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IMPLICIT STRESS INTEGRATION FOR ELASTIC-PLASTIC DEFORMATION
OF VON MISES MATERIAL WITH MIXED HARDENING
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1. Introduction

Implicit stress integration in the incremental analysis of the strain—driven
problems has advantages with respect to other procedures [1]-{5]. The basic
idea of reducing the problem of stress integration to solution of one nonlinear
equation is presented in [6] for elastic-plastic and/or creep deformation of metals,
and implemented in [7] to shell and beam analysis. That computation procedure
is applied to the Cam—clay material [8] and further generalized into a governing
parameter method (GPM) in [1]. Also, this procedure has been implemented to
the various material models, including anisotropic metal plasticity [9] and large
strains [2].

In this paper we first outline the basic concept of the GPM and then in
section 3 derive the governing relations for stress integration (for general 3-D,
plane stress/shell and beam conditions) and for the elastic-plastic matrix in case
of the isotropic von Mises plasticity with mixed hardening. In section 4 we give
two numerical examples, and, finally, in section 5 we present some concluding
remarks.

2. The Governing Parameter Method

As described in [1], the governing parameter method consists in the follow-
ing. We suppose that the known quantities at a material point are

iz, Te T, 1 H, T, (2.1)

where ‘o are stress, ‘e — strains, ‘e™ - inelastic strain, *# - internal variables,

at start of time step; and "*4%e are strains at end of time step. The unknowns

to be determined are
44t t4+ 4t 1 1
g, tHatg N1. +at E {2_2)

We use the left superscript to denote that a quantity corresponds to start or
to end of time (load) step. We suppose that it is possible to express the
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unknowns in terms of one governing parameter p. Then, we form a governing
scalar nonlinear equation

f(p)=0 (2.3)

whose solution is *+4'p. With the governing parameter ‘*2%p calculated, we
determine the unknowns (2.2).

A very important task in practical applications is to determine the true—
tangent constitutive tensor corresponding to end of time step. Following the
GPM we have
gi+dg  gHag graty

f+ﬁfc — -
- St+atg - 3:+mp Hi+ata

(2.4)

Derivatives §'+%'p/9'+A%e can be calculated by differentiation of the governing
equation (2.3) with respect to strains T4%e, i.e.

t4 A t+at IN
df _(afa g, _Of oteteN

qi+atg 2= ('jil-i-.ﬂ.lg 31+dlp gt+atgIN a:+ﬁip

e (2.5)

af at+ﬂlE) gi+aty of

di+aig 3""‘:"1? Hi+dtg Hit+ita

We use derivatives with respect to tensors, with the meaning, for example,
8/8'+t%%e = 3/0ermirim, where ip and i, are the base vectors in a Cartesian
coordinate system. In the expression for '+2'C we will employ the one-index
notation for stress and strains; hence, in componental form we write the fourth-
order tensor **3*C in (2.4) as the two-dimensional matrix,

AL
f+1‘llclj . d oy (26}

9= et

3. Von Mises Plasticity Model with Mixed Hardening

Here we apply the GPM to the von Mises material with mixed hardening.
The main characteristics of this model are shown in Fig. 1. Two yield surfaces
corresponding to start and end of time (load) step show that the yield surface
translates and changes the size in the deviatoric plane. The yield curve which
represents the relation between the size of the yield surface ¢ and the isotiopic
part of the effective plastic strain &% = M&", where M is the mixod hardening
parameter (0 < M < 1, M = 0 - kinematic hardening, M = 1 - isotropic
hardening), is shown in the fgure.

We start with a general 3-D deformation. The constitutive relations for the
mean stress 3%, and for deviatoric stress ‘t4!S at the end of time step are

Aty  =e¢m' T, nosumon m (3.1)

I-I-ﬁts — EG (I-I"-ﬁ‘lel'r - &ep) [32}
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where ¢m = 3K (K is the bulk modulus), G is the shear modulus, **2%e, =

t+4%,.. /3 is the mean strain, Ae? is increment of plastic strain, and t+atg! jg
:+dteu i t+&:e.- _ tep (3_3)

Here +8te’ is deviatoric strain, and 'e? — plastic strain at start of time step.
In the above relations the incompressibility of plastic deformation

Figure 1. Stress states and the yield surfaces at start and at end
of time step, in deviatoric plane and on the yield curve

is taken into account. Further, we use the flow rule, therefore we have
AeP = AXHALS (3.4)

where A) is a positive scalar, which can be related to increment of effective
plastic strain as

