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0. Introduction

It is known that the crytical electric polarization caused by its stretching or
compression is known as the ”piezoelectric effect”. This process is characterized by
the appearance of electrostatic charges on the piezoelectric material surface whereas
the electric polarization happens within it.

When an electric charge is brought upon the parallel opposite surfaces of the
piezoelectric material then the mechanical deformation is formed which is propor-
tional to the electric field magnitude. This phenomenon is known as the "inverse
piezoelectric effect”.

Since the piezoelectric effect appears due to the mutual effects of the mechan-
ical stress and the electric field it is necessary to examine the piezoelectric material
electromechanical state through a coresponding coupling of its electric and mechan-
ical fields.

Although the piezoelectric materials have been used in many electromechanical
devices for many decades there are only a few theoretical papers published dealing
with their mechanical defect. Among the papers dealing with this problem and
on the basis of our subjective knowledge we point out the paper of Parton V. Z.
(1976) and Deeg W. F. (1980) on the fracture problem in piezoelectric materials.
Pak Y. E. (1990) described the crack behaviour within a piezoelectric material as
well as its effect on the fracture of a piezoelectric material itself. He also showed
that the crack growth can be hindered or enhanced depending on the magnitude
and sense of the applied electric load. The conclusions reached by Pak in the given
References are in agreement with those reached by Deeg W. F. (1980) and they
refer to the consideration of the fracture problem of a piezoelectric material in-plane
by the divided dislocation method. We also point out the most recent papers by
Sosa H. A. and Pak Y. E. (1988) on the space analysis of the crack effect upon the
piezoelectric material behaviour as well as the papers of Frieman S. W. (1986) and
Pak Y. E. (1980).

In our papers [12] and [13] of 1992 we determined the analytical approximations
for the mechanical stress tensor components, for the relative deformation tensors
and for the piezoelectric stress components for the case of a plane deformation of a
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crack for the modes [ and II and for the case of a space deformation for the mode
III and we showed a graphical representation of the parameters distribution of the
electromechanical state of a piezoelectric material around the crack tip.

In this paper we examine the role of a semi-infinite crack which is found as a
defect within a piezoelectric medium. The examination is based upon the applica-
tion of the linear elasticity theory for the case of the material shear along the crack
surface for the case of the vector displacement in and out of the crack referential
plane. In this paper we introduce the stress function ®(r,6) as well as the function
®g(r,0) of the electric potential.

We apply the method of the complex variable analytical functions which are
assumed to be in the form of the graded infinite orders. The paper’s aim is to deter-
mine the analytical expressions and the graphical representation of the components
of the mechanical and electric stresses tensors as well as the relative deformation
tensor components and the displacement vector around the crack tip. These studies
comprise all three basic forms of the crack deformation, that is, the modes I, Il and
II1.

1. Problem statement

The separating crack surfaces in a piezoelectric material present unloaded
boundaries of a stressed body and therefore the stress distribution at the points
around tha crack tip depends on the form of the fracture surface generation. The
achievements of the linear elastic fracture mechanics accept the assumption about
three basic forms (modes) of the crack deformation which we will accept as well.
The deformation plane state is characterized by the two basic forms of the fracture
surface generation which we have mentioned in our paper [12] whereas the crack
deformation space state has been studied in our paper [13]. Here our study is di-
rected towards the same tascs as in the quoted papers but this time the method
applied is the one of the complex variable analytical functions.

The sketches 1, 2 and 3 show the characteristic shapes of the crack deformations
by the mode I, II and IIT with the corresponding assumed possible coordinates of
the displacement vectors of the points around the crack.

The modes I and II correspond to the assumption about the plane deformation
in the crack referential plane.

The mode III corresponds to the assumption about the shear of the crack
points along the crack surface by the crack points appearance perpendicularly to
the referential plane. This means that the crack mode III is defined by one crack
surface displacement along the other one’s front, so that the points which were
in the same referential plane perpendicular to the crack surface before the crack
deformation (generation) are not in it after the crack deformation (generation).
The parametar Ry is a stress intensity factor for the respective mode II1.

N
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According to the elastic linear fracture theory and for the case of the defor-
mation space state the crack front can be accepted as a curve in the space whose
every point contains all the three deformation modes so that we can accept the
assumption that the mechanical stress components are of the form:

1
V2rr

The coefficients Ry, Rrr and Ry are the stress intensity factors for the re-
spective modes. The recommendations for determining the stress intensity factors
can be found in the books by Tada H. (1973) and Murakami Y. (1987).

Our study will be focused upon piezoelectric ceramics with a hexagonal crystal
system of the class 6,,,, which is characterized by five elasticity tensor constants
cijki, three piezoelectricity constants e;j and two dielectric constants b;z. This
kind of piezoelectric medium is most present in ultrasonic transformers it possesses
a great efficiency of conversion of electric energy into mechanical and vica versa.

The sketch No. 4 shows a crack in the referential plane perpendicular to the
crack front with a polar coordinates system in which the crack orientation is denoted
in the direction of the axis Oz, whereas the axis Oy is perpendicular to the basic
crack plane. Let’s assume that the crack surface appearance is without any surface
micro defects.

