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OSCILLATORY MODEL OF VORTEX-INDUCED OSCILLATIONS
UNDER THE INFLUENCE OF WIDE-BAND RANDOM EXCITATION
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0. Introduction

The phenomenon of vortex-induced oscillations in elastic systems as a conse-
quence of flow is an important engineering problem. The latest research has been
concentrated on the determination of the fluctuating lift force on stationary mod-
els or on the laws of motion in elastic models i the case when the lift force is a
deterministic value. Most often the oscillatory model is analyzed which is based
on the concept that the model fluctuating lift is associated with vortex shedding
which is the result of various velocities at the surfaces contacting points; namely,
one from the stream flow, the other from the undisturbed flow part. This concept
of excited oscillator was introduced by Birkhoff and Zarantanello [1] and reinforced
by the experiments of Bishop and Hassan [2]. The case of a circular cylinder nor-
mal to the flow is considered. Cylinder motion is restricted to pure translation in
the transverse direction perpendicular to the flow direction and cylinder axis. This
oscillatory model is analysed in the paper of Hartlen and Currie [3] and their main
objective was to determine the oscillatory system parameters and the differential
equations of cylinder motion for linear characteristics of spring and damping. The
external aerodynamic force is also determined and then the results obtained from
the mathematical model are compared with phenomena in experimental studies.
In the paper of Briickner and Lin [4] the oscillatory system from the paper [3] is
analyzed under the influence of two random excitations, namely, the parametric
and the external one by applying complex formulation of generalized equivalent
linearization.

In this paper the elastic moments of the system response with two degrees
of freedom from the paper (3] are determined under the influence of wide-band
randomly fluctuating lift force by applying the Gaussian closure. The assumption
is introduced that the non-linearity influence is small in the system and that the
function of the solutions distribution approximately has the form of the Gaussian
distribution. Then the statistic moments of the third, fourth and higher order are
substituted with the statistic moments of the first and second order by the very
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well known relations. The resulting system of fourteen differential equations for
the case of the stationary state is reduced to the system of non-linear algebraic

equations the solution of which is used to determine the statistic characteristics of
the solution process.

2. Equations of motion

Let’s consider the oscillatory system from the paper [3] shown in Fig. 1. A
cylinder of diameter D, length L and mass M is exposed to a flow of fluid of velocity
V' which is perpendicular to the cylinder axis. The cylinder is mounted on springs of
constant stiffness K/2 and dampers of linear damping coefficient /2. The external
Iift force acting on the cylinder as a result of water-shedding F,. The cylinder
motion 1s restricted to pure translation in the transverse direction perpendicular to
the flow direction and cylinder axis. The law of motion is determined by solving two
similar differential equations, one determining the cylinder motion in the direction
z, the other one defining an instantaneous lift force F, = pV2DLC/2.

...........................................................................................................................
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Fig. 1. Oscillatory system

The equation of dynamic equilibrium of the cylinder is,
Mz + Rz + Kz = F,. (1)

Introducing dimensionless variables z, and 7 by the relations, .

1/2
I, = %, T-——t(—f}') =uﬂt: (2)
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the equation (1) becomes,
2
! + 2z) + =, = awgC, (3)

in which the prime denotes differentiation with respect to 7 and dimension param-
eters are,

=g = D

R pD?L £ SV 2
¢= 2Mw,,’ ¢ "
and fn = wn/27 and [, = SV D-! are natural frequency and vortex shedding
frequency regarding the Strouhal relation (S is a constant depending on a flow of
free-stream velocity V). The coefficient C' appearing 1n the equation (3) has an
‘nstantaneous value influenced by the cylinder motion. Rigorous evaluation of the
coefficient C would require theoretical treatment of the separated flows around the
cylinder in the neighbourhood of a natural frequency of the flow a promidable task.
Therefore, the approximation taken herein is the determination of the coefficient
C on the basis af a simple equivalent self-exciting oscillator by which the values
obtained in an experimential way are realized for certain values of constants a, 7
and b and on the basis of the differential equation,

n3
C" — awoC' + ) +wiC = bz,
wo

In oredr to include more accurately in the calculation the appearance of tur-
bulence which is generally encompassed by the fluid flow nature a random process
f(t) is introduced which is a dimensionless velocity of the fluid flow turbulence.
Let’s consider the case when f(t) is a stationary Gaussian process zero average
value of constant spectral density S. Then the equations (3) and (4) are,

2+ %a, + 2, = awdl+ f(DIC, (5)