3 Ae?

and **+2!S is the radius of the yield surface. Definition of Aé? and **4'5 are as
follows

A 12 g 1/2
AR = (Eﬁe”-ﬁe’) = (Eaez;acfj) (3.6)
~ wats L Sikid siaig)Y
= (E ) s) (3.7)

The yield condition at end of time step can be expressed in the form
HAIS ='a + Ag + 48 (3.8)
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For increment of the back stress @ we use the constitutive relation
Aa = CAe® = CANTALS (3.9)
where
= %(1-1@)@, (3.10)
i,}%r the modulus expressed in terms of a weighted plastic modulus for time step
o
Using the above relations (3.2), (3.8) and (3.9) we can solve for **2!S as

t+.ﬁ.téE

tharg = . (3.11)
1+ (26+C) A
where
t+atgf _ rraige 1 (3.12)
and
HHEE —dthaly’ (3.13)

In (3.11) we have that *+2*S is a function of one parameter Aé?, in the sense
of GPM. Finally, we employ the yield condition of the form

f(A&P) = 1Ha1g. g %““&3 =0 (3.14)

which represents the governing equation (2.3). The yield stress *+%'g, is defined
through the yield curve

Haty = g, (M) = o, [M (‘& + AS)] (3.15)

The computational procedure is as follows: we solve (3.14) for Aé” using
(3.3), (3.15) and (3.11), then from (3.8) and (3.9) we calculate *+2'S and obtain
stresses ‘+4%g by adding the mean stress *+3'¢,, from (3.1); increments of plastic
strains follow from (3.4). As it can be seen, the stress integration is reduced to
solution of the scalar equation (3.14).

Further, we briefly present the solution procedure for the plane stress/shell
conditions. If z is the axis for which the normal stress is equal to zero (normal
to the midsurface in case of shell), i.e.

7, =0 (3.16)

than we need to correct the constitutive relations (3.2) in order to satisfy the
condition (3.16). Practically, we correct the elastic constitutive matrix C¥ and
then, instead of uncoupled relations (3.2), we obtain expressions for the in-plane
components ‘+3'S;. and **+2!S,, in the form

thatg :+mSE AX (C Et+atg C E:+m5 )
(3.17)
t+mS t+m53 A (C E"“MSH 4 CIEH'MS )
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where C"iE and ti':f are elastic constants expressible in terms of the Young’s
modulus E and Poisson’s ratio v. These relations, together with the yield
condition (3.8) can be solved with respect to *4!S;; and **4'S,, [2]. The
third component +2!S,, follows from the deviatoric character of ‘““S while
the shear components of the radius ‘t4!S are given by (3.11). Under these
conditions we form again the governing equation (3.14) to solve for Aé?, and
cale late stresses '+4'g, increments Ae? and Aa in a way analogous to the
above described for 3-D deformation.

In case of beam deformation we only have one nonzero normal stress oz in
the beam axis direction. Then the constitutive relation for **4S.; is

2 2 W
t+At _ “t4at - that,” p
S 3 Ozz 3E( — Aef ) (3.18)
where +41 :, =t+ate . —tel . Also, ""‘MS” =tatg = _1/2t+8ig . With

these conditions we can again form the governing equation (3.14) and proceed
in a way analogous to the 3-D procedure.

The elastic-plastic matrix *+2*CEP can be written, according to (2.6), (3.1)
and (3.2), as

At ~EP _ m At~
i+ tcﬁ s ‘l+4fcij +1+ icf.j (3_19)
where 1
RO = ombyj (3.20)
aud 31+At
S
t4+4
‘C m (3.21)

with &;; being Kronecker delta symbol. The coefficients *"‘“‘C,fj can be expressed
in terms of derivatives "+41C}; = af+¢‘s ;/0'*4%e] using (3.3) and the condition
that the shear components are '+4%e, = 1/2t+4ty, (in *8*CEP derivatives of

stresses are taken with respect to shear engineering strain components *+8%+y;),
Therefore, we have that [1]

[31+die;"] 1 2 -1 -1
———| == | -1 2 -1 =123 (3.22)
t4 81, ¥ ]
Gtate, 3 1 -1 2
while
31+4"."|.t 1
W 70 (3.23)

The problem of calculation of *+2*CEP is reduced to finding derivatives C’;j.
From (3.2) and (3.4) follows

- gitatg. y Y-
Ciy = grvarr = Cif —2G (245a0; + AN+A15, ) (3.24)
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where 3/0'*5%e] = ; is used. The coefficients Cif are C;f = 2G6;. By
employing (3.5) and (3.11) we obtain
A)j = b AS,
(3.25)

