G
are given by

P pu pu
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where p, p, u, v, H i E are density, pressure, the Cartesian velocity components,
total enthalpy per unit mass and total energy per unit mass, respectively. These
quantities are related to each other by the definitions of total energy and total
enthalpy per unit volume for a perfect gas

2y .2
p u“+v
-
pE T_1+p 5 (3)

pH = pE +p (4)

The computational domain is divided into a finite number of triangles Fig.
4, and the integral conservation equations are applied to each cell. The conserved
variables are assumed to be constant within a cell, and it leads to a system of
ordinary differential equations with respect to time

%(S{Wi}_}.Q(W;]:& v 2N (5)

where Q (W;) is a discrete approximation of the flux integral, given by
3
QW)= ) (FAy-GAz),, =0 : )

m=1

and summation is over the edges forming the i — th cell.
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Fig. 4 Triangular cell as a control volume

The flux vectors are taken to be the averages of the values in the cells on
either side of the edge. The z— momentum flux components are given by

(P’uz +P]; + (F'“z +P)k

fm = ) (TEJ
o = (puv); '; (puv), (7b)

4. Artificial dissipation

Dissipative terms have to be added to discretized form of the unsteady
Euler equations, which are a set of nondissipative hyperbolic conservation laws,
to prevent oscillations near shock waves and to damp high frequency uncoupled
error modes. Adding these terms, equation (5) becomes

d
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In the present work the approach of Jameson and coworkers [8] is used,
and the dissipation function D (W;) is constructed as a blending of second and
fourth differences of the conserved variables. The biharmonic operator provides
a background dissipation to damp high frequency errors and it is switched—off
in the region of shock waves. The harmonic operator prevents oscillations near
shocks, and is switched-on near shock waves. By the analogy with structured
grids the artificial dissipative terms are constructed for unstructured grids, by
summation of the dissipative fluxes across the edges of a triangular element

3 3
D(Wi)= ) d®+ > d¥, (9)
m=1 m=1
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where the second and fourth differences are given by

d.[r:} = {EE} {w-‘: - w‘i]m ' [lﬂa]

d¥) = _q,, e (Aw — Auwi),., (10b)

[ndex m denotes the common edpe between cells { and &, and A is defined
as

3
dlw,-:Z(w;—w,—]. (11)
k=1
The scaling factor &, depends on the maximum eigenvalues of Jacobian matrices
dF /oW, and 0G/IW along the approvriate edge, and is given by
o = |udy — vAz| + aAl (12)

wlere u, v, and a are average values on m — th edge, a being the local speed
of sound. The values of adaptive coefficients ¢(?) and €* are based on local
pressure gradient given by shock sensor

1 i (Pe —Pi]ml
_ Im=

7 : :
> Pk +Pi}m ‘
m=1
Finally, the resulting adaptive coefficients are
€2 = K max (s, n),,], (14a)
eld) = max (ﬂ, K® _ -:L?]) (14b)

where K? and KY) are two empirically determined constants with the values
0.5 < K® <1.0, 1/256 < K < 1/32.

Correct treatment of the dissipation near boundaries is necessary for ob-
tamning accurate solutions. If the dissipation terms added to damp oscillations of
solution are too strong, the order of the numerical scheme can be reduced and
a large amount of spurious numerical entropy is produced near the boundary.
This causes the total pressure losses on the surface of the airfoil. In the present
work the approach from [17] is applied, by simply setting equal to zero the
contributions from the boundary edges.

5. Time integration

_The spatial discretization of the Euler equations leads to a set of coupled
ordinary differential equations with respect to time
dW;

- TRW) =0, i=12.. N 8)
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where R(W;) is the vector of the residuals consisting of the flux balance of
conserved variables together with the added dissipative terms. These equations
are to be integrated until they reach a steady state. For this purpose the
integration in time is performed using an explicit Runge-Kutta four—stage time
stepping scheme given by
H’iw} =W"

Wi{m} — Wf':']' + am At RE’"_” for m=1to4 (16)
: i=1, 200N,
Wi"+1 i I‘Vs-[ﬂ

where n is the current time level, n + 1 is the new time level. Residual and
coefficients are given by

R™ = (17)

Si
1 1 1
-, op=-, az==, o4=1 18
g Ty WTy ™ (18)
Because of computational efficiency, the dissipative term is evaluated only at the
first stage. The scheme represented by equation (16) is second-order accurate
in time. The allowable time step in explicit schemes of this type is restricted
because of the limited stability region and for multi-dimensional system of equa-
tions can be evaluated only in an approximate way.

Xy =

6. Boundary conditions

A condition of flow tangency is applied at solid boundaries, simply setting
the normal velocity flux accros the boundary to be equal to zero. The r and y
momentum fluxes are not equal to zero due to pressure terms. The pressure is
extrapolated onto the airfoil, and zero—th order extrapolation procedure i8 used,
ie. the pressure at the solid surface is taken to be equal to the pressure at ihe
centre of the adjacent boundary cell.

In the far field the requirement is that none of the outgoing waves are
reflected back into computational domain. A characteristic analysis based on
Riemann invariants is used in determination of flow va:riables on the outer
boundary.

