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1. Introduction

It is well known that all engineering materials are, in the natural state, with
the different kind of damages like pores, cracks and other type of microdefects. All
of them have decisive influence on mechanical behavior of such materials during
exploitation, and as well, to the ultimate load carrying capacity. The behavior
of those type of materials is the subject of relatively new branch of Continuum
Mechanics, Damage Mechanics (see Krajcinovic, 1989 [7]). The initial damage
occurs more often in the so called brittle materials such as: rocks, concrete, dry
clays etc., than in the case of ductile materials like steel. Also new type of materials
such as composites and ceramics with high strengths, are very sensitive to the
existence of defects. The Damage Mechanics (if the defects are distributed) or
Fracture Mechanics (if the defects coalesce making main crack), are the research
areas where those materials are analyzed.

There are three problems of the body containing voids (the term void in this
paper is actually associated with the microvoid). First the evaluation of the elastic
parameters which describe the overall elastic behavior. Second the growth of the
governing defects under the increasing load above the fracture resistance. Finally
the third problem is determination of the rupture force for the considered material.
All those problems were analyzed in the paper Sumarac and Krajcinovic 1987, [11]
in the case of brittle body containing cracks.

In this paper, first problem will be considered, in the case of the body con-
taining elliptical voids. Obtained results are checked, with already existing in the
literature, for circular voids and cracks, taking the ratio of the half axes of ellipse
to be equal to one for circle or zero for cracks.

The elastic parameters of the composite material which are made from the
matrix with inclusions, has been a long time research topic (see for example Hill
1965 [5], Budiansky and O’Connell 1976 (1], Hashin 1983 [8], Horii and Nemat-
Nasser 1983 [6], Sumarac and Krajcinovic 1987 [11], Nemat-Nasser and Hori 1990
(10]). In the literature three main methods were proposed: Taylor model, Self-
consistent model and Differential method. In this paper first two will be applied
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for determination of the elastic constants for isotropic elastic matrix containing
elliptical voids.

2. The equivalent inclusion method

Consider the problem of the elliptic cylinder, (a3 — o) (Fig. 1.), embedded in
the elastic isotropic material with the same elastic parameters E (Young’s modulus)
and v (Poisson’s ratio).

Fig. 1. Elliptical void (inclusion) in the global and local
(primed) coordinate system

Let s;f; are "eigenstrains” given within the elliptical cylinder. The solution
for the stresses (”eigenstresses”) inside or outside of the cylinder are based on the
Eshelby’s celebrated papers 1957 [2], and 1959 [3]. ”Eigenstrain” is a generic name
given by Mura 1987 [9], to such nonelastic strains as thermal expansion, phase trans-
formation, initial strains, plastic strains and misfit strains. Eshelby in his, 1957 {2],
paper referred to "eigenstrains” as stress-free transformation strains. ” Eigenstress”
is self equilibrated internal stress, or engineers ha\’re used the term residual stress.
Eshelby proved taht the uniform eigenstrain” ¢]; within the elliptical inclusion,

]
*

cause the uniform ”eigenstresses” ¢}, in the same region (see also Mura, 1987 [9)):
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In the above expression a; = a and az = aa are half axes of the elliptical region,
while 1 and v are the shear modulus and Poisson’s ratio respectively. According to
the equivalent inclusion method, Mura 1987 [9], the total stress within the elliptical
region, under far field stresses o/;, and one that is caused by the ”eigenstrain” given
by expressions (2.1) should be zero everywhere in the elliptical region if the region
should represent the void:

Ol 40 =0, Ghy+03=0, dip+0oi,=0. (2.2)

For simplicity, from now on, the plane stress condition will be considered, that
is already taken into account in the expressxon (2.2). If the region 1S loa.ded with the
far field stresses o},, 05, and oj,, then 6,1 = 0, except 5“, €3, and 512 With this
considerations and with the restriction to the plane stress conditions (E/(1 — v?)
in expressions (2.1) should be replaced by E), substitution of eq. (2.1) into .8 2)
leads to the system of equations with respect to unknown ”eigenstrains” 511, E39
and 512. The solution of this system of equations is:

ot l-v A

€1 = P (1 +2a)0; — 03,],

wt 1—-v 2+C¥ ’ L

B33 = % & 79 = Th1, (2.3)
g 1=v(1+40a)

&g = 2% o 712

Once the s}'} are known, the increase of the strain energy of the body due to
presence of the elliptical void is obtained as:

1 y gl 1
AW = "Evo'ijsij = “5”“1“2‘7 €=J’ (2.4)
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where V = majas = maa? is the volume of the void under the plane stress condition
(a3 = 1.0). Substituting (2.3) into (2.4) it is obtained:

1ra02 ( @)

1
(14 20)(0h,)?2 = 204,04, + 21+ o)

AW =

(052)* + =——(012)?|. (2.5)

Differentiating expression (2.5) twice with respect to stresses yields to the
compliances:

‘. _OW 2.6
S‘IJ aa_: aa_;.) ( = )

where the Voigt notation, o} = o},, 04 = 0}, and g5 = ¢}, is used. Also in the
expression (2.6) (k) refers to a single elliptical void and (*) stands for the increase
of the governing value of the compliance due to presence of the void. In particular
expression (2.6) reads:

2
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Expressions (2.7) could be written in the condensed form:
’ . 2 +
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2(1 + a)? e
+ —(;‘iéﬁ,-&sj (Z,] = 1,2,6) (28)
In the case of the circle (a = 1) expression (2.7) becomes:
k) k) 371-(12 "EY* ﬂ'az k)" 8?7(12
51(1) =52(2) - "5 51(2) = TTE Ss(s) =5 (2.9)

On the other hand for o = 0, ellipse degenerates to crack, and from the expressions
(2.7) it follows:

TRV 27{(]2 ' k) _ a2 l(k)o _ .
85 " = % See ( —-E——, Si; 7 =0 (otherwise). (2.10)
The expression (2.10) are the same as those derived in the Sumarac and Krajcmm ic
1987 [11], and 1989 [12] by quite different approaches. Once the compliances S AL

!] !
in the local coordinate system, are determined, using the transformation rule, Horii

and Nemat-Nasser 1983 [6], the compliances in the global coordinate system are:

S(k) = S(k) Gmildnj, (211)
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where the transformation matrix g;; is given by:
cos’  sin’f  sin20
gij= | sin’0 cos’f —sin28|. {2.12)
- % sin 20 -;- sin20 cos26

Substituting (2.12) and (2.8) into (2.11) it follows:

2
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E
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Using (2.12) and (2.13) it is possible to calculate the particular values:
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In the case of circle (a = 1) expressions (2.14) become:
2 2 2
k) _ ory _ 3ma? gy Mt o _ B7a
Sii’ = Si 7 Sia T St = 5 (2.15)
On the other hand in the case of crack (a = 0), from (2.14) it follows:
2
S(k) 2; sin® 9, .S'(k) =10,
. . y (2.16)
S(k) Lo cos?f, S&° = 27;; ,

If the increase of the compliance due to presence of a single void (crack) is known,
then it is possible to find the compliance due to presence of many cracks.

3. Mean field theory (uniform distribution of voids)
In the case of many voids (which is going to be considered as the first example),

the total compliance would be, Horii and Nemat-Nasser 1983 [6], Kunin 1983 (8],
Sumarac and Krajcinovic 1987 [11]:
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where ()" refers to the increase of the value due to presence of voids, and Sy is
the compliance matrix of the undamaged (virgin) material, which is in the case of
the plane stress and isotropic matrix given by:

-1 v -
E F !
v
S,'j = —-E E 0 . (32)
K 0 2(1;— V)-‘

Assuming the uniform distribution of voids with respect to orientation (angle 8 has
the uniform distribution density function in the range 0 < # < m, and taking the
deterministic value (constant radius) a; and as, compliances 5 wxll be determined

as: N
Sy = "“/ SE a8 (3.3)
T Jo

In the above expression N is the number of voids per unit area. Substituting
expression (2.14) into (3.3) leads to:

~ ~ Nma? ~ Nwma’la 4 2N ma?
By = Saw = — az-i—a-}-l , Sip=————, Siec = l+a 3.4
11 22 7 ( ) 12 7 66 = 7 —= )%, (3.4)
Introducing:
w = Nma? (3.5)

as the damage parameter (the total area of the govering circle lacunity per unit
area of the body) expressions (3.4) become:
~ ~ ~ w ~ 2w
Sli=585n==(a*+a+1), S=-=a, S=-=<(1+a) 3.6
11 22 E( ), 12 7 56 = 7 ( ) (3.6)

3.1. Taylor model

According to Taylor, 1934 [14], idea about the plastic strain of polycristaline
materials, if the response of the body with many voids is determined without in-
teraction, i.e. if the representative void is embedded in the virgin (undamaged)
material than £ should be replaced by E in the expression (3.4). Then from the
expression (3.1) it follows:

1 ! 2 v vooow
o 1), -==-=-=a. 3.7
== + E(a +a+1) 5 7 g (3.7)
Finally, solving the above system of equations it is obtained:
=—im
E 1
= , 3.8
E l+w(e?+a+1) (3.8)
-—im 1 wa
L= e . (3.9)

v l+w(a?+a+1)
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Expressions (3.8) and (3.9) represent the overall Young’s modulus and Poisson’s
ratio, obtained from Taylor model, as the function of the damage measure w and
the ratio . This results are the same for a = 1 with those obtained in [10] and for
a = 0 with those obtained in [11].

