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1. Introduction

The papers dealing with the problems of interline are scarce in the reference
literature. Papers [1,5] indicate, from different standpoints of the continuum me-
chanics, the significance of this problem, which is important both from the theoret-
ical and the practical points of view. The following examples point to the necessity
of further considerations of two-dimensional materials containing a material or non-
material interline respectively.

A characteristic example in which the interline plays.an important part is
represented by the boundaries of the transition layer ([2]). Namely, if a system
formed by two liquids and a solid (Fig. 1) is observed, the liquids can be considered
as three-dimensional continua with the same characterictics in the whole area up to
the transition layer, and the transition layer can be modeled as an interface. The
mistake made in that way can be compensated for by assigning additional surface
properties to the separeting surface, such as the mass density, the surface atress
etc. .

 Fig. 1

In that way, the separeting surface is considered as a continuous medium having
its own thermodynamics properties and the behaviour of which is not independent
of the behaviour of the surrounding liquids. The segment of the transition layer



28 Golubovié, Z.

is of particular interest in such problems. This segment appears as a boundary of
the transition layer between the liquids and the solid. From the standpoint of the
transition layer model, the point in question is the segment of the separeting surface
and the solid and it is called the line of contact. The position of the separeting
surface is not known in advance and, by the very fact, the position of the line of
contact is not defined in advance either.

Fig. 2

A similar phenomen can be noticed in the case on the free boundaries of the
surface between the stages. The ends of such free boundaries are the lines of contact
and, as a rule, their behaviour is not known in advance (Fig. 2). In this case too,
the line of contact can be considered as a line of discontinuity which determines the
matual action of different stages of the investigated systems. Obviously, the lines
of contact are not always plane curves (Fig. 3).

Fig. 3

Applications of this research are foreseen in the investigation of wetting, where
droplets touch solid surface (say) along the interline. Also interlines abound in
foams and two-phase suspensions of liquids. Because of the interline energy residing
in such singular line, a thermodynamic treatment is indicated. Other applications
are possible in biology whenever membranes are constrained by muscles or fibers
as in the case of the peritoneum.
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The group of problems with a nonmaterial interline also comprises the problem
of detachment the membrane from the surface of a body. Owing to an important
physical motivation, this problem deserves a special attention. This paper analyses
a multicomponental surface of an arbitrary shape, considering the interline. It has
been demonstrated that a certain kind of analogy can be established with it and
the analysis of a three-dimensional continuun containing a discontinuity surface,
both in formulating the virtual work principle and in deriving the so-called energy
theorem. As an illustration of the theory exposed above, the problem of detachment
of the membrane from the surface of a given body has been considered.

2. Preliminary considerations

The body S(t), which changes in time in a definite interval I, and is situated
in a three-dimensional Euclidian space E3, has been considered. Let the boundary
85(t), of the body S(t) is smooth enough, so that in each of its points it is a
uniquely defined the unit outward normal n', which is tangential to S(t),t € I. It
has been supposed that the body S(t) is devided by the curve C(t) into two parts
S+(t) and S~(t). Let the points at the boundary 9C(t), t € I, are denoted by
A and B. The position of a surface practicle in the present configuration at time
t > to refered to a fixed Cartesian system of coordinates z' (i =1,2,3) is given by

2 =2 (UTt), (1)

where UT (r = 1,2) are the surface coordinates of the particle, and ¢ is time.
Suppose that the surface S(t) is sufficiently smooth so that at each point of the
surface there exist the tangent vectors to the coordinate lines U I' = const.

h=2 @)
and the unit normal vector v, so that
Vii=1, and riv'=0. 3)
The metric tensor on the surface in the present configuration is defined by
gar = TATE. (4)
The velocity of particle UT on a surface S(t) is given by

s aE‘(UFrt)
e S Q

For subsequent derivations are useful to decompose this veiocity into normal and
tangential components R
Vi=at + VT, (6)
v
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where 1'3 1s the normal speed of the surface. Let a singular curve C(t) be situated
in the surface

ci): ut=urq, (7)
where [ indicates the length of the arc of the curve C(t). The motion of the curve
C(t) referring to the system of coordinates z* is given by

2 = z'(1,¢). (8)
Assume that at each point of the curve the unit tangent vector is defined by