[R;(z)a;rj(r,ﬂ) + R;I(z)afj[(r, ) + 'an(z)a,!j”(r, 8)].

Fii(ridz) =

2. Governing equations
The basic equations adopted for a piezoelectric material which we will use and

which can be found in the given References are:
For Electric enthalpy

1 1
Hei;, Ei) = 3 CijkIEijER = §5ijEz'Ej — einieu By, (1)

for the specific deformation (strain) tensor

1
gij = 5(11,',,' =+ uj,,-), (2)
for the stress tensor
oM
%= P Cijki €kl — €kij Bk, (3)
for the piezoelectric siress
OH
i= —3@ — & bik E'x,
D 5E, = cikiem + oLy (4)

for the electric field vector components

E;, =-%g,. (5)
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In absence of the volume forces and free electric charges the equilibrium equa-
tions are:

oiji =0, (6)
Dii=0, (7)

where o;; are the mechanical stress tensor coordinates, D; are the piezoelectric
stress coordinates, Ej are the electric field components, ®g is an electric potential
and ¢;; are the relative deformation tensor coordinates.

The extended Hooke's Law for a given piezoelectric material of a hexagonal
crystal system of the crystal class Csv is of the form

Ty ci1 Ci12 €13 0 0 0 Ey
a9 12 ¢11 c3 0 0 0 o
o, | _|cizs e13 caz3 0 0 0 g2 | _
Toz - 0 0 0 C44 0 0 2e9;
Trz 0 0 0 0 C44 0 i
s 0 0 0 0 0 euzm/ \2,
0 0 €31
0 0 €31 E
0 0 €33 5
- 0 €15 0 ge (8)
€15 0 0 z
0 0 0

and it gives the relation between the mechanical stress tensor coordinates, the
strain (specific deformation) tensor and the electric field vector coordinates. For
the piezoelectric stress vector we can write the following relation:

Er
D, 0 0 0 0 es 0 ?
Dy|=|0 0 0 as 0 0], " |+
Dz €31 €31 €33 0 0 0 252':

25:"9

67 O 0 B
+1 0 4; O Ey
0 0 b33 E,
3. Plane deformation state

The plane deformation state is defined with the displacement field

u=u(rd), v=ov(r0), w=0, (10)
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as well as the electric field
E.- =0, Bg=0, E;=2£E,r1). (11)

The relative deformation (strain) tensor matrix elements are expressed via the
coordinates u and v of the displacement vector and they are

_Ou _Lfov -0
P = M= lgg i &S

E
=
12
Y IVZTRR T I S
= B P\ T8 ar 2T fTT
The mechanical stress tensor matrix elements are
T = C ..a_”i + c ..1.. Qz + f— au + }. QE “+u )
r = nar 121- 50 uj, ‘79—'C12ar Cllr a8 )
Jdu 1/ 0v
Uz=6135+013;(a—6 +U), ' (13)
1 1/0u ov
Trz = 5(611 —612)[;(% —v) + -(‘3_1' v Teg =0, T =0 )
The piezoelectric stress components are
du 1/dv
D, =0, Dy=0, Dz*3315;+331;(5§+u)- (14)

The Belltramy conditions of the stress compatibility (the Morris-Levy equa-

tion) are
Ao, +09) =0 (15)

and since it is

§%¢ 109 1 09°®
0r+0'o—A‘I’(T,9)—87+;E_"+r—2W, (16)
where ®(r, 0) is a stress function which satisfies the Maxwell partial differential

equation
AA®(r6) =0. (17)

The mechanical stresses components are

106 19% _ %@
=Tt g T (%)
o (100) 100 1 0%
=7

m=glraw) " Fee ;

o

0 rordod (19)



Application of the complex variable function ... 47
4. Boundary conditions on the crack faces

The boundary conditions on the crack faces (surface sides) are:

For the mode I and the mode II the conditions are defined by means of the
mechanical stress components on the crack faces:

1° that the normal stress for the crack surface points for the section with a
normal in the circular direction is equal to zero:

3*®

= — = 0. (20)
f==+x ar2

=%~

Ty

929 that the shear stress in the circular direction for the surface with a normal
in the radial direction for the crack surface points is equal to zero:

ol
oesx Or\rof

For the mode III the baundary conditions are defined by means of the me-
chanical stress components and the electric stress components on the crack surface
sides:

1° that the shear stress in the axial direction for the surface with a normal in
the circular direction for the crack surface points is equal zero, as well as 2° that
the piezoelectric stress circular component at the crack surface points is equal zero:

= 0. (21)

Tro

=%

7o:(r,27) =0, Dp(r,£m) =0. (217))
5. Aplication of the complex variable function to
the plane deformation state

The relations between the specific deformations and the mechanical stress com-
ponents are

€=?ﬁ=—1—~(ca-c a9) 22

r 67' C%l— %2 110y 1204 ), ( )

sgzl(@+u)=—1—-——-—(c ag — C120,) 23
-\ 58 = 1109 — 1207 ), (23)

e

ré 2(r 69 4 31‘ Cu—clzfre' (24)