+ALS . =
TS5 = andij — by 1TA1S; AT,

where

t+aty |\ 9
2G
ay = -
14+ A (2G 13 c*)

. (E - MMHME',)

(3.26)
by (26 +C) + Axb,
1+ AX (2(}'+ ci')

52=3(1-M13ff;)

By =

3

and "HOTE = gi+ats/gt+AtEP  According to the GPM outlined in section 2, we
obtain derivatives Aé’; by differentiation of the governing equation (3.14) with

il

respect to "*2%.. Then we obtain

4 ay =i
A&, = E;‘M*Sj (3.27)
where
Elp = by, b+ %Mt"'&t&'yt"'nt.ép
(3.28)
by t+ At 5'; t+ At gj
and
t+ms-: - t+mls‘-h i=123
(3.29)

t""“é'; =225, i=4,5,6

Finally, substituting (3.27) into (3.25) and then into (3.24), we obtain the fol-
lowing expression for '+41S; ; suitable for application

é;j =2G (1= Alay) ;5 — i H'dtSni t+d.:S"-; (3.30)
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where

2Ga A

P

(by — AAby) (3.31)

Cy =

The above derivations are given for 3-D deformaition. For shell and beam
conditions we need to perform the corresponding static condensations.

4. Numerical Examples

Here we present two examples characteristic for illustration of the above
described computational procedure. Other interesting examples are given in [2].

(a) A Plate Loaded by In—Plane Stresses

A plate material element is loaded by given stresses. Geometrical, loading
and material data are given in Fig. 2(a). Considering that stress/strain state
is uniform within the element, determine displacements for isotropic, kinematic
and mixed (M = 0.5) hardening conditions. Use *E, and *+4*E, for E, in (3.10)
and employ two steps in the analysis.

(a)
L
Oyy Ty .
o I TTHTY o
-l—::-l—t..4 L¥ !
b=2| |
-
| 1
= Time
P
Dimensions [mm]
& 0,415
0,=170+405.4 (&°)
v=0.3
&

N

Figure 2. Plate element loaded by given stresses

(a) Boundary conditions, loading and material data
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(b)

Kinematic hardening

(c)

STEP 2
‘-"l Kinematic hardening (Ep=Ep’
- S —/ EPRIE | Isotropic hardening

Mixed hardening (Ep='Ep)

Figure 2. Plate element loaded by given stresses
(b) Yield surfaces and representative points in stress
space and in coordinate system &, &*
(c) Schematic representation of deformed shapes for
isotropic and kinematic hardening, step 2

With this example we illustrate difference in the material response due to
various assumptions for hardening, and also we demonstrate influence of the
modulus E, in (3.10) on results.

The plasticity calculations are as described in section 3. We note that in
case of kinematic hardening the condition *+4%¢, = oy, is used in (3.14). The

strains are calculated as

t+:1t$__ 1+ At
i+ At 1]

[t 6;' v A

elj =~ .-:,: L 44+ ‘efj (4.1)
and displacements, according to the given boundary conditions, are

Uy =gz T+ Ty Y

(4.2)

Uy = Eyy ¥ H

Some of the results are given in Table 1, where & is the effective stress for
isotropic hardening obtained from (3.7) with **4fS used for *+41S.
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Table 1. Results for isotropic, kinematic and mixed hardening

