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INFLUENCE OF ROTATORY INERTIA AND SHEAR
ON THE DYNAMIC INSTABILITY
OF BEAMS SUBJECTED TO RANDOM EXCITATIONS
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1. Introduction

Dynamic stability and instability of continous systems, subjected to random
excitations has been studied for the past thirty years. One of the first analyses of
the problem of the stability properties of beam was done by Samuels and Eringen
[8]. In that paper the criterion for determining the mean-square stability in case
of a single variationed being the white-noise process, while keeping the others
constant, was derived.

An other significant study was published by Caughey and Gray [3], where
a Liapunov’s type of approach, to obtain sufficient conditions assertaining the
almost sure stability of a simply supported beam subjected to stationary ergodic
loads, was used.

The applicability of Liapunov’s functional method applied to continuous
systems as beam and plates, subjected to random parametric excitations was
expanded by Plaut and Infante [7]. This developed method is very convenient
for obtaining sufficient conditions for the almost sure asymptotic stability.

Kozin [4] introduced the "best” Liapunov’s functional, suitable for studying
of the almost sure asymptotic stability of beam and plates axially loaded by zero-
mean stationary ergodic forces, whose samples are continuous with probability
one,

The instability conditions in terms of spectral properties of the loads in the
stochastically loaded structures, treated as a linear system with a finite number
of degrees of freedom, where derived by Ariaratnam and Tam [1].

Tylikowski [9] has studied the asymptotic stability and the almost sure
asymptotic stability of viscoelastic beams compressed by time-dependent deter-
ministic, as well as stochastic parametric excitations.

In [6] the stability conditions of the beams, with rotatory inertia taken into

account, were derived. The beam is s:mply supported and subjected to axially
time-dependent random loads.



108 Pavlovié, R., Kozié, P.

The purpose of this paper is to analyse the influence of rotatory inertia and
shear on the dynamic stability of beams. Using the direct Liapunov’s method, we
have derived the sufficient conditions for the almost-sure asymptotic instability.

2. Problem formulation

o, and of constant
cross-section A and length /. Equations of the transverse motion of an axially
compressed beam, taking into account rotatory inertia and the shear deforma-
tions, have the forms [2],

Let us consider a simply supported beam, of density o
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where W = W(Z,T) is the transverse displacement, ¢ is the angle of rotation
of the cross—section, T' - time, Z € (0,!) is the axial coordinate, 3,, f§, are the
viscous damping coefficients for the transverse and rotatory motions respectively,
k — the cross-section shape factor, E — Young’s modulus, G is the modulus of
rigidity, I is the cross-section moment of inertia and N:(T) is the stochastic
axial compression force.

The boundary conditions for simply supported ends are
0v(Z,T)
a8z

7=1 =0. (3)

} W(Z,T)=0

Assuming that damping in the transverse and rotatory motions is the same,
1.e., 2 = B = 3, the following parameters can be used in the non-dimensional
Egs. (1) and (2),
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A substitution of relations (4) into Egs. (1) and (2) yields
w 2 0 (0w
xSy sy -l (G- v) = ©)

8w Bw w4, (611: ) L (6)
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In the following analysis we shell assume that the solutions of stochastic

differential Egs. (5) and (6) exist, and that Egs. (5) and (6) have trivial solutions
w(z,t) =0, ¥(z,t) = 0 with given zero initial conditions.
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3. Stability analysis

In order to apply the Liapunov’s method, we can construct a functional by
means of the Parks — Pritchard’s method [4]. In that sense, let us write Egs.
(5) and (6) in a matrix form

Lu=0, (M)
where the differential operator (matrix £) is given by '
§? 3 82 5.0 7 0
r= |0t Ut 5 N o * oz 8)
_226 9 +2C3 i+u232 |
* e a2 * 822

where u is a column vector of variables w and .
According to the Parks—Pritchard’s methods, an operator A is defined by