"3
C" — awoC' + l(-g)- +wi[l + f(7)IC = bz, (6)

0
where the prime denotes derivatives with respect to dimensionless time 7.
3. Markov vector approach
If we introduce new variables z; = z,, 2 = 2., 23 = C, z4 = C’, the system of

equations (3) and (4) can be represented by an equivalent system of four first-order
differential equations,

dz dz
= = -Km - n+ iz +asf(r)e,
7)
dza d$4 724 (
e D, el e
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Then the nonstationary Fokker-Planck equation is applied in order to deter-
mine the Markov vector of the solution z = (zy, 22, z3, z4) which is,

Y

d : 2
~p(z,7) = 58 e, e 4 5 30D b, el (9

dx;

i=1 p=] pE=i

where p(z, ) is a function of the joint probability density and a;(z, ) and b;;(z, 7)
are increments of the first and the second moments of the Markov process z(7)
which are determined for the given system as,

dgle,7) = lim —E‘[ 1+ 6:) — zi(7)] (9)

br—0 6T

Substituting the system equations (7), into (9) the increments of the first
moments a; follow,

@y = To, a9 =-—20Ty— 1z + awg:c;;,
v, (10)
ag = Iy, a4 = QWoly — —— — WpZT3 + bIQ.
“o

The increment of the second moments b;; are determined as

by = Jim - B{lzi(r +8,) — w4 6) —m(l), (1)

br—00T
using the system equations (7),
biz = by = b1z = b3y = b1g = bgy = bz = b3z = bag = by3 =0, (12)
b11 =1l 522 = azug.t:gS, b33 = O, b44 = wg.‘L‘gS, b24 = b42 = —aw0£35

Substituting the values of the first and of the second moments increments
denoted by the relations (10) and (12) into Fokker-Planc equation we obtain,

& __ 0 R _ 2 2
E - 31‘1 (l’gp) - 3132 [(_QCZ.Q T, + aw0$3)p] 61‘3 (1'417)
5] 71:2 1 8%
e a—h[(awmr«; ~ o — wyz3 + bzo)p] + 3 522 7 (a*w5z3Sp)
~ P (ataisy + 2L wistsp) (13)
6::2 a.'L'4 = 261:3 0= )

The analytical solution p(z, ), of the partial equation (13) is not possible to
determine. However, it is possible to obtain differential equations with respect to
statistical moments of any order N of the solution process p(z, 7) by multiplying the
equation (13) with (z¥z,zTz}, whwre k+I+m+n = N and by partially integration
in within the limits —co < z; < co. By apllying this procedure for N < 2 we obtain
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the differential equations with respect to the first and second statistical moments in
which the following notations are introduced for the different statistical moments,

400 400 400 f00

Miimn(t) = E{zf2bzPz)}= [ [ [ [ ¥zl 2P elp(z, T) dz) dzy dzydzs.

dmyooo

dr
dmgo1o

—-00 —00 =00 —0Q

(14)
For the first statistical moments the differential equations are,
dmg100
2

Moro, - = —2¢mp100 — M1000 + AWyT0010,

] (15)

Moo01 _ Y0003 2 b
Moool, T - T awommoool — — — wyMoo1o + 00100,
0

dr

and for the second statistical moments we obtain the following by applying the
same procedure,

dm?OOU

dr
dmo2o0

dr
dmgo20

dr
dmooo2

dr
dmi100

dr
dmio1o

dr
dmioo1

dr
dmoi1o

dr
dmoo11

dr
dmgio1
dr

= 2awgmooo2 — 2

= Mmgi01 + QWoM 1001 —

= 2m 100,
= —4( =3 + 2awimoiio + a%wyS
= mMo200 m1i100 awymoe110 + @ Wo21MM020,

= 2mgo11,

Y0004
Wy

2 4
— 2wimoo11 + woSmoo20 + 2bmorn,

— 2
= mgo00 — 2{M1100 — M2000 + AWyMi010,

= mopi10 + M1001,

Y1003 2
- — wymio1o + bmy1oo,
0

_ 2
= —2(mg110 — M1o010 + GWyMoo20 + Mo1o1,

YMo013 2
= Mooz + QWMoo11 — " — wjmoo20 + bmo11o,
0
_ 2 Y0103
= (awq — 2¢)mo101 — M1001 + awymoo11 — w
0

2 4
— WgyMmp110 — augsmaom + bmg200.

