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The effect of non-linearity on the wave propagation has been a subject of
great interest from mathematical and physical point of view. Considerable atten-
tion has been given to the development of non-equilibrium gas flow theories which
have applications in the field of entry physics, combustion and reaction. The non-
equilibrium effects can occur in any of the molecular processes like translation,
rotation, vibration, chemical transformation etc. The law which governs the evolu-
tion of the amplitude of a weak discontinuity in an one dimensional medium obeys,
as known, an ordinary differential equation of Bernoulli’s type (Boillat {1], Varley
and Cumberbatch [2], Boillat and Ruggeri [3], Becker [4], Bowen [5], Ram [6]). A
different procedure given by Jeffrey and Taniutti [7], in one dimensional case, has
led to an evolutionary law which has undergone a troubled history in the course of
the last two decades. Relaxation effects on the evolution of non-linear waves play
a decisive role in the stability of waves. Rarity (8] used Jeffrey’s technique [7] to
study the problem of breakdown of characteristic solutions in flows with vibrational
relaxation. The analysis of the corresponding problem in two-dimensional steady
supersonic flow is given. The solution in the neighbourhood of the first disturbed
forward characteristic is discussed. In this study it is not clear that when and how a
characteristic solution breaksdown. He has also overlooked the effects of relaxation
on the global behaviour of the wave amplitude. Here an attempt is made to study
the evolution of an acceleration wave propagating along characteristic lines in a
steady two-dimensional hypersonic flows of a general class of relaxing fluids. Also,
investigations are made to study the critical stages when a week wave breaksdown
and a shock wave will be formed under relaxation effects. The fluid is assumed
to move along a plane wall with a speed greater than the frozen speed of sound
and encounters a smooth compressive corner. Making use of the concept of the
stream line characteristics, it 1s assumed that along a stream line all flow quanti-
ties are continuous and have continuous derivatives in the stream direction; across
the stream line all flow quantities are continuous but the derivatives in the normal
direction suffer a jump.
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The hydrodynamical equations governing the two-dimensional continuous flow
of relaxing fluids in a plane steady hypersonic flow are [1]

uipi + puii = 0, (1)
puju;j +p; =0, (2)
uif,:‘ - L(Eﬂ}': P) = O: (3)
A
wipi +PC§U.‘,i+C?{?Pn +Ps}L =0, 4)

where L is the relaxation rate function, A is the affinity of internal chemical trans-
formations, c; is the frozen speed of sound, ¢ is the relaxation parameter and p
is the entropy of the fluid. u;, p and p respectively represent fluid velocity com-
ponents, pressure and density. A comma followed by an index i denotes partial
differentiation with respect to a spatial coordinate L

If the curvilinear coordinates S and n are the measure of distances along the
normal to the stream line and ¢ is the angle of deflection of the streamline from
a suitable reference direction, the equations of motion (1)-(4) can be transformed
into new intrinsic coordinates (S, n) in the following form:

4ps + Pqs + pgbn = 0, (5)
paqs + ps = 0, (6)
Pq295 +pn =0, (7)
2 A
ps + pey(gs +q9n)+8§(?pq +95)L= 0, (8)
9§s — L =0, (9)

where ¢ is the magnitude of fluid velocity and the surffixes S and n denote partial
differentiation.

The above set of equations are the basic equations of motion in therms of intrin-
sic coordinates. To solve the problem of two-dimensional fluid flow, the equations
(5)-(9) can be combined in the matrix form:

Us + AU, + B =0, (10)

where

U:[p,q,g,f,P]T, B=IQQ,—Q/,P,O,—L/Q,Q/Q]T,

0 MI-1 0 0
T 0 0 —v}"_—l 0 0
- ;;3 0 0 0 0}’
oM?
i 0 0 Wj_l 0 OJ
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where

1 A q
TS e—— — M —_ —

The system (10) is quasi-linear with five real characteristics. The eigen values
of the matrix A are

1

A=A =G =g ANz ————
’ (M2 1172

A®) = —(M} - 1)71/2,

and the corresponding left eigen vectors are given by,

LW = [-1—,1,0,0,0], L® =1[0,0,0,1,0], L® = [——1-2-,0,0,0,1],
Pq ¢y
2 2
(4) — SN . (5) — |— e B
i "‘[1’0’(1\4}—1)1/2’0’0]’ B _,[ 1,0,(M}_1)1/2,0,0 :

The system (10) of partial differential equations is of hyperbolic nature and
thus admits discontinuities which propagate along the forward characteristics.

