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1. Introduction

Problem of hysteresis is known in many areas of engineering and more
generally in physics. Magnetism, adsorption, cyclic plasticity, etc., are some
of them. Von Preisach (1935) [5], introduced his function in the problem of
magnetism while Everett and Whitton (1952) 1], considered the problem of ad-
sorption hysteresis. Mayergoyz (1991) [4], published monograph dealing with all
aspects of Preisach model and its application in the area of magnetism. Besides
its simplicity and mathematical rigour, this method has as yet to be applied in
the problem of cyclic plasticity. First effort in this area is very recent. Lubarda,
Sumarac and Krajéinovié (1992) [2], (1993) [3], outlined basic of method applied
for the axially loaded members. After that Sumarac (1993) [6] extended the
model including the damage of also uniaxially loaded members. This paper is
extension of the article by Sumarac and Stosi¢ (1993) [7] dealing mostly with
the cyclic plasticity of bending.

2. Preisach model of hysteresis

In this paragraph Preisach model for cyclic plasticity would be outlined,
More detailed analysis can be found in the Mayergoyz monograph (1991) [4].
Preisach model implies the mapping of an input of strain £(¢) on the output of
stress o(t) in the integral form:

o(t) = f ] P(a, B)Ga e(t) dadB (2.1)

a>p

In the above formula G, s is an elementary hysieresis operator given in Fig.1.
Parameters o and 3 are up and down switching values of the imput. P(a,p) is
the Preisach function, i.e., a weight function of the hysteresis nonlinearity to be
represented by the Preisach model.
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Fig.1. Elementary hysteresis operator

Integration in (2.1) is performed over the right triangle in (a, 3) plane, with
line o = # being the hypotenuse and point (ag;f = —ap) being the triangular

vertex (Fig.2.}
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Fig.2. The limiting triangle

For a given hysteresis nonlinearity, the Preisach weight function P(a,g) can
be obtained by subsequent loading and unloading. If the input is increased to
some value a, the output follows the ascending branch of the major loop, and
for input & = a, has the value f,. If the input is subsequently decreased to some
value 3, the output follows the corresponding (transition) curve. Denoting the
output value at € = 3 by fa g, from the limiting triangle, it follows that:

e [ f P(c',8)da’ | 4 (2.2)
s \J

Differentiating the expression (2.2) twice, with respect to « and 3, the Preisach
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weight function is derived as:

2
Plovf) = 3 5 (23

Above explained Preisach model possesses two properties. They are wiping
out and congruency property. Both of them, and much more, about the model
is given in the papers by Lubarda, Sumarac and Krajéinovi¢ (1992) [2], (1993)
[3]. Also, in the mentioned papers, several combinations of elastic and slip
element are considered. In this paper only elastic-ideally plastic material will be
considered.

Elastic-ideally plastic material can be modeled by a series of a slip element
(with yield strength Y) and an elastic element (with modulus E), (Fig.3).
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Fig.3. Single elastic-ideally plastic element

To formulate the Preisach representation for the hysteretic behavior of this
material, consider the strain input £(t) ranging quasistatically between extreme
values =9 and —ep. From the major hysteresis loop and transition curves (lines),
shown in (Fig.4.), it then follows that f, =Y and,

Y -E(a-p5) for a-2Y/E<f<a
fop = -Y for 3<a-2Y/F (2.4)
Y for >«

Differentiating (2.4) with respect to § leads to:

%:E[H(a—ﬁ]—H(ﬂ-ﬁ“Q%)] (2.5)
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Fig.4. A major hysteresis loop and several transition lines
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Substituting (2.5) into (2.3) yields to the Preisach function:

E

P(a,p) = ?{ﬁ(u-ﬁ)-a(a-ﬁ—%)] (2.6)

The Preisach function has support only along the two parallel lines: o— @ =
0 and o — 3 = 2Y/E, vanishing in the rest of the limiting triangle. Once the

expression (2.6) is known, the expression (2.1) is sufficient to obtain the stress
as a function of time for a prescribed history of strain in a single element.