step 1 /step 2 [satropic hardening
0.2449 x 107 0.1718 % 10! 0.1048 x 102
2,8, A
0.2449 x 107 0.1718 x 10! 0.
0.1048 x 107! —0.1572 x 10! 0.5241 x 10~ 0.1048 = 10~
ks fue B THy
0.1048 % 101 ~0.1572 x 10" 0.5241 x 102 0.1048 x 107!
0.4633 x 107! 0.6990 x 10~ 0.2357 x 10! —0.3575 x 10~!
Meay Uga, Uga
Uy = Uy 0.3753 = 1077 0.5590 x 101 0.1837 = 10! —0,2715 x 10-1
Kinematic hardening Ep = *Ep
01700 x 10° 0,2036 x 102 0.1797 x 10—
&, éF AN
0.1700 x 107 0.2578 x 10~! 0.2095 x 10~
0.1247 x 102 —0.1870 x 102 0.6235 % 103 0.1247 x 102
L AT A 4
—-0.1329 x 10~ 0.1994 x 10~ —0.6646 x 10~ —0.1328 x 107!
0.9388 x 10~* 0.1448 x 10! 0.5094 x 1072 —0.8041 % 1072
Urz, Uzs, Uga
Uys = Uy —0.5757 x 10~} —0.8675 % 107! -0.2918 x 107! 0.4418 x 10~1
Kinematic hardening Ep = "+2¢E,
0.1700 x 107 0.1425 x 10° 0.1257 x 10~*
&, &P, A
0.1700 x 10° 0.1068 x 10! 08174 x 1072
08726 x 10! —0.1309 % 10° 0.4363 x 10~ 0.8726 x 10™!
e by ha, vy
—0.4800 x 10° 0.7200 x 10° ~0.2400 x 10° —0.4800 x 107
0.3534 x 10° 0.5306 x 10° 0.1771 x 10° —0.2661 x 107
Uﬂ- U::!- Usa
Uya = Uy -0.1924 x 10* ~0.2887 x 10 —0.9626 x 107 0.1444 x 10
Mixed hardening Ep = '+8¢E,
0.2287 x 107 0.1900 x 107! 0.1246 x 102
a, &P, Ad
0.2497 x 107 0.3970 x 10! 0.1243 % 1072
0.1164 x 10! —0.1746 x 10! 0.5819 x 10—2 0.1164 x 107!
ﬂ;:- '!ig- E’;:. 11’,
—0.1033 x 10™2 0.1550 x 10— —0.5166 x 10— —0.1031 x 10—
0.5095 x 101 0.7683 x 10~" 0.2588 x 10—! —0.3971 % 10~}
Usa, Usa, Uz
Uys = Uys ~0.8533 x 1077 | -01320x 107" | —0.4666 x 102 0.7400 x 10~7

67
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We note that in case of isotropic hardening there is no further plastic de-
formation in step 2, as can be seen from Fig. 2(b), where the yield surfaces
and the stress points for steps 1 and 2 are shown. For kinematic hardening and
E, = 'E, we have used & = 1x10~*. The stress points and the yield surfaces for
mixed hardening lie between those shown for isotropic and kinematic hardening.
Difference in results due to use of 'E, or **2'E, is shown in Table 1, for kine-
matic hardening. Finally, the calculated material response is drastically affected
by the adopted assumption of hardening, for the reverse loading conditions. This
18 shown in Fig. 2(c).

(b) Plane Strain Element under Compression

A material element loaded by given forces is shown in Fig. 3 (a). Suppos-
ing plane strain conditions and uniform stress/strain state within the element,
determine displacements of nodal points using two steps.

This example demonstrates applicability of the GPM to plane strain condi-
tions and also the high convergence rate due to tangent elastic—plastic moduli.

(@) ; + Lengths in [mm] [ N‘;m]
i g i -2000

P

b=5

a,=170+405.4('")**'* [MPa]

U M=0.4
Gy E=1x10° [MPa]
v=0}23

(b)

a>
=

1 25=295 805
1
My !

'3=185.367
]
i

! -— =iP
z"_0.596x10"
'5'%=0.378x10°

170

Figure 3. Plane strain element under compression
(a) Boundary and loading conditions
(b) Stress states in deviatoric plane and on the yield curve
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According to the iterative solution scheme [1], we can form equilibrium
equations of the form

t+At fri-1 &U},"} = ""'“Ki;l &UE‘} — gttotp _ t+th;;-1

(4.3)
H"“Pfi;l AUD) — *"'MI{;;I &U},"} = Qtaip, — ""MF;_I
where |
At -l EH&:CiP{i—lj
a
i+.ritK-:;l e %t+ﬂ.=CvEyP(i-1}
:+mKi;1 = t+mcﬁ'ﬂi-1) (4.4)

t+mFi—1 - bt"'ma'f_f:”

t+atFi—1 — o t+at (i-1)
=a o
¥ yy

Some of the calculated quantities are given in Table 2. In Table 3 are given
unbalanced energies and unbalanced forces during iterations, showing the very
high convergence rate.

