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THE EQUIVALENT JOINT LOADS OF THE COMPOSITE MEMBER
B. Deretié-Stojanovic
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1. Introduction

In the calculation of structures by the slope deflection method the external
influences acting along particular members are replaced by the concentrated loads
acting at the joints ie. at the ends of the members. They are called the
equivalent joint loads.

In the present paper the exact expressions for the equivalent joint loads
will be derived due to uniformly distributed load and the shrinkage of concrete.
They refer to two types of composite members: a member with two fixed ends,
member "k”. and a member having one fixed and another hinged end, member
"g”. The members are of constant cross sections.

The equivalent joint loads represent the negative values of the reactions
appearing at the supports of the members.

The equivalent joint loads for the members "k” and ”g” are introduced as
components of vectors Qe g and Qi m, respectively. Their positive values are
shown in Fig.1.
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The quantities A3 4, ik i Mg e NG g, T gy - MG, g represent
the relations of the fixed ends of the member and of the member whose one end
is fixed and another hinged (Fig. 1), due to the influence H.

In this paper the equivalent joint load functions of the composite members
"k” and "g” by the force method will be derived without mathematical negli-
gences. The solution contains only the invenitable approximation concerning the
descriptions of the reological properties of materials. Concrete is considered as
an aging linear viscoelastic material. The relaxation of the prestressing steel is
taken into account. The expressions are developed for any given concrete creep
function.

In the theory of aging linear viscoelasticity, Mandel established a mathe-
matical method using linear integro-differential operators. Since the operators
obey the algebra of ordinary numbers, the problem is solved symbolically and
formally, so that the mathematical operations are indicated only. Developing
the theory of composite structures Lazi¢ introduced linear integral operators for
which the laws of algebra of ordinary numbers are valid, too. Then the problem
was solved not only symbolically and formally but the expressions for stresses
and displacements were reduced in the simplest form. The expressions concerned
to any given concrete creep function and they were suitable for practical applica-
tions. Statically indeterminate composite structures were solved by the method
of forces. The same procedure will be used in the present paper.

First, the necessary expressions related to the subject of the paper will be
quoted so that the derivations could follow.

2. The basic expressions of the composite cross section

We consider the composite member where concrete (b), prestressing steel
(p), steel member (n) and reinforcing steel (m) coact. Using linear integral
operators the stress strain relation for concrete may be symbolically written in
the following form:

1 -

E*Es:EbaFﬂh (]_J

The solution of this integral equation is:
oy = Ey R (€ — €5). (2)

Operators F' and R':
F' = %i’ +-F (3a)
R =el -4, (3b)
where: e =e(t) = L) (3c)
Eso
are inverse operators which obey:

PR =FR=L @
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The concrete creep and relaxation functions F* and R" represent the fol-
lowing integrals: ; an

FakFl* RBP=FEL (5)

In the composite structure analysis the usual assuinption is that the shrinkage

of the concrete is time-wise similar to the concrete creep [1], [2]. Then the
deformation function due to the shrinkage of concrete is given by the expression:

E_5'=I‘[F*-1'], (6}

and for all observed times t and f, the value of parameter r is constant:

_ ES“: tﬂ]
T FGt) -1 i

The relaxation of prestressing steel is taken into account. With satisfactory
accuracy the stress strain relation is adopted as:

gy = Epfi;,a, (8)
where the relaxation function Rj linearly depends on the concrete relaxation
function R* [3]:

R, =R,1" = (1-g)1" +¢R". (9)
These assumptions are experimentally approved. Besides, the corresponding op-
erator Rp is commutative with other operators.

For the observed times t and t, and initial stress in steel o,,, the constant
value of parameters g is adopted. It is determined form the expression:

_ Gt —t,)
=T Rt t,)

(10)

where (, = (p(t —t,) is the relaxation of prestressing steel.
The other kinds of steel: steel member (n) and reinforced steel (m) obey
Hook’s law:
or=Ee, k=nm. (11)

Starting from Bernoulli’s hypothesis of plane composite cross section, the
equations of equilibrium between the external and the internal forces and equa-
tions (2), (8), (11) the system of inhomogeneous integral equations is obtained:

E,F;Ry;n+ EuSiRiok = N,
(12)
EySiRyyn+ EuJiRpsk = M,
where n = n(z,t,t,) is the normal strain of the bar axis, k = k(z,t,t,) is the

change in the curvature of the bar axis, E, is the relative modulus of elasticity,
F; and J; are the area and moment of inertia of the transformed cross section

a.nd S.* = ﬂ.ﬂ'fi.
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The elements of the symmetric operator matrix [RM] .g MO defined as

follows:
— ] - § - 1-. fOl‘ h- = I
Ry = (=)l + R, 6u= {ﬂ! for sk 4 (13)
while the principal values of the matrix are:
Ry=mi 4+mR h=12 (14)

The reduced geometrical properties of the composite cross section are con-
tained in the symmetric matrix ["w.;]2 - Its principal values are denoted by +4
(h=1,2). The following notation will be also used:

n=l-m, m=n-m, Mm=1m-m1 Ar=n-n

The operators have a commutativity property so that system (12) can be
solved by Cramer’s rule. The solution is:

1 1
1= gL ul + gg ful,
(15)
1 1
k= E.S F12N+E JFHM.
The principal values of the operator matrix [“;"]z , are:
¥ 1 . it ]
= =1+, (eh = 4 4 ne) . EELE (16)
Eh
It can be shown, that the next relations is valid:
R;,F;:F:f?;‘=i’. (17)

The operators F,, can be expressed by the principal values F{ and F, of the

operator matrix [Fh I]

Fi= g (nfl+mB), Fy= o (s +mf),

(18)
A _ a F _ EE ~ ~
Fp=Fy = AY (Fl +Fz) :
Also the next relation is used:
; Py Fyy — FioFyy = BBy (19)

The following operators are introduced:

LN N

Bh_RFhl h=1|21 (20)
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which are simultaneously linearly dependent on the operators 13';.:

2. 13
2 % AR T F (21)
Th Th

Functions Bj:
Bl = B} (ymt,to) = Byl" =R Fy = F{R", h=12, (22)

are the basic functions of the composite cross section [3]. The determination of
the functions B; is reduced to the solutions of the parametric inhomogeneous
integral equation:

K,Bi=1, h=1.2 (23)
The functions K} linearity depend on the concrete creep function F* and on the
reduced geometrical properties of the composite cross section:

Kp = Kp (i tite) = Kyl = ml* + 1 F*, h=1,2. (24)
Using the principle of virtual forces:
€= f (s, z) k(s,t, o) + N (5,2) (s, t,t0)] ds (25)
L

and expression (15) the reduced generalized displacement will be:
A® = A%(s,t, 1) = Eulul =

j M(s, z) }:";,{s, t, 7y M(s, T, t,}% ds+
L

;,—':fﬁ(s,z)ﬁ;l[s,t,T}N(s,f,t,}?%ds+ (26)
L

fﬁ'{,(s,t,r} [M(s,z) N(s,7,to) + N(s,z) M(s,1,1,)] % ds
L 1
The solution procedure of statically indeterminate composite structures is
analogous to the same procedure of homogeneous elastic structures [1]. If a
structure is n times statically indeterminate, the redundants Xz = Xem(t,t,),

(k = 1,2,...,n) occur, which are time function. The subscript H denotes the
influence.

The axial force Ny, the bending moment My, and the shear force Ty due
to the influence H are:

n mn
Nu = Nyo+ Y NeXew, Mu=Mpo+ > My Xix,
k=1 k=1

(27)

Ty =Tgo + ET.EXI.-H«
k=1
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We establish the geometrical conditions:
Aly = Aly(t,7)=0, r=1,2...,n (28)
where, A7, represent the reduced generalized displacement at the point s = s,
due to generalized forces X,y = 1.
Introducing expressions (27) into (26) and by realizing (28) we get n equa-
tions:
D A Xun+A%g, =0, kEr=12..,n (29)
k=1

where the redundants X,y appear as unknown functions in the system of n
inhomogeneous integral equations.

3. The equivalent joint loads of the composite member "g”
due to uniformly distributed load

For obtaining the equivalent joint loads for the composite member "g” (A.b)
(Fig. 2) the method of force is applied.
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Figure 2.

The member is twice statically indeterminate. The primary system with
redundants and corresponding diagrams are shown in Fig. 3.