If we assume that the volume forces are neglected we have obtained, from the
equilibrium conditions, that the stress function ®(r,8) shold satisfy the Maxwell
partial differential equation, i.e., it should be a biharmonic coordinates function and
thus it can be represented by means of the complex variable analytical functions
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z = re'’, i = /=1. The stress function ®(r,6) satisfies the partial differential
equation

o’ 10% 1 8%

e S s o B, &3 8), 25
5z T oo Y ge =P 0) ke
where p(r,8) is a harmonic function which satisfies the Laplace partial differential
equation. Let’s introduce the complex function now:

or + 09 = Ad(r,0) =

f(z) = p(r,0) + iq(r,0), (26)

in which ¢(r,8) is a harmonic function conjugated to the function p(r,8) and to-
gether with it satisfies the Cauchy-Riemann conditions. The function integral f(z)
with respect to the complex variable z is denoted with F(z) whose real P(r,8) and
imaginary Q(r, #) parts are harmonic functions which separately satisfy the Laplace
partial differential equation. The first derivative of this complex function F(z) of
the complex variable is

FI(2) = () = 31p(r,0) + ia(r, ). (27)

By substituting the expresions (18) and (19) into (22) and (23) and having in mind
(27) and after integratio with respect to r and ¢, we obtain the displacement vector
components for the plane deformation state in the form:

C11 +~‘-‘12§2

u(r’g) - C11 d'l’

SLL [417(1-,9) cos 8 + 4Q(r, ) sin 6 —

€r1 — €1p

], (28)
c11 +012_1_§2

Ci1 .
= — (49(r, 8 0 - f - —_—
v(r, 8) c.i,l == sz [ Q(r,8) cos 4P(r,0)sin b P 39]’ (29)

where we have left out arbitrary integrating function since we are looking for dis-
placements only for the case of a pure deformation. Let’s accept the stress function
according to the Ref. [6] in the form

®(r,0) = Re{zF(z) + X(2)} = %[E}'(z) + X(2)+ 2 F(Z)+ X(3)], (30)

where dash denotes the conjugated complex parameters whereas the functions F(z)
and X(z) are the complex variable analytical functions z. If we now multiply the
displacement component v(r,#) expression (29) with an imaginary unit and if we
add it to the component displacement u(r,§) expression (28) and having in mind
the expression (30) we can write down the following relation of the components
u(r, @) and v(r, ) of the displacement vector for the case of the plane deformation
and the complex variable analytical functions F(z) and X(z) in the form

whive o (S0 ML) T e o

2 0
€i1 — €12 Caa
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The relation between the component mechanical stress and the analytical functions
F(z) and X(z) of the complex variable is (see the References (6] and [11])

or + 05 = ARe{F'(2)} = 2(F/(z) + F ()], (32)
0y — 0, + ity = 2EF7(2) + A7 (2)]e*, (33)
O — 0g — 211*,.9 = 2[zF"(Z) + X7 (2)]e ae (34)
or —itrg = F'(2) + F (3) — [FF(2) + X" (2)]e**. (35)

Futher application of the complex variable function merhod is in the problem
of finding the most proper way of selecting the analytical functions F(z) and X(z)
of the complex variable for the corresponding crack mode.

6. Problem solution for the mode I — crack opening

Let’s choose the functions F(z) and X'(z) of the complex variable in the form
of orders:

}-(Z)=ZAnznlg=A0+A121/2+A2Z+A323/2+... ; (36)

o
X'(z) = Z anﬂ/2 = By + B12'1/2 + Bz + B‘-_:,,zaf2 4o, (37)

with unknown coefficients A, and B,, which should be determined from the bound-
ary conditions on the crack surface. By introducing the assumed functions (36)
and (37) and their derivatives into the expression (30) for the stress function we
obtain it in the form

o(r 9)—ir"/2+1(,4 cos 22 4 25n cosn+20) (38)
o 2 n+2 2

with unknown coefficients A, and B, for which we determine the relation from the
boundary conditions (20) and (21) on the crack surface in the form:

1 2
n+ 1B2n: A2n+1 - ‘-Qn _ len+1. (39)

in ==

By introducing the assumed functions F(z) and X(z) according to the expressions
(36) and (37) in the relation (31) of the displacement vector components and by
separating the real and imaginary parts and having in view the coefficients relations



50 Hedrih, K., Peri¢, Lj.

(39) we obtain the following relations for the displacement components:

1 = (6 —n)er; — (24 n)e n
el Bl e 0 u 12 4 (_ = 1)9_
(r.9) c11 = €12 2 [ 2(c11 + c12) S
- B, cos(g + 1)6’], (40)
1 - (6 + n)ery — (2 —n)c . [n
v(r,0) = ——— {2 24 — =110
(r.0) €11 — C12 ér [ 2(c11 + c12) B 2 -

+ B, sin(-g- 4 1)3]. (41)