For a system consisting of infinitely many of these elements (with randomly
distribut :d yield strength) connected in a parallel (Fig.5), the overall stress is:
Y!!I..:I.'
o(t) = f p(Y)o (Y, 1) dY (2.7)
le"
where o(Y,t) is the stress in an individual element (unit) given by (2.1) and
having a yield strength within the range Yin < Y < Ymax. Also in the expres-
sion (2.1), for the Preisach function, the expression (2.6) has to be substituted.

Function p(Y) is the yield strength probability density function. Taking uniform
distribution of yield strength it follows:

(2.8)

? ﬁ

Fig.5. Parallel connection of infinitely many ideally elasto-plastic elements

Substituting (2.8) into (2.7) and taking (2.1) and (2.6) it follows:

a(t) = % (vf Gaot(t)da — %ﬁff Ga pe(t) da dﬂ) (2.9)
£o A
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where the integration domain A is represented by the shaded band area of the
limiting triangle (Fig.6).

Fig.6. Limiting triangle with the band area providing support
for Preisach function

The associated Preisach function for the entire system is:

P =3 {se-n- Tty [ (a-0-252) -

-H (cr - - EE“T“)] } (2.10)

3. Cyclic bending

Cyclic bending is in a nature one dimensional state of stress also. In that
sense already explained procedure would not be difficult to be extended. Assum-
ing wide spread Bernoulli’s hypothesis about plane cross section, the strain at
any distance from the neutral fiber is:

e(y,t) = &(t)-y (3.1)
Substituting (3.1) into (2.1) it follows:

o(y,t) = j [ P(a, B) Ga(x(t) y) dardB (3.2)

a>p

In the above formula, integration is performed on every triangle that is dependent
of the distance from the neutral fiber. Instead of one triangle that represents the
whole cross section, now every level y is represented by one limiting triangle. In
the other words, in this way the prism with triangular base, and hereafter will
be referred to as ”Preisach prism”, is obtained, Fig.7.
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Fig.7. ”Preisach prism” for cyclic bending

The moment curvature relation for a rectangular cross section is obtained
by integration in the form:

M(t) = [ yo(y,t)b(y)dy (3.3)

I
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From (3.3), using (2.9) it further follows:

yb(y}_ (:/ Ga a{y‘(t}} da-

'2(y T f f Ga,s(yx(t)) da dﬁ) dy (3.4)

If the cross section is unsymmetric, than the axial force is:

M(t) =

ul:*"‘---.u|

b

N(t) = f o(y, )b(y) dy (3.5)

or, substituting (2.9) into (3.5) it is obtained:

b g
VO =[5 ( [ Gaaluntt) da-

z{vm.x- i) ff G“ﬂ‘”"(‘”“‘“dﬁ) dy (36)

where a and b are the distances from the center of the gravity to the lower
and upper fiber of the cross section. Once the expression (3.4) and (3.6) are
known, the moment curvature relation, and axial force axial deformation is
straightforward.

If the axial strain £(t) at the center of gravity of the cross section is pre-
scribed, besides the curvature change «(t), then the strain at any distance from
the line of the center of gravity is given by:

e(y,t) = £(t) + x(t)y (3.7)

The expression (3.7) should be then replaced in the expression (2.1), and all
subsequent expressions could be easily rederived.

4. Numerical examples

To show the application of the above explained procedure, several numeri-
cal examples would be presented. First a rectangular cross section under pure
bending will be outlined. Then a triangular cross section, as the example of
the unsymmetrical shape, under pure bending will be considered. Finally the
rectangular cross section under cyclic axial strain of the line of the center of
gravity and cyclic curvature change will be outlined.
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4.1. Rectangular Cross Section under Pure Bending

Consider a rectangular cross section given in Fig.8 a).
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Fig.8. Rectangular cross section under pure bending

Let the cross section be loaded with the curvature change that is prescribed
as in Fig.9.
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Fig.9. Cyclic curvature change

In the region 0 <t < 0.5, or, 0 < & < &, where K, = 2e.;/h, all fibers of
the cross section are in the elastic region, and the stress is:

o(y,t) = Ex(t)y (4.1)