QL

b e

—— =

i

X

Q; [
|

MQ\M___?_E'__,,,J

Np 1 @) 1

Figure 3.




The equivalent joint loads of the composite member 29

On the basis of diagrams (Fig. 3) and (26) equations (29) in the following
forms are obtained:

1 1 33
37, AR 35 FuXa+ 55 Fu =0,
(30)
1 = 1 .. IIJS

This system can be solved by Cramer’s rule.

Let the determinant of system (30) be demoted by D'. After operator
transformations it can be represented in the following form:

= Ez af al =0
1
D = FJ’F1FC (31)

where the operator C is linear combination of operators F’,::

The constants m and h depend on the reduced geometrical properties of the
composite cross section:

_mmtrh _ Y (33)
127172 1289172

Using Cramer’s rule D} and D; become:

D = 24“;: ThF, Dj= 141?, 7 Pl (34)
so that the redundants are:
X, = —(D)'D;, (a) X2=-(D)7'D; (b). (35)
The operators (D')~! and D' are inverse. They satisfy:
D'(dH't=1. (36)
Using relations (31) and (17) we get:
(D) = SRR RC) (37)

Now it is necessary to determine the operator §' inverse to the operator C':

§¢ =1. (38)
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Using expressions (17) relation (32) becomes:

C' = FiF; [mRRy + b (R, - nR)]. (39)
Introducing (14) we get:
C s --.r «ip{ Eﬁ :R:RJ]! 4{}
Fi Fy 5 5 (40)
where:
- M7+ 7% - dimyz + 11 A (‘T1T2+T1T;) =% 41
i3 T g v 2= 2 - @
We defined the operators:
Ry=1+6,R, h=1,2, (42)
where: -
0+0:=1 6,0,="1. (43)
P P
We defined also the inverse operators F:
RF =1, h=12 (44)

By analogy to expression (20), the operators B;l will be used:
B,=RZF%, h=12 (45)

For the functions B = B, 1" it can be shown too that they linearly depend on
the functions Fj:

B'——(l -F). (46)

The functions Bj are the solutions of the parametric inhomogeneous integral
equations given here in the operator form:

K\By=1", h=1,2. (47)
The known functions K} linearly depend on the concrete creep function:
K; = K,1° = ©,1* + F~. (48)

We return to the operator ¢’ (40) where (43) and (42) are substituted:
C' = pFlF,R R, (49)
Using expressions (17) and (44) the inverse operator S is:

) ot | R
S =(C )-1 =;R1R2.F1.F2. [59}
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The operator S is presented as four—fold operator product. By complex
operator transformations it can be reduced to a sum of operators. In that way
the operator S"T i.e. function S* has a considerably simplier form:

§'=s (' +tF +9%), (a)
. (51)
§*=8'1"=s(1" +tF] + 9%3), (b)
where the constants:
_ mr - -, ('Tl A 911"1) (".fn - eﬂ';)
GG > ABT172 d
(52)

©, (1’1 = 91‘!*;) (T2 = Bﬂ;)

t = s
AOM 72

depend on reduced geometrical properties of composite cross section.

Taking expressions (35), (37), (52) and (17) and relation R = F5,R R,
obtained by solving the system of equations (12), the redundants are:

ql? ql*F; ql*F;

A =g ~ 1445, 1aas. fud Fia = T 1445,

5, ) Xy= v (). (53)

The new function is introduced:

-

V*=V'1" = R,,§' F}, = s[al* + b Fy — by F; + cinaFy + cangF3],  (54)

where a, by, bqs,c; and ¢y are constants:

- : n n
— 12 n 4 bh = 11—2 ny — Tthl + ET? + 3T’: 1 h = 112
- Ay | Th =701 T — 702
7120k [ 1 1 ]
i = —_ r -+ - k= 1, 2 95
Ay | n—=70 T12—70:)’ (%%)

t y i ¥

: 711
ns=gl7m—-=1,.
( u 92)
It is necessary to notice that the function V* is presented also as a linear

combination of the function Fy and Fj;. The details related to the derivation of
expressions (51) and (54) may be found in reference [4].