L
,\_61. (9)

The velocity V* of a material particle thet belongs to the interline C(t) and the
absolute nonmaterial (with regard to the surrounding material) velocity B* are
related by

V- B =P 1P, (V- BYp' =0, (10)

where 4' is a unit vector perpendicular on the curve C(¢) lying in a tangential plane
of the surface S(t), its direction points into the region S*(t). For the subsequent
derivations, the following theorems will be used

(a) Transport theorem for the surface containing the interline [7]

(/ <’f>da) =/ {$+8(Qg-2KMa)}da
Stus- StoLs~ #

+ [B72 - Bua (1)
C

where [p] = ¢t — ¢~ indicates the jump of the quantity ¢ across the line C(t)
at zo, Ky = -2—63 is the mean curvature of the surface S(t), bra is the second

fundamental form of the surface S(t), ”.” denotes derivative wilh respect to ut
holding t fized, and where ”;” denotes the covariant differentiation.

(b) Transport theorem for a line.

It can be shown from the consideration given in [4] that 1t follows

([ea) = [10+0(Fa-raps*)ar (12)
c 4 "
where
dtrT
I‘ — —
T dt (13)

are coefficient of directions. Equation (12) is the transport theorem for material
lines.
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(¢) Divergence theorem in the case of the surface conlaining the interline (7]

/ o4 da:/ ®3n, dI-/[@A]pAdl. (14)
S+us- astuas- C

3. The balance of mass

It has been supposed that the body under consideration is a two dimensional
mixture containing a single material interline. The mass of such body 1s constant
in time which can be expressed in the following form

M+ M=0, (15)
with

ﬂzgﬁ

where p(,) is teh density of the a-th constituent of the surrounding material and
where p is the density of the interline. Taking into account (11) and (12), from (15)
and (16) the following equations are obtained

,3(0)(1(1, Mz./(;pdl, (16)

FEus=

By + Pa)(Voya — 2Km@) =0, on S*US™, (17)
p+p(Vra - gbm)P"PA r 3 [Z Pay(VS) - BA]#A =0, onC,  (18)

which represent the balance laws of the mass of the a-th constituent of the sur-
rounding material and the interline, respectively.

4. The principle of virtual work and Balance of momentum
The principle of virtual work can be written in the following compact form (7],

(12]
s§AT = 64, (19)

We define the total inertial quantity of the body under consideration in the form

I" = (Z] f)\(a)i}(ia) da) + (/ PV‘ dl) . (20)
o JStTusS-— 65

Using (11)-(12) and (17)-(18) in (20) we get
I = f ey V) da
P22 Jorgse PV

+ [ [2 BTy = VTS ~ B |mafat. e



32 Golubovié, Z.

The virtual work of inertial forces is

= Z/ 5(a)‘7(a)5sfa) da+/ pf/’-éa:‘. dl
o vStus- C

+ . [Z 5(a)(r/(2) - V'-)(V(‘f;) - BA] 6z’ pp dl. (22)

The virtual work of all other forces can be written in the form
A" = 8A7(STUCUST) +6A5(6STUSCU 857) + 6A3(6:C), (23)
with

7= [ (50 aya da = (Plor )7l } do

—/S‘ (3.1: )d1+]pf‘6z‘d1, (24)

- al

543 =) :/ Ti (6% d!-/[§ T (6%, —5x"]d1, 25
2= 2 saups- T@PF@ Cau(() ) (25)

d(Stéz?)

| SR, (26)

0A3 =

where are: §22) — the surface stree, f;" ) - the specific surface force, b(a) the

momentum supply, T(‘a) - the surface traction and ‘T{‘a — the ”internal’ traction
on the -th constituent of the surromunding material respectively. The quantities
S* and f* are the corresponding fields definied on the interline. Then from (19),
(22)-(26), after using (14) the following relation can be obtained

Z/ ﬁ(a)ﬁ‘(a)éf:‘{'a)da+'/ pviﬁxi dl+
o JSF - | s,

+ / [Zﬁ(a)(?(‘;) - VHVE) - B“)] §z'pa dl
C a

== [, Ssstona dir X [ 1865t lna )
> / $adat T [ Gl + Bttty dat [ prisata

Sy i o 05’
+ Z/ (a)éz(a) dI [;7{0)(53(0) e 617 )] dl + W(‘S C”