ﬂsni + 25%C 0
N = ot P : (9)
0 — +2
Qﬂt + 2¢
Using the dot-product of vector Lu and AN'u, and integrating over the rec-
tangle C={z:0<z<1} x{r: 0< <t}
t pl
/ / (Cu, Nu)dzdr = 0. (10)
o Jo

After a partial integration of Eq. (10), it can be written in the form of
the sum of two integrals. The first, obtained by an integration over the axial
coordinate only, we obtain that it is the Liapunov’s functional

1 Sw 2
V:f 32(—+Cw) + (% w? +
0 ot

2
+ k%s? @—T - af-') + (a"ﬁ + w) + ¢4t

However, it is evident that

(11)
:
d:.
J
V[ - j 5 dt= (12)

hence the second integral in (10) is the time derivative of the functional (11)
together with Egs. (5) and (6), ‘

o () oo (e
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The functional (11) is evidenul, positive-definite. In order to estimate the
derivative of the functional expresion (13) can be written in the form

%1: = -2V 42U (14)

where T is the functionai
1
U= f [zczsﬂw (%—? - Cw) +2¢%y (a—w +cw)
0
—szf(t}a : (‘3“’ <w)] (15)

dv

Introduce now a function A, defined as a minimum over all w, ¥, v = 5

and w = i—f of the ratio U/V
. U
A= min 7 (16)

As a minimum value in the particular case of a stationary point, we take zero
for the variation of the U/V value and obtain the equivalent variational equation

5(U = AV) = 0. (17)

Using the associated Euler’s equations we obtain

20+ 2w) - (OS2~ £t (32 e 2“’)
-2 [C(u + 2¢w) — k* (%i? » g_qg)“ =0,
(P +29) - A {c(www)-r’*a bow (%) =0 09)

2w — f(f)a—;; — 2\ (v +(w) = 0,
- Aw+C¥) =

Upon solving Eqs. (16), the function A(t) obtains the form
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}c(f] =
1/2
[ ¢t + I FA (1) + \/(Cnm = I F2(2))* + 4¢4x4s%a], FA(1)
o 2 (nmlm — kis?al,) (19)
where,
Qm = MT, ;= C+ rziafﬁ
(20)

ln = K252 + (2 5702, Fm(t) = C? + 5/ (t)od.

Using the property of the function A(t), we can estimate the time—derivative of

the functional V,

dv
= 2 ¢V - AY). (21)

Solving the differential inequality (21), we obtain the following estimation of the
functional

V> V(0)exp {2! [—C + %fut A7) dr] } . (22)

Therefore, we can postulate that the trivial solution of the Eq. (1) is almost
sure asymptotically unstable if

i
g X Dapgarse (23)
t—oo T 0

or, if the process f(t) is ergodic and stationary, ie. if
EX 2 ¢, (24)

where E denotes the operator of the mathematical expectation.

4. Numerical Results and Discussion

Expression (19) and the inequalities (23) or (24) give the possibility to obtain
the critical viscous damping coefficient, guaranteing an almost sure asymptotic
instability as a function of the statistic characteristics of the axial force. Applying
Schwarz’s inequality to the relation (24) one obtains

CEni —2¢*nmin (C4 “+ ?lliaf“az) “+

I (c“+ ¥tamo? + %ai.ar") +4¢*ws%a, (c‘* + i—a;az) >
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1 2
> [2(2 (Rmlm — n"szng,l) —(Ynm +lm) — mea:ia*?] 2

The almnost su.  asympt tic instability region is defined as a set where the
damping corficient . is smaller then it’s critical value. The instability regions as
functions of loading variance, damping coefficients inode number, cross—section
shape-factor znd thLe slenderness of beams are showu on the appented diagrams

and the Table |.