The diagram of stress, given by (4.1), and governing "Preisach prism” is plot-
ted in Fig.8 c). Substituting (4.1) into (3.3) the moment curvature relation is
obtained as: A
M(t) = E I x(t) (4.2)
where [ = bh®/12 is moment of inertia of the rectangular cross section. If the
curvature is further increased (region 0.5 <t < 1), then the nonlinear behavior
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will appear, and the stress in the fiber at the distance y is:

%My _ (y- 5.,_:) . (H(t)g _ _1,) 2] (4.3)

Kel h K Kal h 2

d{yl 't} = EE:!

where H stands for Heaviside function. The stress (4.3) is given in Fig.8 d) for
k(t = 1.0) = 2x,;. Substituting (4.3) into (3.3) it is obtained:

M(t) =E I k(t) — 3E I ka [lﬂ (1 Ko )_

8 x2 i w(t)

1 &(t) [ 1 _.'cj_;'_)]

3 Ka (1 rc(t]a) +3 (1 x(2)? (44)
From (44) for Kk = k4, M = Elk, and for £« = 24, M = 1.78120 E I k..
The shape of the "Preisach prism” for x = 2x.; is presented in Fig.8 d). For
1<t<1.5 or 0 <k < 2k,, the unloading starts. The "Preisach prism” doesn’t
change at all. Change takes place only along the hypotenuse and so the response
is elastic. The stress is given by:

- ey |50 LAPYOYIR AN
o(y,t) = Ecy |2 ek H (y 4) 2 (2.’1 2) (4.5)
From (4.5) for kK =0 the "residual stress” is:
h y 1 :
=lgy== P G vy 2= — = :
a(y,t = 1.5) EeqH (y 4)2( A 2) (4.6)

and it is plotted in Fig.8 e). The moment-curvature relation in this region is
from (4.5) and (3.3) given by:

M(t) = ET kq [fg - ETE (4.7)

It is easy to see that the response is elastic. The residual stresses are very
important issue in all area of engineering, specially in civil and mechanical
engineering. If the curvature changes the sign, for 1.5 <t <2, or =254 < K < 0,
the Preisach prism is shown in Fig.8 f), and the stress function is:

o(y,t)=Eey {2%?%' (yﬂ %) y (2% ) %)2
B e [T;]% -2(5- 1)]2} (4.8)

In the above formula y., is given by:

2\‘ el

_h
¥ = S oka — (1)

(4.9)
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In Fig.8 ) the diagram of the stress given by (4.8), for k = —2x. is plotted to.
The moment curvature relation, from (4.8) and (3.3) is:

- k(t) 7 k(t) 0 xd
M) = Elea [TcT =5 " (rc_f - 2) (ﬁ T (2Ka —:c(t})") N

K(t) 1 B2 1 K2,
.E . At TR £
(m 2) (8 (2ne;—s<t)ﬁ)+5(4 {zx,,-xm)*)](m]

In the same manner for the future steps the procedure is obvious. The hysteresis
loop M — k, for prescribed history of x(t) given in Fig.9, is plotted in Fig.10.

o

Fig.10. Hysteresis loop M — & for rectangular cross section due to
curvature change shown in Fig.9.

From Fig.10. it could be easily seen that the Preisach model satisfies

Bauschinger’s effect.
4.2. Triangular Cross Section under Pure Bending

In this subsection a triangular cross section given in Fig.11. under pure
bending would be presented.
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Fig.11. Triangular cross section under pure bending
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For the history of curvature change already shown in the preceding ex-
ample the diagram of the stress in the cross section at any time instant and
the moment—curvature relation would be given. In the region 0 <t < 0.5, or
0 < K < K., where k. = 3¢.;/2h whole cross section is in elastic region, and the
stress is given by:

o(y,t) = Ex(t)y (4.11)
while from (4.11), (3.3) and (3.6) moment and normal force are:

M(t) = E Ik(t) (4.12)

N(t) = 0. (4.13)