By expression (53) the relations X, and X, are given. Using the equations
of equilibrium, the other relations can be found. The vector of the equivalent
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joint loads (Ab)(Fig. 1b) of the member ”g” due to uniformly distributed load

has the form:
ql F . qi - QISF qt i qf
Q‘” [144SV'24S +21’ 245' 144.S'V’ S 21 = kBl

When the concrete creep function F* is chosen according to (48) we form the
function K} where ©) is a parameter. Than the solution of parametric equation
(47) for two values of ©; and ©; represents the functions B; and B3, respectively.
The functions F; are obtained from (46) and finally the function S* (51) is
determined. To define the function V* we apply the similar procedure using
(24), (23), (21) and (54).

o, ¢

4. The equivalent joint loads of the composite member “g”
due to the shrinkage of concrete

The influence of the shrinkage of concrete is introduced in the usual manner

(1], [2].

N3 = E F,r|1° - R*| = ng|1* = R*|, (a)
(57)
M3 = E,Fyeypr|1* = R* | = mg|1° = R |, (b)

where assumption (6) and expression (2) are contained.

The system of equations for the determination of the redundants is the same
as (30) except for the third members. They are:

Mzl - Ngl - Nl - Mgl
2; Fzz 2;.‘ Fi, and - ; F11 Ss Flz (58)
Using Cramer’s rule we get:
. M3l . NP .o o M"
Dl 2.}"5 F‘l Fﬂl ‘Dz = JSF F F C + 127:5; Fl‘E F22 {59)

The redundants are determined from expressions (35), (37), (50) and (54)
and they are:

M. i M.
=-(C)'5E=-53E, (a)
(60)
Xy =Nj- o= B (C) M = Ny - 125 SV Ms. (b)

We introduced relation (57b) in expression (60):

1 i At
X, = R'|=\—*2~m5l5 -SSR |, (a)
(61)

- ﬂms et Fims - 53 -
X2=N5—1§"'5TV 5 125, m5|V VvV R\ {b]
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The following functions are also introduced:
St=5=§R and Vi=V'-VR. (62)

For transformation of the members S R* and V' R* we used (51), (54), (22)
and (45). Then S% and V& can be expressed as a linear combination of the
functions R*, F;, F;, B} and Bj. ‘

S3=s[1" = R* +t(F] - B]) + (%3 - B3], (a)
Vi =sla(1® = R*)+ by (Fy — BY) - (63)
ba (F7 — B3) + cama (Fi — BY) + cana (F3 = B3)].- (b)

According to (61) and (62) the redundants have the forms:

1 .
xl——imss;-, XQ—NSHHVS. [54)

The other reactions can be found using the equations of equilibrium. The
vector of the equivalent joint loads of the member "g” due to the shrinkage of
concrete has the following form:

F;
ms o2, Ny - mEliye _ fsg]- (65)

2

. , msk;
Q?;.s == [_Ns + Vs SS* 125;

125; =’ 2:'

The functions S% and V¢ are determined in the same manner as the func-
tions S* (51 b) and V* (54) adding the function R*. The function R* is the
solution of the inhomogeneous integral equation (4).

5. The equivalent joint loads of the composite member "k”
due to uniformly distributed load and the shrinkage of concrete

It is known that the composite bar with fixed ends affected by uniformly
distributed load has the time independent reactions. That means that the equiv-
alent joint loads for member "k” due to the same load do not depend on time.
The vector (Aa) has the following form:

.. g . g, q
QL. = [u‘ll S0, 21, ‘“121] (66)

By analogy with development of expression (65) the system of equations
corresponding to the shrinkage of concrete is created. The relations i.e. the
equivalent joint loads are calculated.

Q,,“ = — [~-ns|1" = R*|,0, ms|1* -

R*|, 0, mg|[1* = R*|] (67)

In this case it is necessary to solve only one inhomogeneous integral equation (4)
to determine the concrete relaxation function R®, i.e. the equivalent joint loads.
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6. The equivalent joint loads of the composite member at time t = ¢,

The equivalent joint loads of composite member due to uniformly distributed
load at $ime t = ¢, is equal to the equivalent joint loads of the corresponding
homogeneous elastic member having the modulus of elasticity £, and the cross
section geometrical properties, F; and J;:

2 :
Ql. =~ [u, Mlye Ly, 311*} ,

8 8 8
(68)
T, _ gl gl g . q_,
Qik.q_ [Di 21:121—?{}:—'21: 121 ’

At the time t = t, the equivalent joint loads due to the shrinkage of concrete
are equal to zero.