The specific deformations — the strain tensor elements are obtained easily by dif-
ferentiating and by using the previous expressions (40) and (41) and by their in-
troduction into the expressions (22), (23) and (24) so that it is

er(r,0) = Z : P2 1[ - "‘)Cu -2+ n)612An cos(-g . 1)9_

C11 — €12 2(c11 + c12)
n 1
- B, -+ 1)8y,
cos(2 + ) J (42)
1 =.n _ (2 + R)Cu - (6 - ﬂ)C12 n
go(r,0) = — e b An = = L Jig
o(r,6) c11 — C12 ng(:] 2" [ 2(e11 + c12) cos(g ) N

+ B, cos(g-+ 1)9], (43)

o0

1
era(r,0) = ——— 3 %rﬂlz-l [(n —2)A, sin (% = 1)9+

e, = B ==
+2B, sin(% + 1)9]. (44)

The mechanical stress tensor matrix elements are also obtained now by using the
expressions from (32) to (35) and by introducing the complex variables into the
same assumed functions according to the expressions (36) and (37) and by sepa-
rating the real from the imaginary part in each of them so that:

* normal stress st the points around the crack tip for the section with a normal

in the radial direction with respect to the crack tip

oo (r,0) = % Zm,n/zvl [(3 - %) Ay cos(—;l = 1)3— By cos(% + 1)9}, (45)
n=0

+ normal stress at the points around the crack tip for the section with a normal
in the circular direction with respect to the crack tip

oo(r,0) = % S npn/2! [(1 3 g) An COS<% = 1)9 + B cos(-;i + 1)9], (46)
n=0
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+ shear stress at the points around the crack tip for the section with a normal
in the radial direction with respect to the crack tip, and with the circular direction

raln )= % an"/z'l [(g - I)An Sin(% - 1)9+ Hy sin(-g- + 1)9}, (47)
n=0

* normal stress at the points around the crack tip for the section with a normal
in the axial direction with respect to the crack through its tip

eLl(r8) = _23 z nr/2-14, cos(g- - 1) 6. (48)

c11 + 12 =3

The axial component of the piezoelectric stress parallel to the crack front
through its tip

2e3: [2-1 n )
—_— z L - — a. 49
’Dz(r,g) = o > Onr Ay, cos E 1 ( )

7. Problem solution for the mode II — crack shear

The function F(z) and X(z) of the complex variable can be chosen in the form
of the orders

F(z)=i) Caz"? =iCo+iCy2'/? +iCoz +iC32° % + -+, (50)
n=0 .

X’(Z)ziZDnznlz=iDo+iD121/2+iD22+iD323/2+... . | (51)
n=0

By aplying the procedure similar to the one in the section VI for the case of
the mode II crack deformation we determine:
* stress function

oQ
. 2—-n 2D, . 2+4n
®(r,0) = Y rt/2H (Cn sin § — —=-sin 6’) : (52)
’g 2 n+2 2

By using the boundary conditions (21’) from the mode II we determine the
relations between unknown constants in the form

1 2
T +n)D2"' Cont1 = =g 75 Dot

C (53)
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The displacement vector coordinates for the mode II are now obtained in the
form

/2 (n=6)cy1 + (24 n)cyo : (E_ )
ti{e, 0) = 2(c11-c12)Z [ C, sin 5 1)6+

€11 + €12

+2D, sin(g- + 1)9], (54)

1 Zoo (6 +n)cyy +(n—2)cyy (" )
i nf2 S — =118
w(r,9) 2(c11 — c12) nzor [ Caitns 2 ™

€11 +ci12

+2D, cos(-g- + 1) 9]. (55)

The line elements dilation and sliding for the mode II are obtained in the form

nfa=i (n=6)c11+ (24 n)cr2 . (2_ )9
Ex# 0} = -—-————-—-—2(611 = Z nr [ Doy o) (810 5 16+
+ D, sin(i + 1) 9], (56)

6 —n)ciz—(n+2)en . [ n
0 nf2-1 ( Cn LA . .
go(r,0) = 2(c11 = Z nr [ 2 T o2) sin| 3

- Dy sin(-;1 + 1)9] : (57)

Erpiml) = et Z %r"lz'l [(n - 2)Chn cos(g— - 1)9-1—

€11 — C12 n=0

+ 2Dy, cos (% + 1) 9] ; (58)

The component normal and shear mechanical stresses for the mode II are:

o.(r,0) = | an““ 1[(—*3)Cn5in(g—1)9+Dn5in(g+ 1)9], (59)

n—U

. -
og(r,9) ———an"/2 1[(2-{-11)6' sm(é——l)e-}-ﬂ) Slﬂ(2+1)9-;(60)

rr6(r,0) = = Z nr2- 1[(.2. = I)Cn‘cos(g - 1)9 + D, cos(g- - 1)9 ,(61)
2613 = nf2-1 . (n )

= -— “ - —=1)8. 2

o.(r,8) o = E nr Cl, sin 5 1 (62)

n=0
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The axial component of the piezoelectric stress parallel to the crack tip front is

00
Dr, )= —-—2-8—31—-- Z nr*/2-1C, sin (121- - 1) 6. (63)

eiit+ £13 =,

8. Mode OI - deformation

For the defined mode III - shear of the crack surface out of the referential
plane of the crack introduces the assumption that the crack points displacements
in the referential plane are equal to zero and that there are only displacements
perpendicular to it, that is, in the direction of the crack front, 1.e.:

u=0 =0, w=wrb). (64)