Table 1
m=1. k=5/6 s=10.
[z Tooo 035 (050075 [1.00 135 ] 150 | 1.75 | 2.00 | 2.25 | 2.50
5% | 0001z 0016 0.097 0162|0236 [0.317 | 0.403 | 0494 | 0.590 | 0.693
C ] 275 | 300 | 325 | 350 [ 375 | 400 | 425 | 450 | 475 | 5.00
5 | 0802 | 0918 | 104l | 1172 | 1310 [ 1.457 [ 1.611 | 1.774 | 1.944 | 2.123

m=1, k=56, s=20

& oo | 025 foso | 075 | 100] 125 | 1.50 | 1.75 | 2.00 | 2.25 | 2.50
g® | 0000 | 0.012 | 0.046 | 0.097 | 0.162 0.236 | 0.317 | 0.403 | 0.494 | 0.591 | 0.694

£ 2.75 3.00 | 3.25 3.50 | 3.75 400 | 4.25 4.50 | 4.75 5.00
{ 0.804 | 0.921 | 1.046 | 1.178 1.319 | 1.467 | 1.624 | 1.790 | 1.964 | 2.147

m=1, k=5/6, s=100.

N0 1035 Joso [ 075 ] 1oo [ 1251 150 175 | 200 | 225 | 2.50
o 0.000 | 0.012 | 0.046 | 0.097 | 0.162 | 0.236 | 0.317 | 0.403 0.495 | 0.592 | 0.695

E 2.75 3.00 | 3.35 350 | 3.75 400 | 4.25 450 | 4.75 5.00
g 0.805 | 0.922 | 1.047 | 1.180 | 1.321 | 1.471 | 1.629 | L.795 | L971 | 2.155
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From Table 1, we conclude that the increase of the slenderness s, or the
decrease of rotatory inertia would cause small increases of the almost sure as-
ymptotic instability regions. This effect is greater for higher order harmonics, as
seen on Fig.l.
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Fig. 1 The influence of the mode number on instability regions

The influence of shear is significant which is evident from Fig.2. When the
cross—section shape factor k increases, almost sure asymptotic instability regions

would rapidly decrease.
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Fig. 2 The influence of the cross-section shape factor on instability regions
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5. Conclusions

The applicability of the dircct Liapunov’s method has been extended to
beams.where rotal: rv inortia aid aear are included. The beams are subjected
to time—dependent axiai iore.s. The major conclusion is that the instability
regions changs quautatively when the shear is trien into account rather than
rotatorv inertia .
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DREHTRAGHEITS-UND SCHUBEINFLUSS
AUF DYNAMISCH INSTABILITAT VON BALKEN
UNTER WIRKUNG EINER STOCHASTISCHEN KRAFT

Anhand von direkten Liapunov - Methode wird in der Arbeit fast sichere
asimptotishe Instabilitat des Timoschenko -Balkens untersucht. Der Balken wird
durch eine zeitlich veranderliche stochastische axiale Kraft under Druck gesetzt.
Als Unterschied zu der klasischen Theorie wurden hier in Betracht Einfluss von
Drehtragheits des Querschnittes und Schubdeformation genommen. Funktional
von Liapunov wurd hier nach Parks — Pritchard Methode konstruiert und er-
haltene Ergebnisse stellen eine Generalisierung in bezug auf die, nach klasischer
Theorie des Balkens, erhaltenen Ergebuissen.

UTICAJ INERCIJE OBRTANJA I SMICANJA
NA DINAMICKU NESTABILNOST GREDA
PODVRGNUTIH DEJSTVU SLUCAIJINE SILE

Koriséenjem direktne metode Ljapunova u radu je ispitivana skoro sigurna
asimptotska nestabilnost Timosenkove grede. Greda je pritisnuta vremenski
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promenljivom stohastickom aksijalnom silom. Za razliku od klasine teorije, ovde
je uzet u obzir uticaj inercije obrtanja popreénog preseka i smi¢ucih deformacija.
Funkcional Ljapunova je konstruisan pomoéu Parks — Pritchard-ove metode, a
dobijeni rezultati predstavljaju uopstenje rezultata koji se odnose na klasiénu
teoriju grede.
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