Table 2. Some calculated quantities for the first and last iteration

Quantity Step
1 2
Iteration (i) Iteration (i)
1 5 1 6
aul? —0.260000 x 10~? | 0.272220 x 10~% 0.751039 x 10~1 0381160 x 10—+
aug? ~0.143000 x 10~! | —-0.140338 x 10~* | —0.35%014 x 10~' | —0.190572 x 10—4
vl —0.260000 x 10~2 0.399160 x 10~2 0.790955 x 101 0.130431 x 10
ul?) —0.143000 x 10~! | -0.183875 x 10~! | —0.542889 x 10! —0.664091 x 10°
srs 0.141397 x 10~2 0.395828 x 102 0.852846 x 10~3 0.767859 x 103
Py, —0.208158 x 10° —0.200000 X 10° —0.119805 x 10° | —0.105990 x 10~7
al) —0.380966 x 10° —0.400000 x 10° —0.381557 x 10° —0.400000 x 10°
o —0.19087T x 10° | =-0.219583 x 10° ~0.235693 x 10° | —0.196786 x 10°
ol 0.917164 x 10° 0.214511 x 10! 0.926790 x 10 0.283936 x 102
aly —0.214005 x 10" -0.371631 x 10 —0.113238 x 102 —0.300410 x 10°
&t} 0.178844 x 107 0.185367 x 107 0.209190 x 107 0.295805 x 10°
P09 0.248285 x 10~ 0,939954 x 1077 0.897115 x 10~2 0.149073 x 10°
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Table 3. Unbalanced force and unbalanced energy during iteration

Iteration Step 1 Step 2
laFO|/ Fret AEC) AR NAFOI|f Fret AECH/AE®)
1 0.472127 x 10~? 0.120066 x 10! 0.152015 x 10? 0370934 x ml—
2 0.822788 x 10~ 0.122866 x 102 0.748139 x 10~ 0.266487 x 10!
3 0.736385 x 1073 0.137055 x 10— 0.202148 x 10! 0.221931 x 10°
4 0.799667 x 10—* 0.168085 x 10~ 0.110762 x 10~2 0.711816 x 10—
5. 0978799 x 10~% | 0.252205 x 1018 0325281 x 10~% 0.615062 x 10—*
6 0.279782 x 10~'° | 0.454904 x 10~'8
AE(®) = 0260572 x 10* AE®) = 0.751039 x 10°

L".F(i} = =+&:R = I+L11F{1']
AE® = AFE-D AU® + AFF-Y AU

Fret = E\JIRE + IRE = 4123.11

Graphical representation of solution is given in Fig. 3(b). From the positions of
the stress points N{ and N-_; in deviatoric plane we see that the loading is very
nonradial. The points Nf and N;, corresponding to the stress point N{ and
N,, are exactly on the yield curve.

5. Conclusion

An implicit scheme for stress integration of elastic-plastic constitutive rela-
tions, and calculation of elastic—plastic matrix — consistent with the stress inte-
gration procedure, represent an application of the governing parameter method
(GPM) to the von Mises material with mixed hardening.

The presented procedure is simple and computationally efficient, suitable
for general application in the displacement-based finite element method. The
derived relations can be employed to 3-D, 2-D, plane stress/shell, beam and
pipe conditions. The solved examples illustrate some of the main characteristics
of the developed algorithm.
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L'INTEGRATION IMPLICITE DE CONTRAINTE SE RAPPORTANT
A LA DEFORMATION
ELASTO-PLASTIQUE DU MATERIAU AU RENFORECEMENT
COMBINE DEFINIE PAR VON MISES

La méthode du paramétre fondamentale est appliquée a l'intégration de
contrainte dans le cas de la déformation élasto—plastique du matériau au ren-
forcement combiné définie par la condition de fluage de von Mises. Ensuite,
on détermine la contrainte d’incrément aux déformation déterminées dans le cas
général de déformation 3-D aussi que dans des conditions de I’état plan de
contrainte de coque et de poutre. Des expressions sont aussi déduites concernant
la constitutive matrice élasto—plastique tangente.

Quelques exemples numériques illustrent lefficacité et la simplicité du
procédé numérique propose.

IMPLICITNA INTEGRACIJA NAPONA
U SLUCAJU ELASTICNO-PLASTICNE DEFORMACIJE
FON MIZESOVOG MATERIJALA SA MESOVITIM OJACANJEM

U radu se primenjuje metod osnovnog parametra na integraciju napona za
elastiéno—plastiéno deformisanje metala definisano Mizesovim uslovom tecenja sa
mesovitim ojacanjem. Izlaie se postupak odredivanja napona u koraku pri za-
datim deformacijama za opéti slu¢aj 3-D deformacije, kao 1 za uslove ravanskog
stanja napona (ljuske) i greda. Izvode se takode i 1zrazi za tangentnu elasti¢no—
plastiénu konstitutivnu matricu.

Na nekoliko numericékih primera se ilustruje primena predloZenog numeri¢kog
efikasnog i jednostavnog postupka.
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