The relation between the displacement vector components different from zero
and the specific deformation tensor components in this case Is:

Sliding between the line elements drawn from the point around the crack tip
in the radial and axial direction is

10w
Erz = 5-5: (65)
Sliding between the line elements drawn from the points around the crack tip

in the circular and axial direction is

1 dw

€o: = oo (66)

whereas the rest of the relative deformation tensor components are ¢;; = 0. By
substituting the assumed slidings in the expanded Hooke’s Low we obtain the
expressions for the mechanical stress tensor components which are diferent from
zZero:

Shear stress at the point around the crack tip for the section with a normal in
the radial direction which is directed in the axial direction:

Jdw
Trs = Ca4g- — e1sEr. (67)
Shear stress at the point around the crack tip for the section with a normal in
the circular direction which is directed in the axial direction:

1w

Toz = Caa o — €18 (68)

By introducing the expression for the assumed slidings into the matrix equation
for the piezoelectric stress components we obtain the following expressions for the
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piezoelectric stress components in the radial and circular direction at the points
around the crack tip:

ow 11
D, =e1s5—+ 01 E,, Dy=es=5-08+61.1E, (69)

or r 0w
whereas the third component is D, = 0, since it is E, = 0. If we introduce the
expression for electric potential ®g(r,8) by means of which we express the electric

field components at the points around the crack tip in the form:

Er0)= =28 By(r0)=~~E, . =0. (70)

By substituting the previous expressions (15) for the electric field components
into the expressions (12), (13) and (14) we obtain the mechanical stress tensor
components and the electric field components expressed by means of the component
displacement w(r,#) and the electric potential ®g(r,#) in the form:

The shear mechanical stress components at the points around the crack tip are

ow o 1 8w 199
Trz = Caa -+ €15 BrE’ T2 =044;‘E)—6+615;‘*(3TE- (71)

The piezoelectric stress components at the points around the crack tip are

ow 0bp 1 dw 190%g
r=e5— — 61—, Dy =e1s—— —b11————. 72
D e1s 3 15, ) 6151_ 59 =5y (72)
The equilibrium equations in absance of the volume forces and free electric
charges are:
072 13@2 Trz 0D, 1 0Dy D, _
6r+r 69+ =9, ar r69+r =0 (73
and are reduced to the following conditions to be satisfied by the component dis-
placement w(r,8) and the function ®g(r,8) of the electric potential

2 2 2
el (g, 100 15uy _
(C44+511)( or? +r6r +r2 902 =) = Am =10, (74)
b1 (F*w  10%p 1 3%®e) _ )
(315)(31'2 t7 or Rl TT =0= A%p =0. (75)

9. Solution for the mode IIT — shear out of the referential plane
by applying the complex variable function

Let’s introduce the following analytical functions of the complex variable z:

Wi(z) = Z Eynz", Wa(z) = ZE2n+1Z(2"+1)/2, (76)

n=0 n=0
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[o.°] o0
=D Pz, ®2(z) = ) Fanpaz®H2, (77)

n=0 n=0

and use them to express the component displacement w(r,6) and the function
®p(r,0) of the electric potential in the form:

w(r: 8) = §R"3{)”\)1(2) - in(z)}, (78)
B(r,8) = Re{®,(2) — i®(2)}. (79)

By separating the real parts of the defined functions of the complex variables
in the previous expressions we obtain: The coordinates of the displacement vector
of the points around the crack tip

o0

2 1
wir.d) = Z (E'gnr“ cosnl + Eopyy F2n+1)/2 0 n2+ 9) . (80)
n=0

The electric potential at the points around the crack tip 1s

o(r,0) = Z (anr” cosnf + an+1r(2"+1)/2 sin 2n2+ 19) . (80)

n=0

The strain tensor matrix elements at the points around the crack tip are:

* sliding between the line elements drawn from the point around the crack tip
in the radial direction with respect to the crack tip and in the axial direction of the
crack front

2n+1

Erz(r,0) i E [QnEgnr cosnf + (2n + 1)Egp 4 r®"- /20

a], (82)

* sliding between the line elements drawn from the point around the crack tip
in the circular direction with respect to the crack tip and in the axial direction of
the crack front

Egz(r,ﬁ)z 2n + 1

oo
41 Z [—QnEgﬂ r"~1sinnd + (2n + 1)E2n+1r(2"'1)/2 cos ] (83)
n=0

The mechanical stress tensor matrix elements are all equal to zero except for
the two of them which represent shear component stresses:

* shear stress at the point around the crack tip for the section with a normal
in the radial direction with respect to the crack tip directed to the crack front
direction

Tral Pl = [211 (c;AE'zn + 615F2n) "~ ! cos nf+
n—O

2n+1

+(2n+1) (C%E2n+l + 315F2n+1) (2n=1)/25in 9]’ (84)
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+ shear stress at the point around the crack tip for the section with a normal
in the circular direction with respect to the crack tip direction in the crack front
direction

