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1. Introduction

The basic limitations in the Euler equations applications lie in flow calculation
around wings at high angles of attack when viscous effects are not negligible. In
cases where flow separation occurs it is necessary to add viscous terms to the Euler
equations, which result in the Navier-Stokes equations. An application of the full
Navier-Stokes equations requires a large computer storage and strongly increases
the computational time needed. Approximative Navier-Stokes equations, known as
thin-layer Navier-Stokes equations (TLNS), are described in this paper. Numerical
solution of these equations is based on finite volume method (FVM) with flux
splitting implicit LU factorization.

2. Theoretical postulation

The three—dimensional unsteady Navier-Stokes equations may be written in
Cartesian coordinate system in conservation form as follows :

where ¢ is the flow properties vector
7= (p, pu, pv, pw, e)7, (2.2)

while F', G and H are flux vector projections on Cartesian axes :

pu pu pw
pu? +p puv ‘ puw
= puv G=| pv’+p and H = prw ; (2.3)
puw pvw pw? +p

u(e + p) v(e +p) w(e + p)
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The viscous terms F,, G, and H,, present in the equation (2.1), are given by the

following relations :
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(2.4)

In the equations (2.2) and (2.3) quantities p, u, v, w, p and e denote density, velocity
vector projections, pressure and total energy per unit volume, respectively. The
elements of the shear-stress tensor are given by the constitutive equations for a

Newtonian fluid as follows :

2 2
Tee = 2p Uy — —p(uz + vy + w,), Tyy = 24Uy — gp(ur + vy + w,),

3
p.
Tzz = QIJ w; — gﬂ(uz + vy + wz), Try = Tyr = ;u(uy + vr)y
Tgz = T2z = .u(uz + wr)a Tys =Ty = Ju(vz e wy)’

while the heat-flux vector is

oT oT oT
Q:——ka—ra Qy -——ka—y, Qz—-"k(—?;,

where the viscosity coefficient 4 is dependent on temperature T

T )0.67.

The thermal conductivity coefficient & is defined by the expression

Y K
I (N
¥+-1Pr

The Prandtl number Pr, present in the equation (2.4.4), can be

(2.4.1)

(2.4.2)

(2.4.3)

(2.4.4)

considered as

constant, Pr = 0.72, while ¥ = 1.4 is adiabatic constant for air. For turbulent
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flows, the laminar viscosity p is replaced by g + pe, where the eddy viscosity g,
and the turbulent Prandtl number Pry are provided by a turbulence model. In the
present work the turbulence model of Baldwin and Lomax [1] is used.

An application of the curvilinear coordinate system transformation, grid generated
in physical space, which surfaces are related to the constant values of curvilinear
coordinates (¢, 7,(), is mapped to the rectangular computational grid. Neglecting
diffusion processes parallel to a body surface, keeping only body-normal partial
derivatives in the equations, leads to the thin-layer Navier-Stokes approximation.
In the transformed space the equation (2.1) becomes

0,7+ 0cF + 0,G + 0 H = 8 Ho, (211

where 7, F.G and H are quantities defined as follows :

?j = Jq (221)
and
pU pV
pul + &zp _ puV + 1zp
F=J| pU+&p |, G=J| wV+mp |,
pwU + &.p pwV +n.p
U(e+p)—&wp V(e+p)—mp
W $ (2.3.1)
puW + Czp
H=1J pvW + (yp
pwW + (. p
W(e+p)—Gp 3

where U, V and W are velocity vector contravariant coordinates, defined by fol-
lowing transformation :
U=§&+E&u+ v +§.w,
V =1+ nzu + v + n;w, (23.2)
W=¢_(+CGu+ Cyv +Cw,

while &, n; and (; are evaluated by equations

£ = —-z:6z — y‘rfy - 2:&;,
T = —Zrl)z — Yrlly — 217z, (2.3.3)
¢t = —z.(r — y-rCy - 2¢(;,

having in mind known the coordinate transformation law
= E(z,y,z,t),
n=mn(z,y,21),
C = C(IS yi z? t)!