Expression (4.13) shows that in the elastic region for pure bending of unsym-
metrical cross section there is no axial force. The expression (4.11) is plotied in
Fig.11 c). In the region 0.5 < ¢ < 1, or K4 < & < 2K.i, upper fiber is in the
plastic region, and the stress in any fiber is given by:

Ik(t)y ea N1 [(3x(t)y )2
=FEe¢a |3 s - = =—==-1 :
alent) = Feu [2 o (y n(:)) 2 (2 K h (4.14)
The expression (4.14) is plotted in Fig.11 d) for & = 2k.;. Substituting (4.14)
into (3.3) and (3.5), with the proper limits of integration, it is obtained:

M(t) = E I&(t) [1 s (—1+ ke 3 &t) 1 LI YL )][ |
4.15

Ty k(t) 10 kg 2x(t)3 " 5k(t)?

N(t) = Eea b% [—g + ;—7 (,ci(';j”' f%) - 21_7 (x?:;’ ! ﬁi?j)] (4.16)

For & = k. from (4.15) and (4.16) it is obtained: M = Elk.,, N = 0, while
for Kk = 2k, M = 19407 E I k,;, and N = —Ebhe./216. Above consideration
shows that in the case of unsymmetrical cross section, even for pure bending,
in plastic range there is axial force. In the other words, if the neutral axis is
fixed at the center of gravity of the cross section, then the stresses due to pure
bending are unbalanced.

For the sake of completeness, we will derive the stresses for whole cycle. For
unloading 1 <t < 1.5 or 0 < k < 2x,, unloading takes place. The stress is then

given by:
_ S&(t) hY 1Y 1)’
o(y,t) = Ec.y [2 o7 H (y— 3) 5 (3.& - 1) ] (4.17)
For x = 0 the stress reads:
A\ 1/t 2
o(y,t) = —EcaH (y - E) : (33 -1) (4.18)

The expression (4.18) is plotted in Fig.11 e) and it represents again the residual
stress. From diagram of stress it could be easily seen that the axial force is
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different from zero. For the further decrease of the curvature, upper fiber will
be in compression, i.e., for 1.5 <t < 2, or =2k, < & < 0, the stress is given by:

. 3k(t)y AL f :
”(y’”’Es“{z x,;H_H( *5)2(35_1) t

H(y - yo1) [%%%+% (%—%)T} (4.19)
where
o1 = gh‘z‘_rc;:hj_n(ﬁ (4.20)
For k = —2k,, Y1 = 2h, the stress is given by:

o(y,t) = Eza {—3%— H (y-% {% (3% . 1)2_
[—%%+% (% -%)r}} (4.21)

The expression (4.21) is plotted in Fig.11 f). Finally for =2k < & < 0 or
2 <t < 2.5, the stress is given by:

3 k(i h
J{y1t}=EEci{§J3%-‘H(1"’§ {
8
2

o(y,t) = —EeqH ( = 53}) {% (33 - 1)2 - [—%% + % (% - %)r} (4.23)

The expression (4.23) is plotted in Fig.11 g).
4.3. Rectangular cross section under axial stretching and bending

In the preceding subsection we had the case where the axial force and bend-
ing moment appear due to unsymmetrical cross section even for the pure bending. -
The same problem is for symmetrical cross section under axial stretching and
pure bending. Consider a rectangular cross section, as shown in Fig.8, under the
curvature and axial stretching change as shown in Fig.12.
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e

Fig. 12. History of curvature and axial stretching change

In the region 0 < ¢ < 1 from the expression (3.6) and (3.1) it is obtained:

The linear distribution of stress given by (4.24) is

moment and axial force are easily obtained by integration:

o) = Bea (L 4270 (424
shown in Fig. 13 b). The

N(t) = Ebhe(t) (4.25)
M(t) = E Ix(t) (4.26)

If the axial stretching and pure bending is further increased (region 1 <t < 2),

the stress is:

(Y

# (-

o(y,t) = Ece [q;:} i :}
£ — (1) s(t)y le(t) 1)\2
P ) 2 ( e vl b ﬁ') ] (4.27)
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Fig. 13 Tectangnlar cross section under axial stretching and bending