7. The numerical example

Consider the composite member "g” (Fig. 4) loaded with a uniformly dis-
tributed load q. We shall obtain the equivalent joint loads at times t = oo and
t, due to the load and the shrinkage of concrete.

" 200cm ¥
q=10KN/m
AN ¢ ¢ f 4 ¢t 9 :I;__'IS:rn
CIET a8
»20
n HBOOx10
! 1= 40m L
T ! T\l 300x20
Figure 4

Data: | =4m, ¢=10kN/m

Concrete (b): Ej = 30GPa, p, = 3.5, eg = —30 x 107°
Prestressing steel (p): E, = 210GPa, F, = 100cm?, &, = 8%
Steel member (n): E, = 200GPa = E,

Reinforced steel (m): En = 200 GPa, F,, = 80cm?

The concrete creep function of the aging theory with constant modulus of
elasticity of concrete is used, so that the application of the Laplace transforms
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can be possible. For the concrete aging creep function of constant elastic modulus
the basic functions B; (22) [1] and the functions Bj (46) are as follows:

1
! 1 -( - “ 1 ¥
Bl =¥ Bl = e \ont! .
h = AT Ba 1
Following the procedures described earlier we calculate required the values at
times ¢t = oo {1TM) and t,, given in table 1.
This example is also solved by the well-known effective modulus (EM)

methoc suggested by Faber. This procedure is based on the algebraic relation
between siress and strain for concrete:

Theo = EBW {Enﬂ =) Eam}r Eyeo = 1+ oo
=

which is accurate only for the hereditary function at time { = 00. Ejoo is the
asymptotic modulus of elasticity.

The values obtained by the (EM) method are given in the Table 1.

Influen. kN/kNm e EM ™

@1 0.000 2.675 3.351

Q- -25.000 -24.908 -24.881

q Qa -20.000 -19.634 -19.524
Q4 0.000 -2.675 -3.351

Qs -15.000 -15.0920 -15.119

o 654.845 818.729

Q2 -27.237 -33.991

S Qs -108.949 -135.964
Q4 -654.845 -818.729

) Qs 27.237 33.991

Table 1.

It is known that the values obtained by the TM i.e. EM method represent

their upper or lower limits. All other values calculated by any approximate
method must lie in these intervals.

8. Conclusion

The exact functions of the equivalent joint loads of the composite members
"k” and "g” are derived due to the uniformly distributed load and the shrinkage
of concrete by the method of forces using linear integral operators.
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Applying this mathematical procedure it is possible to reduce the complex
integrations appearing in the functions to the simplest form. They are linear
combinations of the concrete relaxation function and two pairs of functions
which are solutions of the two corresponding parametric inhomogeneous integral
equations.

When we determine the redundants by the slope deflection method of the
composite structures the integrations of the functions of the equivalent joint loads
occur. That is why it is very important for them to be of a simple form. We
emphasize that this form refers to any given concrete creep function.

In order to show the simplicity of the equivalent joint loads functions an
example is solved.
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DKBUBAJIEHTHAA Y3JIOBAA HATPY3KA IUIA
CONPAXREHHON BAJIIKH