T =it

(2.3.4)
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The quantities &, 7, and (; in the equations (2.3.3) are equal to zero, for a sta-
tionary, fixed grid. The viscous term on the right hand side of the equation (2.1.1)
after the transformation, becomes

0
#(C3+C§+Cf)ﬂc+#/3(Czuc+CyUc+Czwc)Cz\
#(C§+C§+Cf)vc+#/3(&uc+Cyvc+Czwc)Cy
Hy=J| p(CGZ+¢ +¢Dwe+p/3(Cuc+Cve+CGw)d |- (2.4.5)

[/2(C2+ 2+ C2) (v + v* + w?) e+
+p/3(Cu+y v+ w)(Cruc + (yve + (we)+
\ R+ + T )

In the equations (2.2.1), (2.3.1) and (2.4.5) Jacobian J = d(z,y,2)/0(&,n,¢)
1s evaluated from the expression

J = ze(Unz¢ — 2myc) — Ye(xnze — 2n2¢) + 26 (Zny¢ — UnZ¢)- (2.4.6)

For a perfect gas the system of equations (2.1) is completed by the definition of

total fluid energy

_ 1 1 2 2 2
6—7_1p+2p(u + v* + w®). (2.5)

The unknown in the system of equations (2.1) and (2.1.1) is the flow property
vector §. The quantities F', G and H are nonlinear functions of 7 at the time level
n + 1. These functions were linearized about time level n :

T [%_g}néﬁn’ ;
5““:5%[%?]“%**, > (2.6)
T [%]nﬁwﬂ’J
where 1s
AT =7 -7, (2.7)

In the equations (2.6) matrices [DF/Dg*, [DG/D3)" and [DH/Dg]", denoted by
A, B and C, respectively, are defined as follows :

A, B, C= (2.8)
ky Bx ky ks 0
kep? —ul k¢+0—kbu kyu—kzav k,u— kzaw kza
ky¢? —v8 kv —kyau  k+0—kbv kv —kyaw kya
k,$? —wd kyw—k,au kyw—k.av  ky+6 -k bw k;a
0(¢? —w)  kgw —auf kyw — avd k,w—awl  ke+ 96,
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wherea=y—-1,b=vy—2and k = (&,n,¢) for matrices A, B and C, respectively.
The quantities ¢2, § and w in the equations (2.8) are evaluated in the following
way :
6 = 2= 1)+ v+ w?),
0 = kyu+kyv+k:w,
w=yelp—¢°.

In the numerical approach of the Navier-Stokes equation solution with finite
volume method (FVM), the computational domain is discretised by dividing into
hexahedral cells and then the system of equations (2.1)-(2.5) is approximated. It
is assumed that the value of the dependent variable g is known at the point (1, 7, k),

where each such point is the center of one of the cells, approximative system of
equations (2.1.1) may be written in the following form :

(2.9)

1+ BAL(EA" +6,B" +6,(C" - C,))] AT + AR =0, (2.10)
where the residual R is
B = 6F(@) + 6 0@ + 5 (A@) - @) (210.1)

In the equations (2.10) and (2.10.1) é¢, 6, and 6; denote central difference operators
gaf-, gan_ and 6—3(-.

Parameter 3 in the relation (2.10) defines time accuracy of the applied scheme.
If 3 = 1/2, the scheme remains second-order accurate in time; for other values of
3 the time accuracy drops to first order. The unfactored implicit scheme, defined
by the equation (2.10), requires huge storage for very large block-banded matrix,
which is very costly to invert especially for 3D flow case. An unconditionally stable
implicit scheme that has error terms at most of order (At)? in any number of space

dimensions can be derived by LU factorization [2],{3] and [4]

[1+pat(s; A" +6;B +67(C* -T,))]"+ )

«[I+BALSTA +6B +65(C -C,))]" AT" + AtR' =0,

where 6, 6, and 6. are backward difference operators and 6;’, 5;;' and rS?’ are
forward difference operators

-+ s -t
‘Se (A AT )ik = Ai+1/2,j,kAa?,j,k - Ai—l/?J.kAa?—l,j,kv

s = —_ (2.11.1)

5?(A AT )ik = A:‘+1/2,j,kA§?+1,j,k - Af-—uz,j,kAff?,j,k-

The values of the matrix elements with indices (i +1/2,j,k) and (i —1/2; j, k)

are evaluated by averaging between the cell points (i,7,k) and (i + 1,3,k), or

(i = 1,5,k) and (3,4, k), respectively. The operators for two remaining coordinate
directions can be calculated in a similar manner.
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The reason for splitting in the equation (2.11) is to ensure the diagonal dominance
of lower and upper factors as well as to make possible usage of the built-in implicit
dissipation. Flux matrices X+, E+, .6", A, B and C in the equation (2.11)
are constructed so that the eigenvalues of “4+” matrices are nonnegative and those
of “—” matrices are nonpositive

1 — —_ 1 —
X+=—2'(A+TAI), A =§(A—1‘AI),‘
B' =%(§+ rgl), B = %(E—rBI), ’
_ 1 = =
Ct=3(@+reD), T :é(C—rcI),J

where I is the unit matrix and factors r4, rg and r¢ are defined as follows :
ra 2 maz(|A4l), rp 2 maz(|Agl), rc > maz(|Ac|). (2.11.3)

In the equations (2.11.3) A4, Ap and Ac represent the eigenvalues of the Jacobian
matrices A, B and C, respectively :

A= (UUU U+ (€2 + €2+ €3 U — c(€2 + €2+ £2)2),
Ao = (VVVV +e(n? + 02 + 025,V —c(n? + 2 +12)%), (2.114)
Ao = (W, W, W, W + (¢ + 2+ )4 W — e(¢2 +¢2 + ¢2)3).