Now, let us consider a new coordinate system of characteristic coordinates ¢
and ¥ by the equations,

és + A Vp, =0, yp=0. (11)

The equations (11) shows that ¢ is a constant along characteristic wave fronts
so that we can assume ¢ = 0 as the leading forward characteristic wave front
across which all the flow parameters are themselves continuous but their first partial
derivatives with respect to ¢ undergo finite jump discontinuities. Such a wave front
is termed as ”acceleration wave”. The transformation introduced is non-singular,
provided the Jacobian transformation (S, n) — (¢, ¥) is given by

J=—== (12)

is non-zero and finite.

Let us consider an open region R’ bounded by two characteristics ¢(S,n) =0
and (S, n) = 0 such that no other characteristic issuing from the origin enters this
open region R’. This open region approximation is essential since we are confined
to the neighbourhood of ¢(S,n) = 0. We assume that U remains smooth in R’ at
least for a finite time throughout the region R’ except for boundaries (figure 1).

Transforming (10) into new coordinates ¢ and ¥ and premultiplying by LU),
we get

LO{N = XUy + 13Uy} + ng L’ B = 0. (13)

In particular, for M = A*, we have

LUy + L*B =0. (14)
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The jump conditions at the wave front ¢ = 0, are

U is continuous; [U] = 0,

Uy is continuous; [Uy] = 0,

Uy is continuous; [Uy] # 0 = F(¢),
ng is continuous; (ny] # 0 = R(v),

(15)

where the bracket denotes the jump in the enclosed quantity across the wave front
o(S,n) =0, U]l = (U)y_5 - (U) 4. Here (U)4=5 means evaluation of U on the
¢=0

wave front ¢ = 0 from down stream side and (U/) ; means evaluation of U from
¢=0

the upstream side.
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Figure-1 Region R’
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From the definition of R(¢), we see at once that

R+(ng), 5 = (n)o=s: (152)

while
(ng) +=(ng)o, (15b)
¢=0

is finite. Hence the condition (12) implies that

R+ (n¢)0, (150)

is non zero and finite. The quantity (ng),_5 is associated in the distance between
the two neighbouring characteristics ¢(S,n) = 0 and #¢(S,n) = 6 <0, we have

Un = U«,bﬁbn, (15(1)

which, by virtue of the Jacobian in equation (12), may be written as
Uﬂ = . (15e)

Hence, if ny becomes zero and U, remains finite, U ceases to be Lipschitz continu-
ous. By means of constant state condition B(Ug) = 0, it follows immediately from
(13) that _

LiF(4$) =0, for M # A% (16)

Differentiating (14) with respect to ¢ and then evaluating at the wave front
¢ =0, we get
L*F($) + [Vu(L*B)JoF =0, (17)

where V,, stands for the gradient operator with respect to the components of the
vector U.

The equation of outgoing characteristics can be written as
ny = A4, (18)

Differentiating (18) with respect to ¢ at any point in the open region R’ and
allowing this to tend to a point on the wave front ¢(S,n) = 0 and using the jump
condition, we get Ry = [V4(A*)]oF, which provides that

R=R+ /Ow[vu(,\‘*)]oF dy, (19)

where R = lim R and
Y—0

M 1 qo [ Oc qo [ Oc
Vu(A)oF = 5 "{ *“’(“f‘) +_(“i) }F‘
[Vu(3)lo (M}, —1)32¢y, podo ¢, \0p )y ¢}, \0p /g 1
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From (16), we get the following relations:

Fy + pogqoFr =0, (20)

F4 = 0: (21)