The iz 1. of stress given by (127) is plotted in Fig.13 c). Substituting
(4.27) inio 13.2) and (3.0, it follows:
= , 1 &(8)%  1e(®)® 1 1e(t)
ﬁl'!:E,lh t—ze —_——— e — . i 4.
(t) [E[} E[(lﬂ' ) "'4 2 -I-4 3 e \4.28)
; 3 3 B 3
M(t) = Eeabq OF o Ll (‘e” Em) 68 L) Y
Ket 12 8 K(t) 3hrg \ €a
Rt fea—c()\*] x(t)?
{EE - ( @) ) T (4-29)

h? (s.ﬂ—sm)"’ L)\
4 k(L) B \eEa
The further consideration is straightforward.

5. Conclusion

In the present study application of Preisach model, already successfully
implemented for axially loaded members, is extended to the cyclic bending of
elasto—plastic beams. Due to arbitrary axial stretching and curvature change
during the time, the stress, axial forces and moments are calculated for sym-
metrical (rectangular) and unsymmetrical (triangular) cross sections. The model
starts from well known elements of the classical theory of plasticity, Hooke’s
(spring) and St. Venant (slider) elements, and using Preisach approach gives the
closed form analytical solution for arbitrary history of loading. The hysteresis
loop M — x and residual stresses, very important in engineering design, are
calculated. The model satisfies Bauschingers'’s effect, already very well known in
cyclic plasticity.
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T'MCTEPE3VCOBOE MMOBEIEHUE YNIPYTONMMACTHYECKHX BAJIOK
NOABEP/AEHHBIX HUKINYECKOM U3THUBE

B HacTosmell paboTe M3yuyaeTcA UMKIWYeCKMit M3rub ynpyromiaacTu4e-
ckmx Gamoxk. Pafora mpexacrTaBiAeT pacliMpeHHe HCHOAb30BAHMA MOIENH
Mpaitsaka, y»e yCMemHO MCION'b30BaHOr0 AJIA O0CEBOW HATPY3KM CTEPKHA, Ha
narub Ganok. [lonb3yacs 2Toil MOAE IO TIOKA3AHHO YTO MONYy4YaeThCA TOYHOE
aHAJMMTUYECKOe pellleHUe MJIA HanpskeHua, oceBoit cunm u usrubaloilero mo-
MEHTa B ToMepeyHoM ceyeHuM ana moboif, 3anaunoit, ucTopum aedopmaimaid
W M3MeHeHMA KpMBM3HbL. [Ipu aTom MBI mownu oX ocHOBHEIX Ten (Fyka u Cen
BenansA) XOpOIIO 3HAKOMMX B Teopuu miacTuuHocTH. B pabBore nokasauuo
KAK MOKHO KOHCTPYMPOBAT® INeTiM rucrepeauca M — k, AAA 3aJaHHOTO
LUMKINYECKOT0 M3MeHEHHWA KPMBM3HEI, ¥ MOJYYMTD OCTATOYHLIE HAMpPMKEHUA,
oYeH BaKHEIE B MH’KEHEPHEIX NMpHUMeHEeHHAX.

HISTEREZISNO EDN&SAHJE ELASTO-PLASTICNIH GREDA
IZLOZENIH CIKLICNOM SAVIJANJU

U posmatranom radu prouéava se cikli¢no savijanje grednih nosaéa u elasto-
plasti¢noj oblasti. Rad predstavlja proSirenje primene Prajzakovog modela na
savijanje grednih nosaia u odnosu na aksijalno naprezanje, ve¢ opisano u litera-
turi. Primenom ovog modela prikazano je da se dobijaju taéna analiticka resenja
za napon, normalnu silu i momenat savijanja u popreénom preseku grede za
zadatu istoriju promene krivine i dilatacije u osi nosaca. Pri tome se polazi od
osnovnih tela (Hukovog i Sen-Venanovog) dobro poznatih u teoriji plasticnosti.
U radu je pokazano kako se moze konstruisati histerezisna petlja M-k za zadatu
cikliénu promenu, i izracunati zaostali naponi u bilo kom trenutku vremena, vrlo
vaini u inZenjerskim primenama.
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