S+uads- C
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From (27) we obtain the following local field equations

5@)‘?(;;:) - 5{8.a = Pa)flay + blay om STUST, (28)
o = 2 4 [ Ty VT = V)

=pf + YTy onC, (29)

ﬁa) & §€3)na, on 39St uasj, (30)

i§ff)pA -£7i=0, on C*. (31)

Taking into account (31) in (29), it follows

g 05 I (T gi i
PV =~ [Zp(a>(v(a)-V)(V(ﬁ)—Ba)‘ZS(S)]“A'—'Pf’ on C. (32)
a a

The relations (28) and (32) represents the balance laws of momentum of the a-th
constituent of the suurounding material and interline, respectively.

5. The balance of moment of momentum

In this paper qe are considering the case of non-polar materials. The balance
of moment of momentum can be written in the following form

Li = M;, (33)
where
Ly = Za: ]sws_ ijkP(a)® Viz)da+ _/C eijepe’ VE dl, (34)

M = MY STUCUST)+ MBSt UACUBS™)+ MPB.C).  (35)
The corresponding quantities in (35) are given by
Mi=3 / (6378 Pla)® flay + ik 2 Bay) da + / eijepz’ f*dl,  (36)
a 1Stus= - C

2 = . i kA

M? = s,-,-,,:J'S"|§. (38)
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Then, from (33)-(38), after using (11)-(12), (14) and (17)-(18) the following can be
obtained

Z/ Eijkﬁ(a)rj 17(’;) da + / s,—,-kpxj vk dl

~ Js+us- ¢

; /;,[E‘ikp(a)”j(v(i) - Vk)(?(ﬁ) - B®)|padl

= za: .[S+US-(€ijkﬁ(a)xj f?‘a) pe E;jk:jgfa)) da + Le;jkpzjfk dl (39)
P [ (st + cine? St o) da

o ; . G5~
kA k
+ Ea '/C[e,-,-k:;JS(a)]yA dl-}-/;(&‘,'jk/\-"s +Eijk:L'J —-——61 )di

Taking into account (28) and (32) in (39), we obtain the following set of local
equations

E,','jkl'{Ag&?) =0, on g+ uas™, (40)
sg,-kAJ'Sk = 0, on C. (41)

The relations (40) and (41) represents the balance of moment of momentum of
the a-th constituent of the surrounding material and interline, respectively. The,
decomposing the surface stress according to

SkA = GAYk 4 AR, (42)

and by using the identies
Eijkrf,\vk = QAEEEAZfA, (43)
E,’jkI{Az;kA = eAaui, (44)

from (40) we obtain

S and S8 = §44A, (45)

so that (42) is reduced to
| BN o BRCRE (46)

6. The balance of energy

The first principle of thermodynamics in global form is

(E+EKy+(E+K)y= A% +Q, (47)
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with
E= / P(a)€(a) da, E:/pedl, (48)
; e c
s 1 v 1
K=- / Pla V"; da, K= —/ pV3dl, (49)
2; seag= o) o) 2 Je
AO - / fﬂ.a ?ia da+ / ACX f +3‘a )f:ﬂcx da
; o TV Za: S+US_(P( 1 f(a) * ¥a)) Via)
+/ 3(Sv)dt+fpf"v*dl, (50)
c Ol c
A= / T / Gt dl
za: S+us- Aa)Tta) ; SFusS- ‘I( )
+/ prdl+/ ?-gdf, (51)

where are: €(o) — the specific internal energy, 7(q) — the specific external heat
supply and g(4) - the beat flux vector of the a-th constituent of the surrounding
material, and where e, r and ¢ are corresponding fields defined on the interline.
The expresions for K + K can be conected with (22) written for the real velocity
fields

2 . ; 1 - ~, i
K+k=A"+3 fc [me(‘/(a) - ViIN(VA - BA)] padi. (52)
a

Accounting for (52) in the first principle of thermodynamics (47) we obtain the
so-called energy theorem in the following global form

E+E+AT-A° + Kr=Q, (53)
with .
Kn = [ |5 bl = V(78 - B et (54)

For subsequent derivations, the principle of virtual work (19), written for real ve-
locity fields, will be used. It follows