L e
Toz (T‘,@) = 52 —2n| cq4FEon + €15Fon | T sin nf+
n=0

2n+1

+ ('Zn +1) (C44Ezn+1 + 615F2n+1)1‘(2"—1)/2 cos al. (85)

The piezoelectric stress components are:
* the piezoelectric stress component at the point around the crack tip in the
radial direction with respect to it:

I oQ
D,(r; ) = 3 Z [Qn (BlsEgn - 611F2n) "~ cos nd+
n=0
. (2n-1)/2 o 20+ 1
+ (Zn -+ l) eisEans1 — 511F2n+1 r sin a1, (86)

* the piezoelectric stress component at the point around the crack tip in the
circular direction with respect to it:

'Dg(r, 9) = % Z [-271 (815E2n - 511F3ﬂ) T‘n_l sin nf

n=0

2n + 1

+ (2n + 1)(615E2n+1 -—611F2n+1)r(?"_1)/2 cos 9].
(87)

The electric field components at the points around the crack tip:
& the electric field components at the points around the crack tip in the radial

direction with respect to it:

o0
Belrid) = —% Z [Qannr""l cosnf + (2n + 1) Fapqrr

n=0

. 2 1
(2n=1)/2 g =8 &5

9] , (88)

+ the electric field components at the points around the crack tip in the circular
direction with respect to it:

1 o _
Ey(r,0) = -3 Z [Qanﬂr"‘l sinnd + (2n 4 1) Fap 17"~/ 2 cos

n=0

2n + 1

9]. (89)

10. Numerical applications with graphical representations

In order to draw conclusions about the crack behaviour in the given piezo-
electric material we shall observe VIBRIT 420 with density p = 7600 kg/m3. This
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material belongs to a hexagonal crystal system of the crystal class 6mm (Csv ) and
the following numerical data can be written for it:
The elasticity tensor matrix:

€11 Ci2 Cia 0 0 0
Ci2 Ci11 Ci3 0 0 0
_ C13 Ci13 €33 0 0 0
(C) - 0 0 0 C44 0 0
0 0 0 0 9ca4 0
B ¢ 9 @ 4 ==
149 101 98 0 0 O
10.1 149 98 0 0 0
| 98 98 143 0 0 0 10
- 0 0 0 22 0 0 i [ 2] (=0}
0 0 0 0 22 0
0 0 0 0 0 24
The piezoconstant tensor matrix:
0 0 €31 0 0 -5.4
0 0 e3n 0 0 =54
0 0 ‘e | _ 0 0 13.5 C
0 €15 0 - 0 117 0 [mzl (91)
€15 0 0 1.7 0 0
0 0 0 0 0 0
The dielectric constant tensor matrix at a given deformation:
b1 0 0 8 0 0 P
M=[0 &1 0 ]=[0 8 0 10-9[—]. (92)
0 0 63 0 0 7.2 e

The numerical analysis of the mechanical and electric stresses state and of the
strain state and of the deformation state of the given piezoelectric material around
the crack tip on the basis of the derived formulae for each mode separately we shall
perform by changing the polar angle # within the range == at the constant radius
r = const. (r = 10mm) and by changing the radius at the constant polar angle
§ = const. In the second case the angle @ i1s chosen so that § = 0,47, by which we
have comprised the two neighbouring crack surfaces and the direction, that is, the
section immediately under the crack tip. This enable direct view of the effect of the
mechanical and electric stress tensor components upon the propagation process of
the crack according to the linear elastic fracture mechanics theory.

Since the aim is to present a graphical representation of the distribution of the
electromechanical properties of a piesoelectric material in the crack tip zone and
since 1t is 7 — 0 then we can preserve the members which considerably affect this
distribution. Therefore, we keep only the members having the indices 1 and for
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this case we perform the data proceeding according to the analytical expressions
we have determined and we form up the graphics shown in the sketches from No.
5 to 38.

The given sketches show the reduced diagrams in the zones around the crack
tip of the component mechanical stresses, of the component piezoelectric stresses,
of the component specific deformations and the displacement vectors components
for the mode I (sketches No. 5 to 14 and the sketch No. 25) and for the mode II
(sketches from No. 15 to 24 and the sketch No. 26) and for the mode III (sketches
from No. 27 to 38) of the carck.

11. Conclusion

In attempt to reach a better understending of the piezoelectric material frac-
ture mechanics in the presence of the mechanical and electrical stresses we have
observed a semi-infinite crack which is found as a defect in an imaginary infi-
nite piezoelectric material. The analytical expressions for the mechanical stress
state and strain state as well as for electric field state and dielectric stress in a
piezoelectric material at the points around the crack tip we have approximated by
the trigonometric functions by using the method of the complex variable function
and by applying the linear elasticity theory with an assumption about the plane
deformation forming, that is, about the deformation space state depending on the
assumed deformation mode. The complex variable analytical functions are assumed
in the form of the graded Laurent orders with infinite number of members which
are used to construct the stress function for the case of the first two modes and for
third mode the component displacement and electric potencial are constructed.

On the basis of the shown sketches for the mode I we can derive the following
conclusions: On the crack surface § = £ the extreme value maximum is obtained
only by the component displacement u perpendicular to the crack surface whereas
all the other components of the mechanical stress and deformation as well as the
piezoelectric stress component have the extreme values — minima.