L (16)

4

Analyzing the system of differential equations (15) and (16) with respect to the
first and to the second statistical moments we can notice that the statistical moment
of the third order appears in the first system of differential equations whereas the
statistical moments of the third and of the fourth order appear in the system of
differential equatins with respect to the other statistical moments. We assume that
the solution process is the Gaussian one so that the statistical moments of higher
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order can be expressed by means of the statistical moments of the first and of the
second order by relations deduced from the condition that all the cumulants of the
third and of the higher order are equal to zero wherefrom the following relations
follow,

Moo03 = 3M0go1Mooo2 — Q(moom)a,

Moooa = 4Moo01Mo003 + 3(ooo2)* — 12(mooo1)* Mmooz + 6(mogo1)?,

M1003 = M1000M0003 + 3001 M 1002 + 3M1001™Mo002 — 6M 10000001 Mo002
— 6m1001(Mooo1)? + 6migoo(mooor)?, L (17)

o103 = Mo100Mo003 + 3Moo01Mo102 + 3Mo101Moo02 — 6Moo10Moo01 Moo002
— 6moo11 (Mono1)? + 6mon1o(mooor)?,

Mo13 = Moo10Moo03 + 3Mogo1 Man12 + 3Mopo11Mooo2 — 6Moo10Mo001 o002

— 6mgo11 (Mooo1)* + 6maoro(mooor ). J

If in the systems of differential equations (15) and (16) we substitute the sta-
tistical moments of the order higher than the second one by the relations (17) we
obtain a closed system of fourteen differential equations. By numerical integration
of this system we determine a nonstationary solution for the statistical moments of
the solution process. A special problem in this numerical integration is the deter-
mination of the initial values of integration for the statistical moments. By making
the right sides of these equations equal to zero we obtain a system of algebraic
solution whose solution provides for the determination of stationary values of the
solution process statistical moments.

4. Stationary solution

Let’s consider the determination of stationary values of the system of differen-
tial equations (15) and (16) in which the statistical moments of the third and of the
fourth order are substituted by the relations (17). As the result of this operation
we obtain,

— _ —_— wazs 3
M1000 = Mo100 = Moo10 = Mooo1 = My100 = Mgo11 = 0,
2 2 4 _
— 4{mg200 + 2awgmoiio +a woSmgpze = 0,

2
y—6 T™Mpo02
o

4
2awomaoo + 2bmg101 + wgSmooaze = 0,

2 _ _
Mo200 — Magoo + awgmypio = 0, Mmor10 + Mige1 =0,
i 2
moy01 + awomygey — 3w—m1oo1m0002 —wgmyo10 =0, (18)
0
2 _
— 2(mo110 — My010 + AWy Mgo20 + Mo101 = 0,

gi 2
(awg - 2"C)moml — Mjyoo1 — 3u_0m0101m0°02 — WpMo11o0

4 =
— awgSmooz0 + bmgze0 = 0,

2 _
Mooz — Wy Mooz0 + bmor1o = 0. ;
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After obvious algebraic transformations we obtain the following algebraic equa-
tion whose solutions are determined by the statistical moment mooo2,

B3ym3y40 + Bamiggs + Bimoooz + Bo = 0, (19)

where the coefficients in the equation (19) Bo, B1, B2 and Bs are equal to

1 20
B3 = 54'5?1 ( )
2
By = —951— (2ab + S — 4¢)w? + 6awo — 4], (21)
0
B = Ebl [2(1 —w?)? = 2wo(a + w3 S) + 2wo(awo — () x (22)
2 bu)2
X (2abwo — 4Cwo + woS + 3a) + abz.)o (1 —wi - 2 205 + 2(%?,5')],
52
By = _TO{ [1 — w? + awg(awe — 2¢)
abwj 2
2 [2abu0—4ng+2cr+uoS(l —wu)] —Qwo(awU - 2¢)x
2 -
X [1 —wj — abwiS + “z“c’“ (2 + abS) — 3“%—2—(45] } (23)

and then by substitution in the following expressions we obtain the statistical mo-
ments of the second order,

wo(awo — 2¢)Mooo2 — 3¥M3002

=2 , 24
0020 = £50% (o — 2Cwo) + wi(1 — wd)S + 2abwy — 6ymoooz (24)
wl /2a aw?
mMo200 = '4—2 (-ET + 025> Moo20 — Eﬁmoooz, (25)
a i Y 9 4 awé 2

mMa2000 = —"2-5 2awomooo2 — 6;;"10002 + wosmoozo S -4? E- 4+ aS | mgoz0
_ﬂ“ﬁm o g _ _3 37,2