Vi (0 _ CiA /i
Al-4%=-3, /S+U s S@Vaxa da

2y i i [0V
- /C[Za: (V= V )] dI-/CS - 4 (55)
Finaly, by using (14) in (51), we get

= Aa t-.a d . ;.A )
@ );/Sms_ P(a)T(a) da )a:/!m,s_ Qaya da
~A dq
- dl di— [ =dl.
fc[;q‘“’]‘""‘ +/c"r &k (56)
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Tacing into account (54)-(56) in (53), it follows
BlaneL. da+/ édl+/[ P(a)(€(a) — € I?ﬁ—BA} dl
Zajfsms_ﬂta) (@dat | p ’ ;P( (&) = e)(Via) = B)|Ha
"Z/ St Vioya d“—f [27(3)(‘7('#)—‘/")] d“/ 5ol
PRy ' 4 i c Ol
1 ~ (i i\2(1/
+ 9 /(; [ZP(G)(V(Q) = )2(V(‘2) = BA)] padl (57)
= Pla)T(a) da — f 92, da—/[ fﬁ,]ﬂpdl
;/ms_my ;S (a):a C;u

dq
+ dl—-/ da
fcpr c al

From (57) we obtain the following local field equations

+uUS—

E(a)g(a) = §E£)‘7('C,)}A + ﬁ(a)?(a) - @);A’ on S+ U S—,
. ,-3Vi aq A e 1 i i -~
pe — S 'a- + 5-1' - [Zp(a){e(a) — e+ §(V(a) s )2}(‘/(2) = BA)
- Zgif)(ﬁg) -V + Zﬁﬁx)]p‘& =gqr, on C. (59)

The relation (58) and (59) represents the balance laws of the internal energy of the
a-th constituent of the surronding material and interline, respectively.

7. The balance of entropy
The balance of entropy of the body under consideration is given by
N+N=WN, (60)

with

N = (o) (e da, N:/ dl, 61
;[‘”US*P( ) (o) da P (61)

N = ;'[S‘HJS- f)'(a)E(a) da — za:'/;

@ﬁ,)nAdH/pxda— ‘9—"°dz,

S+udsS- C c ol (62)

where: 7),) — the specific entropy, K(a) — the specific supply of entropy and {o‘ﬁ] -
the entropy flux of a-th constituent of the surrounding material, while , « and ¢
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are corresponding quantities defined on the interline. Tacing into account (11)-(12),
(14) and (17)-(18), from (60)-(62) the following local equations can be deduced

Zﬁ(a)ﬁ{a) + E(ﬁﬁ])?A = Zﬁ(a)ﬁ(a), on S+ U S—, (63)
. Oy L ~ s
P+ S+ [z Play(iiay = M(VGy — B) + Est’ﬁ,)] pa =pk, on C. (64)

The above relations represents the balance of the entropy of the surrrounding ma-
terial and the interline, respectively.

8. Discusion

In the present paper it has been demonstrated that a certain kind of analogy
can be established between it and the analysis of the three-dimensional continuum
containing discontinuity surface ([7],{12]), as well as between the analysis of a one-
dimensional continuum containing a point of singularity [13].

The relation (17), (28), (40), (58) and (63) represent the known balance of the
a-th constituent of the two-dimensional surrounding mixture, while the relations
(18), (32), (41), (59) and (64) represent the new balance of the material interiine
separeting this two-dimensional mixture into two parts.

According to the procedure described above, the systems with the nonmaterial
interline can also be considered. As it can be seen from the introduction, the
problems concerning the nonmaterial interline are numerous and significant. One
of them will be analyzed in the following example.

9. Example: The detachment of the membrane from the surface
of a given body

We are considering an elastic membrane M found upon the surface of the
body D (the membrane can be defined as a thin layer which generally separates
two materials) (Fig. 4).

Due to the certain effect, the membrane detachts from the surface of a given
body along the detachment line C(t) (nonmaterial line of discontinuity). The line
C(t) devides the body S(t) into two parts: S*(t) which is not detached and S=(t)
which is detached from the surface of a given body.