Moreover, on the basis of the shown sketches for the mode II we derive the
following conclusions: On the crack surface § = &7 the extreme value - maximum
is obtained by the normal stress o, for the surface with a normal in the radial
direction (sketch NO. 15), the normal stress o, for the section with a normal in
the axial direction (sketch No. 17), the piezoelectric stress component D, in the
axial direction (sketch No. 21), strain &, of the line element drawn from the crack
point in the circular in the radial direction (sketch No. 19), strain & of the line
element drawn from the crack point in the circular direction (sketch No. 20), the
component displacement u of the crack points (sketch No. 23); the extreme value
— minimum - is obtained by the normal stress oy for the surface with a normal
in the circular direction (sketch No. 16), the shear stress 7.4 (sketch No. 8), and
the sliding e,¢ of the line elements drawn from the crack point in the radial and
circular direction as well as the displacement vector component perpendicular to
the crack surface (sketch No. 12).
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The components having maximum at the points on the crack surface for the
mode I and the mode II crack deformation considerably affect the crack propagation
(growth) in a piezoelectric material.

The analysis and the comparsion of the obtained graphical representations of
the electromechanical state in a piezoelectric material at the points around the
crack tip show that both the components of the displacement vector of the points
for the given approximation are directly proportional to the square root of the polar
coordinate r which presents a distance between the observed point from the crack
tip. By observing the reduced diagram of the component v of the displacement
vector which is perpendicular to the surface crack for the mode I of the crack
deformation we see that it grows along with the point movment away from the
crack tip whereas the component tangential to the crack surface is equal to zero at
all its points.

For the mode II of the crack deformation we conclude that the displacement
vector components in the tangential direction on the crack surface at the points of
one crack surface increase the others decline as they approach the crack tip.

The mechanical and piezoelectric components at stresses for both the modes
in the given approximation are inversely proportional to the square root of the
distance of the point from the crack tip and it they have singular values. The same
conclusion stands for the tensor strain components as well.

On the basis of the shown sketches for the mode III we can derive the following
conclusions: On the crack surface # = £7 the extreme value — maximum is obtained
by:

* shear stress 7,,(r,+m) for a section with a normal in the radial direction
which is directed towards the crack point (sketch No. 27);

x radial component D, (r,+7) of the piezoelectric stress (sketch No. 29);

* relativ deformation &,,(r,£) sliding between the line elements in the radial
and axial direction lying in the crack plane (sketch No. 31);

+ radial component E,(r,£7) of the electric field (sketch No. 33);

* component w(r,+7) of the displacement vector in the crack front direction
(sketch No. 35);

* electric potential ®g(r,x7) (sketch No. 36).

The influence of the maximum of the previously mentioned parameters of the
electromechanical state of a piezoelectric material on the mode III of the crack is
considerable since it considerably effects the crack propagation. Also, on the crack
surface # = +7 the extreme value — maximum — is obtained by:

* shear stress 7, (7, £7) for a section with a normal in the circular direction,
which is directed towards the crack front (sketch No. 28);

* circular component Dy(r, £7) of the piezoelectric stress (sketch No. 30);

+ relativ deformation £¢, (7, ) sliding between the line elements in the circular
and axial direction lying the plane perpendicular to the crack plane (sketch No. 32);

* circular component E4(r,£7) of the electric field (sketch No. 34).

The parameters of the electromechanical state of a piezoelectric material which
are minimal on the crack surface do not affect considerably the crack propagation.
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Sketch N° 5
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Sketeh N° 7

Sketch ° 8
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sketch N° 11

sketch N° 12
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Sketch N° 13
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Sketch N° 15

Sketch N° 16
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Sketch N° 17
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Sketch N° 19

Sketch N° 20
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Sketch N° 21

Sketch N° 22
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Sketch N° 23
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Sketch N° 25
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sketch N° 28
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Sketch N° 31

Sketch N° 32
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Sketch N° 33

Sketch N° 34
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Sketch N° 35
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The analysis and the comparsion of the obtained graphical representations of
the electromechanical state in a piezoelectric material at the points around the crack
tip for the mode III we see that the component displacement w(r, @) and the electric
potential ®¢(r,0) at the points around the crack tip for the given approximation
are proportional to the square root of the point distance from the crack tip.

To repeat, in our analyses, we have introduced the assumption about the linear
elastic fracture mechanics which assumes limitless elasticity which never occurs in
practice. In any deformation no matter how small it is a plastic zone forms around
the crack tip immediately which makes the stress value finite. If the nonlinear zone
around the crack tip is so small that it is all contained in the electric stress field,
then its effect upon the stress distribution at a certain distance from the tip (front)
of the crack can be comprised by the stress intensity factors 1 (for mode I), Rys
(for mode II) and R;yy (for mode I11) which represent the measure of the stress
intensity immediately in front of the crack tip.

All this points to the conclusion that the very appearance of a crack in the
stressed piezoelectric material, if it happens, can bring about redistribution and
stress concentration as well as the appearance of singular state at the very crack
tip. The very crack tip as a singular point represents a spot of the greatest stress
concentration and the piezoelectric material is at place the most sensitive to later
fracture appearance.