IIpm pacuére cONMpPMKEHHEIX KOHCTPYKIMIt MeTOI0M AedopMauuu BIMAHUA
Hapy*HO# Harpy3xu Ha GaJKy 3aMeHAIOTIA BKBMBAJIEHTHON KOHIEHTPHYeCKOM
Harpy3xoit B ysenam Gamxu. B aToit cTaThM NpoM3BeNeHHB] TOYHEIE BUDaXKeHHA
IUIA PKBMBAJEHTHON y3moBoli Harpy3kd cONpAakoHHOH 6ankuM KOHCTAHTHIAX
cedYeHWit, BCIeICTBHE pacnpeNeNéHHO HArpy3koit m oxatoctu Gerona. Onm
npeAcTaBleHH ONA conpsmxédHoi 6Ganku ca obouMMM 3ameMIIEHHBIMHM KOH-
namu, THO "K', M IAA cONpskEéHHONH GaskmM c oMHHMM 3allleMJIEHHBIM KOHIIOM
M WApHUpPHO onepToit ApyruM, TMn "r” . Baakxu mmeioT KOHCTAHTHBIE CEYeHUA.
C uens6eddHBIMM ANP OKCHMALIMAMM PEOOrHYecKMX CBOHCTB MATEPHUAJIOB KAaTO-
pHe CYMecTBYIOT B CONPAKEHHOM CEUeHWM 3Thle BUPaXKeHWA Npou3BeleHiibl Ge3
MaTeMaTHYecKMX oTcTynieHuit. BeroH cuuMTaeM nMHeAHOH BABKOH YNpyrun
MaTepuanoM C cBoicTBHeM crapenMa. [Ipu pacuyére BBeleHa M peJIaKCAlMA
NpeIBOPHTENBHO HaNpmKEHHON! apMaTypu. Bupaxkens npousBelleHHI! INA Op-
WMHTMpPOBYHOM (QyHKuMM moasydyecTu Gerona. Iloab3yloThca JMHedHLIE MHTe-
rpajbHblé OMEpaTopHl.

IMoaxoaaumMKM TpaHchopMALMAMM MHOIOCHOKHEIE NIPOM3BEeNEHHA OMepa-
TOpOB, KOTOpHE ABJIAIOTCA NPH 06pa3oBaHMMU BTHIX BUpaXKeHMit, npeaocTasna-
JOTCA Kak JuHeltHEle komGunawu onepaTopoB. Taxumm o6pasoMm yMmMeHbIaeTcs
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YMC/I0 MHTErpaluMy a BUpP@XKeHMA MMeOT caMylio NpocTyio ¢opMy mou-
XONAMYIO INA NpuMeHeHMA. Jlia 3Hakomylo QYHKUMIO MON3YYeCTH GeToHa
JOBOJILHO PElIMTh TPU MHTEerpajibHhle YPaBHEHUA OT KOTOPHRIX IBE byHKUMM
napameTpuyeckue. KX pelenneM ABNAIOUA (PYHKUMH OT KOTOPBIX IMHEeRHO
3aBMCAT NMpou3BelleHLl BUDAXKEeHUA.

EKVIVALENTNO CVORNO OPTERECENJE SPREGNUTOG STAPA

Pri proraéunu konstrukcija metodom deformacija uticaje spoljasnjeg optere-
¢enja na $tap prevodimo u ekvivalentna koncentrisana opterecenja u ¢vorovima
Stapa. U ovom radu izvedeni su taéni izrazi za ekvivalentna ¢vorna opterecenja
usled ravnomerno raspodeljenog optereéenja i skupljanja betona. Oni su dati za
obostrano ukljesten spregnuti stap tj. Stap tipa "k” 1 spregnut Stap tipa "g”,
koji je na jednom kraju ukljesten, a na drugom kraju zglobno vezan. Stapovi
su konstantnog popreénog preseka. Uz neizbeine aproksimacije reoloskih osobina
materijala, koji sadejstvuju u spregnutom preseku, ovi izrazi su izvedeni bez
matemati¢kih zanamarenja. Beton se posmatra kao linearno viskoelastican ma-
terijal sa osobinom starenja. Uzeta je u obzir relaksacija Zelika za prethodno
naprezanje. Izrazi su izvedeni za proizvoljnu funkciju puzanja betona. Koriste
se linearni integralni operatori. Pogodnim transformacijama visestruki proizvodi
operatora koji se javljaju pri izvodenju ovih izraza prikazuju se kao linearne
kombinacije operatora. Na taj naéin je smanjen broj integracija i izrazi imaju
najjednostavniji oblik prikladan za primenu. Za poznatu funkciju puzanja betona
dovoljno je resiti tri integralne jednacine of kojih su dve parametarske. Njihova
resenja su funkcije of kojih linearno zavise izvesni izrazi.

Pri odredivanju deformacijski neodredenih veli¢ina spregnutog nosaca u
metodi deformacija nad izvedenim izrazima za ekvivalentna évorna opterecenja
vrie se integracije. To je razlog sto su ovi izrazi operatorskim transformacijama
svedeni na najjednostavniji oblik. Da bi se pokazala jednostavnost primene ovih
izraza uraden je brojni primer.
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