2b¢ 0002 ~ 7 awyMop20 — AWoTmee02 YW Mooo2Mpo20 + " Mgo02 | -

’ (26)

As it has been shown for the oscillatory model in Fig. 1. it is possible to
determine the stationary values for the statistical moments of the solution process.
This comes to the solution of the equation (19), and then to the substitution in
the equations (24), (25) and (26); thus we can simply determine the second order
moments of the solution process. The numerical solution of the equation (19) is
carried out for the following dimensionless system parameters: wo = 1.1, a = 0.002,
b=04, a =0.02 v =0.667 and { = 0.0015 for which only one positive root exists
for various values of the spectral density S of the velocity process of the fluid flow
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turbulence f(¢). Fig. 2 shows the results obtained for the statistical moments of
displacement and velocity in the direction of z-axis (ma2000 and mo200) and Fig.
3 shows the values obtained for the statistical moments of the lift force and its
fluctuation velocity (mggz0 and Mooo2)-
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5. Conclusion

An oscillatory system with two degrees of freedom is analysed when influenced
by stationary wide-band Gaussian random process by introducing the Markov ap-
proximation vector. The differential equations with respect to the first and to the
second statistical moments of the solution process comprise the statistical moments
of the third and of the fourth order and they are determined by using the Fokker-
Planck equations. Introducing the assumption that the statistical moments of the
order higher than the third one can be expressed by the moments of the lower
order, the system of differential equations with respect to the statistical moments
is reduced to the closed system. The stationary values of the solution process are
numerically determined as well as the moments of the first and of the second order
and these values are graphically shown in Figs. 2 and 3 as the functions of the
spectral density S of the velocity process of the fluid flow turbulence.
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ERSATZMMODELL DER DURCH WIRBELSTROM
HERVORGERUFENEN SCHWINGUNGEN BEI DER WIRKUNG
FINER BREITBAENDIGEN ZUFALLSERREGUNG

Es wurde ein Schwingungssystem mit zwei Bewegungsfreicheitsgraden bei der
Wirkung eines stationaeren breitbaendigen Gauss’schen Zufallprozesses analysiert
in dem einen Aproksimationsvektor nach Markow eingezogen wurde. Die Diferen-
tialgleichungen nach einen und zweitem statistischen Momente des Loesungspro-
zesses erhalten auch die statistische Momente der driten und vierten Ordnung und
werden an hand der Fokker-Planck Gleichung bestimmt. Mit der Voraussetzung
dass sich die statistische Momente hoeherer Ordnung (hoeher 3) mit den Momenten
niedriger Ordnung darstellen koennen, dann wird das System der Diferentialglei-
chungen auf das sgn. ”geschlossene System” reduziert. Die stationaere Werte des
Loesungprozesses koennen dann numerisch mit Hilfe von Momenten der ersten und
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zweiten Ordnung ermittelt werden. Diese Werte lassen sich grafisch (Bild 2 und
3), als Funktionen der Spektraldichte S des turbulenten Geschwindigkeitsprozesses
des Fluidstroms darstellen.

OSCILATORNI MODEL VRTLOGOM-IZAZVANIH OSCILACIJA
PRI DEJSTVU SIROKOPOJASNE SLUCAJNE POBUDE

Analiziran je oscilatorni sistem sa dva stepena slobode pri dejstvu stacionarnog
Sirokopojasnog Gauss-ovog slucajnog procesa, uvodenjem Markov-ljevog vektora
aproksimacije. Diferencijalne jednaéine po prvim i drugim statistickim momen-
tima procesa resenja sadrze statisticke momente treceg i éetvrtog reda, a odredene
su koriscenjem Fokker- Planck-ove jednacine. Uvodedi pretpostavku da se statisticki
momenti viseg reda od treeg mogu izraziti momentima nizeg reda, sistem diferen-
cijalnih jednaéina po statistickim momentima redukuje se na ”zatvoreni sistem”.
Odredene su numericki, stacionarne vrednosti procesa resenja, momentima prvog i
drugog reda i ove vrednosti su graficki prikazane na slikama br. 21 br. 3 u funkciji
od spektralne gustine S procesa brzine turbulencije struje fluida.

Kozi¢ Predrag, docent
Pavlovié Ratko, docent
Masinski fakultet u Nisu
Beogradska 14, 18000 Nis