7. Results
7.1 NACA 0012 aerofoil

Present method has initially been checked using standard AGARDO1 test
case for the NACA 0012 aerofoil. The unstructured grid had 3866 nodes, 7452
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triangles, and extended 20 chordlengths from the aerofoil with a circular outer
boundary. Also there were 110 points distributed on the aerofoil surface. Calcu-
lation was performed for the airfoil at a freestream Mach number M = 0.8, an
angle of attack o = 1.25° and CFL = 8.4. The solution residual was reduced by
over four orders of magnitude, as determined by the reduction in the L, norm
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of the density residual.

Calculated pressure distribution is shown in Fig. 5. For this case there is a
relatively strong shock wave on the upper surface of the airfoil at around 65%

chord, and a weak shock waves on the lower surface at 30% chord.
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Fig. 5 Surface pressure distribution for the test case AGARDO1

(NACA 0012 airfoil, M = 0.8, o = 1.25%)
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In Table 1. lift and drag coefficients from the present method, are compared
with results from a number of existing methods.

Test case : AGARDO1
Airfoil : NACA 0012
Mach number : 0.8
Angle of att. : 1.25°
CZ cX
REF. |22| 0.3436 0.0227
REF. |21| 0.3504 0.0227
(central differences)
REF. |21] 0.3349 0.0262
(TVD scheme)
REF. |23| 0.3099 0.0168
REF. |20| 0.2971 0.0203
(optimal scheme)
REF. |19] 0.3400 0.0230
PRESENT METHOD 0.3186 0.0241

Table 1. Comparison of calculated lift and drag corfficients
for the AGARDO1 test case

7.2 Multi—element aerofoil

The further validation of the present method has been periormed testing
inviscid flow around GA(W)-1 aerofoil with extended flap. It is a closely—
coupled 2-element aerofoil geometry, and the main problem in calculations with
such configurations concerns the generation of a suitable grid because the flow
domain is multiply-connected. Fig. 6. shows the computational mesh, consisted
of 6897 grid points, forming 13400 cells. There were 130 grid points on the
surface of the main aerofoil and 126 on the flap.

The results were obtained using the present method at a freestream Mach
number of 0.14, an incidence angle of zero, the flap deflection being 15%. The
surface pressure distribution is compared in Fig. 7 with results from [24], show-
ing good agreement with experimental results. Potential flow calculation results
[24] show noticeable deviation in the rear part on the upper surface of the main
element.
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Fig. 6 Partial views of computational mesh for 2-element aerofoil
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Fig. 7 Surface pressure distribution for 2-element acrofoil
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8. Conclusions

A method for the solution of the two—dimensional Euler equations on un-
structured grids, has been presented. The method is capable of treating steady

subsonic, transonic and supersonic flows about single and multi- element aero-
foils.

The steady-state solution is reached by integrating in time the unsteady
form of the equations, using an explicit multistage procedure. The convegrence
is accelerated using some standard acceleration techniques.

The ability of the present method to treat arbitrary grids and complex
geometries has been shown. The mesh adaptive procedures can be introduced
without any changes in the basic algorithm.

The unstructured grids can be relatively easily generated around complicated
configurations. This fact caused that current development is being directed
toward developing three—dimensional flow solver using tetrahedral grids.
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LES SOLUTIONS DES EQUATIONS D’EULER AUX GRILLES NONSTRUCTURES
POUR L’ECOULEMENT DEUXDIMENSIONEL STATIONAIRE

On a développé la méthode numérique & la résolution des équations d’Euler
dans le but de determiner champ d’écoulement stationaire autor des profils
aérodynamiques individuels plus composantes. Cette méthode utilise les grilles
nonstructures constitués par les élements triangulaires. Les équations d’Euler
dans la forme d’integrale se resolvent en utilisant la méthode des volume fi-
nis avec inconnus aux centres de gravité des éléments. L’intégration par le
temps jusqu A l’état stationaire se fait avec Runge-Kutta de schéma explicite.
Pour accéler la convergation on a utilisé les méthodes standards locale des
pas de temps, d’assourdissement entalphique et d’average implicite des residus.
L'attestation de la méthode a fait pour le test dans le cas subsonique et tran-
sonique.

RESENJA OJLEROVIH JEDNACINA NA NESTRUKTURISANIM MREZAMA
DVODIMENZIJSKA STACIONARNA STRUJANJA

Razvijena je metoda za numeri¢ko resavanje Ojlerovih jednafina u cilju
odredivanja stacionarnog strujnog polja oko pojedinaénih i viSekomponentnih
aeroprofila, Metoda koristi nestrukturisane mreZe sastavijene od trougaonih el-
emenata. Ojlerove jednatine u integralnoj formi reiavaju se koristeéi metodu
konaénih zapremina sa nepoznatim u tezistima elementa. Integracija po vremenu
do dostizanja stacionarnog stanja vrsi se eksplicitnom Semom Runge-Kuta. Za
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ubrzavanje konvergencije koriséene su standardne metode lokalnog vremenskog
koraka, entalpijskog prigusenja i implicitnog osrednjavanja ostatka. Za proveru
metode izvrieno je testiranje podzvuénih i transonicnih slucajeva.
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