The shown procedure for determining the electromechanical state of a piezo-
electric material as well as the graphical representations represent, in our opinion,
a modest but original contribution to the knowledge of the crack impact upon the
material fracture as well as to the possibilities of the application of the complex
variable functions to the problem solution in the field of the fracture theory.
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Application of the complex variable function .

MPUMEHEHMUE $YHKUMWYW KOMIIJIEKCHON [NEPEMEHHON
B [IPOCTPAHCTBEHHOM AHAJIU3E COCTOSTHUA HAIIPSDKEHUA
U COCTOAHUA OESPOPMALIUUN
Y TILE3ODJIEKTPUYECKOM MATEPUAIJIE C TPEIIMHON

B HacTosmeR paboTe caesaH MPOCTPAHCTBEHHBIN aHaJIM3 COCTOAHMA HarpaXeHUA
M COCTOSHUA HePOPMALMM B MMbE303ICKTPUIECKOM MaTepHale B TOUKkaX OKPECTHOCTHU
BEPIIMHH TPEMMHH LA clydad AefopMMPOBAHUA PaCTARCHHEM, nornpedHHM Ca-
BMI'OM M TMPOZOJbHHM CIOBUIOM, MPUMEHAA TCOPHIO JIMHEAHO-YTIPYTOA MEXaHHMKH
paspylieHUA W JHHEAHYI0 TEOPHIO YTIPYTOCTH. Wcrionb3oBaH METOd aHAIMTUIECKUX
QyHKILMA KOMIUIEKCHHOM NEPEMEHON B M0JIAPHBIX KOOpAMHATAX. BseneHH QyHKUHMHUN
MEXaHWYECKOr0 HArpsAXeHU W JJEKTpHIecKOr MOTeHLHAIA. CoenaHHHA HaMHM
AHA/TM3 MOKA3BBaeT XapaKTepuieckoe MoBeeH1e KOOPAMHAT TEH30pa MEXaHUTECKOro
Hanps&eHNA, ITHE303JIEKTPUIECKOr0 HAMpAKEHHA W TEH30pa OTHOCHTEIbHON Hedop-
MalluM M DIEKTPUIECKOro Mosid. Y 3TUX COCTAaBIAIMMX 3IEKTPOMEXaHUIECKOro coc-
TOAHUSA MaTepuana ocobble TOUKH B BEPWMHE TPEMMHH. 3Ta OKPECTHOCTb BEpUIMHM
MpeMMHBl ABIAETCA 30HOM KOHLEHTpPALLMU HATMPAKEHUA W CaMoH 9yBCTBUTEJIbHOM
061acTio Ha Doslee ro3gHoe TOABJIEHHE paspylleHNA MaTepHala.

B paGore Tak®e CHENaHH BHIUCIUTENBHBIA aHaIM3 MMOMYHCHHHX aHAIUTH-
qecKiX pe3y/lbTaTOB A BeeX TpeX ciydaeB NedopMUpoBaHWA TPEIMHBL Moun 1,
mon II 1 moa I u cooTBeTcTBYlOmMMe rpagudeckye MpeacTaBJeHUA pacTipeacyieHnd
NapaMeTpPoB 3JIEKTPOMEXaHHIECKOr0 COCTOAHMA B OKPECTHOCTH BEPMMHBI TPEMMHH
Mbe302J1eKTPUIECKOro MaTepHana.

PRIMENA FUNKCIJA KOMPLEKSNE PROMENLJIVE
NA RESAVANJU PROBLEMA PRSLINE
U PIEZOELEKTRICNOM MATERIJALU

U radu je izvrena prostorna analiza stanja napona i stanja deformacija u
piezoelektriénom materijalu u tackama okoline vrha prsline za sluéaj smicanja ma-
terijala po povrsi prsline u i izvan referentne ravni, primenom teorije Linearne
elastiéne mehanike loma (LEML) i linearne teorije elastiénosti. Koriscena je metoda
analitickih funkcija kompleksne promenljive interpretirana pomocu polarno-cilin-
driénih koordinata. Uvedena je naponska funkcija i funkcija elektri¢nog potenci-
jala koje su izrazene polarnim koordinatama i trigonometrijskim redovima. Izve-
dena analiza pokazuje karakteristiéno ponasanje koordinata tenzora mehanitkog
napona, piezoelektriénog napona i relativnih deformacija. Komponente analiziranih
tenzora stanja piezoelektricnog materijala imaju singularne vrednosti u vrhu pol-
ubeskonaéne prsline. Okolina vrha prsline i vrh prsline kao singularna tacka stanja
napona i stanja deformacije se javlja kao oblast koncentracije napona i kao na-
josetljivija zona na kasniju pojavu loma. Takode je izvrSena numericka analiza
dobijenih analiti¢kih rezultata za sva tri moda deformacije prsline i dati su odgo-
varajuéi grafi¢ki prikazi uticaja stanja napona i stanja deformacije ne proces propa-
gacije u piezoelektricnom materijalu.
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