When the membrane is smooth, the transport theorem in the form (11) is used.
When the above is not case (Fig. 4), the transport theorem for a nonsmoth surface
containing the discontinuity line gets the form

(/ &Zda) =/ {®+3(VE — 2Kn1)} da
Stus- stus- 2
+ [ @7 ai- [ @ua)ptal (65)
C
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where (F') = F* — F~. The divergence theorem in that case reads

f &4 da:/ d4n, dl+f($ApA)dl. (66)
S+us- astuas- C

8.1. The condition of detachment of a membrane
expressed over the momentum

The 1nertion force in this case reads

r= ( ] Pla f"a da) ! 67
; I OO (67)
By using the transport theorem (65) in (67) we obtain
e Z] Ba)V'(ay da +/ [Z oy Vi (VG - BA)] padl. (68)
ol O T eL
The virtual work of the inertion force has the form
5T = 3 /S rose P(a) V8%, da + fc [Z oy Vi) (Via) — BA)} §z'ua dl. (69)
[o ] a

The virtual work of all other forces can be expressed in the form

sAt ==Y / {Si86% 1.8 = (Bo) Fia) + bia))0Fiay} da — / Fisztdl,
a YStus- C (70

5A,?=Z/

o YStus-—

. )
T'6% {4y dl — fc [Z T (6% — 5;*’)] dl, (71)

sap= [ 28y ™
C
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where F' is the concentrated cohesive force at the moving boundary C(t). By using
the divergence theorem (14) in (71), from (22)-(23), (70) and (72) we obtain

I oy .
i A 14 — i
[Ea :P(a)v'(‘a)(‘/(g) — B ) = E S(a)] pHa = M+ ETR (73)

which represent the condition of detachment of the smooth membrane from the
surface of a given body expressed over the momentum. In analogous way, by using
the transport theorem (65), and divergence theorem (66), we obtain

= T 17 i ~ i i 05
(O Ae)VimVia) — Stayma) = O PlayViupa)B® = F' + 0 (74)

which represents the condition of detachment of the nonsmooth membrane from
the surface of a given body expressed over the momentum.

The form of the condition of detachment depends upon the kind of effects
causing the detachment of the membrane from the surface of a given body, which
has, as a consequence, the expressions of the forms (73)-(74). A further utilization
of these conditions depends upon the question what should be solved in a concrete
problem. If it is the velocity of the detachment line points, then, in order to
complete the system of equations necessary for the solution of the problem, it is
also necessary to have the differential equation of motion of the membrane as well
as the corresponding boundary and initial conditions.

In addition to the previous detachment conditions, as an ilustration of the
exposed theory, in an analogous manner, the detachment conditions can be derived
in terms of the power absorbed at the moving boundary by using that part of the
theory which referes to the energy balance. The detachment condition (73) can be
compared with the condition of detachment of adhesive tape from a plane surface
((14], (A-3))

*Ug[pi:(d’,t)] = [?(O’,t)] - E! (75)

where p(s,t) is the linear density, z(s,t) is the position at time t of the particle at
distance S along the one-dimensional continuum in its reference configuration, ®

is the force exerted by the part of the continuum with S’ > S upon the part with
S’ < S and F is the concentrated cohesive force at the moving boundary s = o(t).
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UBER THERMODYNAMIK DER ZWISCHENLINIE

In der Arbeit wird mehrkomponentale Oberfliche der belibigen Form betra-
chtet, die eine Zwischenlinie enthalt. Es wurde gezeigt, dag eine Gewisse Analo-
gie mit der Analyse der dreidimensionalen Kontinuum hergestellt wird, die eine
Zwischenflache enthalt, nicht nur bei der Formulirung des Prinzip’s der wirtualen
Arbeit, sondern auch bei der Ausfiuhrung der sgn. Energietheoreme. Als Ilustra-
tion der ausgelegter Theorie wird das Abteilen der Membrane von der Flache der
gegebener Korper betrachtet.

O TERMODINAMICI MEDULINIJE

U radu je razmatrana medupovrs proizvoljnog oblika koja sadrzi meduliniju.
Pokazano je da se moze uspostaviti izvesna analogija sa analizom trodimenzion-
alnog kontinuuma koji sadrzi medupovrs, kako pri formulisanju principa virtualnog
rada, tako 1 pri izvodenju tzv. teoreme energije. Kao ilustracija izloZene teorije,
razmatran je problem odvajanja membrane od povrsine datog tela.
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