In the expressions (2.11.4) the quantities U/, V and W are contravariant velocity
coordinates as defined by the equations (2.3.2), while ¢ represents local speed of
sound.

The viscous flux matrices Ej and C, , that are present in the implicit term of the
equation (2.11), can be approximated in the way of Pulliam [J]

Ci= M. T, ==X 1, (2.11.5)

where Ac, is the eigenvaiue of the viscous flux matrix C,

1
Ac. =p(<3+c3+<3)é‘<(;). (2.11.6)

The equations (2.11) can be inverted in two steps :

(2.11.7)

[1+8At(5AT +6;BT +57(CT-CH)]" A
[1+8At(63A™ +6:B™ +61(C -T,))]

Solution of the first system of equations (2.11.7) is done by a simple forward sub-
stitution and solution of the second system by a simple back substitution.
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At solid surfaces, the no-slip conditions are used for the velocity components, adi-
abatic condition for the temperature and zero pressure gradients are assumed [6]
and (7]

oh _, Op _
on ~ ' On
where h is total enthalpy. At the far-field boundaries (upstream, lateral and down-
stream), the flow was assumed to be undisturbed whenever the freestream Mach
number M., was less than one. If the freestrearn Mach number exceeded unity
(M > 1), all the five flow variables were extrapolated at the outflow boundary
from the nearest inside cells.

At the boundaries of the impermeable surfaces, information about the values of
flow variables inside the body are needed, as can be concluded from the equations
(2.11) and (2.11.1). In order to overcome the mentioned obstacle it is necessary to
modify the applied scheme for cell indices k =1 :

0, (2.11.8)

e g e A e

—+ _ —=— _
Ci,j,k—lszqi,j,k—l - E Cf,j,k-—l/quI',j,k’ (2.119)

where the matrix E is defined in the following way :

-1 0 0 0 0
0 -1 0 0 0

E=|0 0 -1 0 0 (2.11.10)
0 0 0 1 0
g @ B B =k

This modification eliminates flow across the boundary. Similar can be done for
cells at the plane of symmetry of aircraft. At the far-field boundaries Whitfield [8]
has shown the validity of the assumption A7" = 0. Now, solution of the system of
equations (2.11.7) can be efficiently solved by inversion of sparse triangular matri-
ces without using large computer storage. Owing to the fact that there are only
two factors present in this scheme, factorization error can be reduced significantly.
Although the alternating direction implicit (ADI) scheme has been valuable in two-
dimensional problems, its inherent limitation in three dimensions suggests the LU
approach. If the equation (2.11.7) is solved by a pass through computational space
sweeping through diagonal plane, defined by i + j + k = const, program code can
be fully vectorized and adapted for usage at supercomputers.

Central difference approximations in evaluation of the residual R in the equation
(2.10.1) require an artificial viscosity in order to converge to a steady state of the
fluid dynamic equations [9]. Additional dissipative terms, known as artificial viscos-
ity terms, are added in order to inhibit any odd-even decoupling of the numerical
solution by introduction of dissipation. On the other hand, artificial dissipation
terms are added to eliminate high frequency oscillations in the neighborhood of
shock waves. Also, from the mathematical theory for hyperbolic systems of invis-
cid conservation laws [10], the introduction of artificial dissipation is necessary to
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guarantt?e a unique weak solution. The artificial dissipation employed in this paper
is blending of second and fourth differences [11], [12] and [13]

= (D} + D2 + D} - Df — Dy — D{)a%j &- (2.12)
After the dissipation terms are added, the equation (2.11) takes the final form

1+ BAt(6; A" +6;,B" +67(CT-C;))]" +

+ [L+BAL(STA™ + 6B~ +6+(c -C,)]" A7 + At[R" - R}]=0.
(2-13)
Also, it is very important to determine correctly the time step size At, having in
mind that the highest acceptable value is determined by a time interval of pertur-
bation propagation from one side of a cell to another. The local time step At for
the cell with indices (3, j, k) is evaluated in the following way :

1 1 1 ]—1’

Aty 5 +
(At¢)ijk

i,k = =
N [(f—\ff)i,j.k (Aty)ij e

(2.14)

where (Ate)i jk, (ALy)i jk and (Atc )i j & are time intervals of perturbation propaga-
tion inside a cell in given coordinate directions. Time intervals (Atg); j i, (Atg)ijk
and (At¢); ;. can be evaluated in physical space by the following expressions :

1 3\

(Ate)ijk = ;

£)i,5.k (IUI+C {£2+€2+£,))xjk
1

At )iir = —_—) .,

]
(Adedign= ( ;
" (W] + ¢\ /C2 + c2+cz)”

In the equations (2.14.1) U, V and W are contravariant velocity coordinates, while
c is local speed of sound.