Fy—c} Fs =0, (22)

(M2 = )V2F, — pogiFs = 0. (23)

Evaluating (17) on the wave front ¢ = 0, and using (23), we get
oL
qF1¢+ (p.;,)( ) Iy, =1). (24)
Mf op /),

Integrating (24), we get

Fy = F} exp(—C1¥), (25)
where ¢; = ﬁ(pw)o (%) , Ft = F(0). It is shown in reference [9] that
0

aL
(p¢)g( 3p) > 0. Since My > 1 for hypersonic flows under study, we conclude
0

that Cy > 0. Substituting from (25) in (19), we get

— ‘p !
R=FR+ CzFl‘/ e Cr¥' dy (26)
0

M 1 dc dc
here C, = fo f) (4) } N define t
where C, CID(M}O )T {Poqo ( 5 ), 4+ = Cfo % ow we define the

wave amplitude a(y) of the two dimensional weak wave as

Fy

o1 [2e] _
) = o] = (ng)5  (ng)o+ R’ i
Using (20), (25) and (26), we get
(=c19)
A= e, (%)
i & —(1 -—exp(—clz,b))
where a* = a(0) = Po(Io{E_'?(ﬂz»)a}. The equation (28) determines the global

behaviour of the wave amplitude a(y).
Thus the following conclusions can be drawn:

THEOREM 1. If a* < 0, then a(y) < 0 for all 3 € [0,00) and |a(¥)| decreases
monotonically to zero and the wave will be damped out ultimately.
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Proof. We can write a(%) in the form

1
Ia(1[))| = {( 1 ) 34 Me"ﬁl'ﬂ _ C2PO‘IO} '

|a*| 1 o

Since both ¢; and ¢, are positive constants from physical considerations the r.h.s.
of (28) decreases monotonically and tends to zero as ¥ — co. This shows that the
wave will ultimately decay out.

c
THEOREM 2. If a* > 0, then there exisis the critical value a. = (c plq ) of
2p090

a* and a critical value . of ¢ such that

1 -
(1) ifa™ > a., then lim a(y) = oo, where Y, = —108( *a )
Y—y. 1

(2) ifa* < a., then ¢lim a(y) =0,

(3) if a* = a,, then a(y) = a..

Proof. (1) When a* > a., then the denominator of a(v) decreases from (a*)~!

oy . 1 c R
and approaches zero within range 1. of ¥ given by — — Pozo 2 (1 —e~1¥%e) = 0,
a 1

a

. 1 .

which provides that ¥, = — log( —) and lim a(y) = oo.
c] a* - Cl,-_- V:'**'JJ.:

This result shows two things. Firstly, there is a breakdown in the weak wave

phenomenon and secondly a shock type discontinuity appears due to infinitely large

gradients of flow parameters.

(2) When a* < a., then the denominator of a(y) will never vanish but the
numerator tends to zero as ¢ — oo. Thus, we have lim a(y) = 0. This shows
— 00

that the wave will decay out and will be damped out.

(3) When a* = a., then a(y) = a.. This shows that the wave is of stable form
and the wave amplitude does not undergo distortion.

THEOREM 3. The relazation effects either disallows or delays the process of
shock formaition.
da. 1 : . :
Proof. We have 30 = & > 0. This shows that a. increases with ¢; so
N gcy 2P040 )
that the critical amplitude a. increases under relaxation effects. This means that

the relaxation effect in gasflows has a stabilizing effect.
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FORMATION AND DECAY OF ACCELERATION WAVES IN STEADY
HYPERSONIC FLOWS WITH RELAXATION EFFECTS

The present communication is devoted to the study of characteristic solutions
in the neighbourhood of the leading frozen characteristics in steady hypersonic flows
of fluids. The effects of relaxation on the global behaviour of the wave amplitude
have been studied. It is concluded that all compressive waves with initial amplitude
greater than the critical one will grow and terminate into shock waves due to non-
linear steepenning, while all expansion waves will decay out. A critical stage is also
discussed when the compressive wave will either grow or decay.
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