The time step size At, evaluated in the equation (2.14), is to be scaled with constant,
known as the Courant number. Stability analysis of the applied two—pass implicit
LU scheme [14] has shown insensitivity to relatively high values of the Courant
number. In order to accelerate convergence to a steady state usage of local time
stepping is highly recommended, having in mind that cell sizes may differ very
drastically. Since flow properties do not vary rapidly inside one iteration cycle it is
not necessary to repeat time step calculation after one single iteration.

It is obvious that shown discussion is not valid for unsteady flows, since constant
time step At = min(At; ;) should be used.




Computer results are presented for steady inviscid and viscous laminar and
turbulent flow past a rectangular wing with constant spanwise NACA 65A010 air-
foil distribution. Three-dimensional algebraically generated non-orthogonal “C-H”
grids are used in all examples. In the calculations presented here, the convergence
was considered to have been achieved when the value of residual was reduced by
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four orders of magnitude.

Computation are performed for a freestream Mach number M, = 0.8 and zero
angle of attack, with low Reynolds number Re, = 50000 for laminar, and higher
Reynolds number value Reoo = 1.2 X 107, for turbulent flows. An extremely coarse
grid (65 x 11 x 15) is employed and pressure distribution is presented for the section

of the plane of symmetry.

3. Results
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Fig. 1 Calculation of viscous flow over a rectangular wing

with NACA 65A010 airfoil
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As shown in Fig. 1, in the present coarse-grid solution flow separation occurs
very close to the maximum thickness location of the airfoll. By increasing the value
of the Reynolds number in the case of turbulent flow, the separation bubble is moved
toward the trailing edge. For such coarse grids used in this paper the quantitative
aspects of the results, such as the separation point and C, distribution, can not be
reliably predicted. Finer grid applications increase the accuracy but require access
to CRAY Y/MP class of computers which was not available to the author.

4. Conclusion

Transonic viscous flow analysis, presented in this paper, provides very accu-
rate aerodynamic load prediction, when the application of potential theory and
the Euler equations are practically unacceptable. The numerical stability and fast
convergence in differential equation solution make a significant improvement in
comparison with explicit scheme employment. Flux splitting LU implicit factoriza-
tion scheme ensures the numerical stability even for very large time step sizes, i.e.
for CFL > 20. In highly time step dependent flow calculation, such as in the case
of 3D unsteady motion, application of the present approach is quite acceptable.
Presence of only two factors, even in the case of 3D flow reduces the factorization
error. In comparison with classical ADI schemes LU implicit factorization decreases
the amount of CPU time required for calculation. The chosen approach does not
require large storage in solution of system of equations and employs only inversion
of fifth order matrices. Correct program coding supports easy vectorization and
usage at supercomputers. High accuracy of a solution is obtained by the modifica-
tion of the scheme at physical boundaries, improving precise boundary condition
definition.
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TRANSONIC FLOW SOLUTION OF THE THIN LAYER NAVIER-STOKES
EQUATIONS USING IMPLICIT LU FACTORIZATION

An approach for numerical calculation of the transonic three dimensional vis-
cous fluid flow, based on finite volume method, is described in this paper. Stability
and fast convergence are obtained in this approach by the introduction of second
and fourth order time accurate artificial viscosity terms. A system of differential
equations is solved by the application of the LU implicit factorization scheme using
Jameson-Yoon flux vector splitting.

PRORACUN TRANSONICNOG VISKOZNOG STRUJANJA
PRIMENOM LU IMPLICITNE FAKTORIZACIJE
NA SISTEM JEDNACINA NAVIER-STOKES-A

U radu je izlozen postupak numeri¢kog resavanja jednaéina trodimenzionalnog
viskoznog transoni¢nog strujanja, baziran na metodi konaénih zapremina. Stabil-
nost i brza konvergencija postupka obezbedjena je uvodjenjem ¢lanova vestalke
viskoznosti drugog i Cetvrtog reda. Sistem diferencijalnih jednacina resavan je
primenom aproksimativne LU implicitne faktorizacije sa “razdvajanjem” fluksa
metodom Jameson—Yoon-a.
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