3.2. Self-consistent model

According to the idea of self-consistency, introduced by Hill (1965) [5], Hashin
1983 [4], Bodiansky and O’Conell 1976 [1], the response of the body with many voids
can be represented as the response of the continuum with the elastic parameters
that still have to be determined. On the other hand the response of the void is
influenced by the responce of others through the decrease of elastic parameters, i.e.
the so called ” weak interaction” is then taken into account. Then instead of £ in
the expression (3.4), E should be introduced, and from (3.1) it follows:

L N r__EF_ &
== 5 + ..E(a + a + 1), == .Eaf. (3.10)
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E
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Fig. 2. Variation of the Young’s modulus with respect to damage
for the uniform distribution of voids
Solving equations (3.10) yields to:

-E';Jc 5

7 =l-w(a*+a+1), (3.11)
Esc 2 [#7]4 {

—-l-,-_l—w(a +O’+1)+—U" (312)
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Expressions (3.11) and (3.12) represent the overall elastic constants according to
the self-consistent approximation. They are the same as the results in [10], for
@ = 1, and [11] for @ = 0. In Fig. 2 the E/E versus w is plotted for both Taylor
and Self-consistent aproximations and for different values of a.

From Fig. 2. it can be seen that, with the increase of the damage measure,
the Young’s modulus obtained according to Taylor and the self-consistent model
are decreasing. Also from expressions (3.11) and (3.12) it can be seen that for the
uniform distributions of voids (no meter weather they are circles, ellipses or cracks)
the overall response of the body is isotropic. The statement is valid also for both,
Taylor and Self-consistent approximation. The total overall compliance for matrix
in the case of Self-consistent approximation for uniform distribution of elliptical
voids is:

- 1 wa 7
_— l-wA - v(l —wA) 0
Si _ | j_ e 1 0 3.13
ij o V(I—WA) l—wA ; ( ’ )
0 0 l+v—wrA +wa
! (1+2)(1 —wA) |

where is A = a® + a + 1. In the case of circle (for a = 1 and A = 3) matrix (3.13)

becomes:
- 1 w -
I R, . S
_— 1 — 3w v(1 - 3w) )
S w 1
e e 0 1
Si; : v(l —3w) 1 - 3w (3.14)
0 0 l+v—-3wr+w
5 (14+v)(1-3w)
Finally in the case of cracks from (3.13) for @« = 0 and A = 1 it is obtained:
[i 1 w -
— l-w —I-V(l—-w) 4
Sij W 1
-,S-E = = v(l - w) l-w . (k2
0 0 l4+v—wr
s 1+ v)(1-w)

All those matrices represent isotropic overall response. From diagrams in Fig. 2.,
however, it can be seen that the Young’s modulus determined by the self-consistent
model is lower than one determined with the Taylor method. The body behaves
stiffer according to Taylor than according to the self-consistent model. This is the
consequence of the main assumption that the Taylor model neglects interaction of
voids at all. Also both approximations give the same result for small concentration
of damage. From Fig. 2 it can be seen that it is for w < 0.1. In this region, the
results obtained by those two methods, are appropriate. For larger concentration,
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the stronger interaction has to be taken into account (see Sumarac, Krajcinovic
and Kaushik 1992 [13]). The result for Young’s modulus obtained from the self-
consistent method has upper value for w. In the case of cracks it is w, = 1.0. This
value is bellow the value obtained by percolation theory. On the other hand the
Taylor model doesn’t have the limitation.

4. Aligned elliptical voids parallel to the z; axis

As the second example consider the elliptical voids all parallel to one axis, let

say to the z; axis. Then:
=0 (4.1)

should be introduced into (2.14), from where it follows:

2 2
k)" maTo k)’ Ta‘o
W= r 2, S =~ (4.2)
. Ta? . 2ma’® ¥
s = — (2+a), s = 3 (1+a)”

Expressions (4.2) are increase of the governing compliance due to presence of one
void. For many voids (N per unit area), instead of integration (3.3) expressions
(4.2) should be multiplied by N, i.e.:

flz‘:)ra(l-i-Qa, §;2='“Li,\?",
E E
G =%2+a), S= 2(1+a) )
== a), = —=(1l+a)".
2= 7 6= %

where w is, as before, given by (3.5).
4.1. Taylor model

Substituting (4.3) into (3.1) and taking E = E and ¥ = v, according to the
Taylor model, it is obtained:

E, _ 1

E ~ 1+wa(l+2a)

L ( ) (4.4)
E 1

E ~ 14+w(2+a)

From expression (4.4) it can be seen that the body does not obey the isotropy any
more, i.e. it becomes orthotropic. This is so called void induced orthotropy. On
the other hand, in the case of circles (a = 1) from (4.4) it follows:

A R
E - E 1+t (4.5)
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and the body is again isotropic because of the circular shape of a single void. Finally
from (4.4) in the case of cracks (for a = 0) it is obtained:
—tm
£

E

E," 1
F 1+

=1, (4.6)

and the response is also orthotropic. It has to be noticed that in the case of the
parallel cracks to the z; axis, there is no change of modulus of elasticity E;, i.e.
the damage doesn’t have influence on this direction.

4.2. Self-consistent model

According to self consistent method, by substitution of (4.3) into (3.1), taking
into account that E = E and ¥ = ¥ it follows:

T=3C

E,

=1—-wa(l + 2a),
= (4.7)
EEZ =1-w(2+a).

Expressions (4.7) are for aligned elliptical voids. In the case of circles (for a = 1)
(4.7) leads to:

By Hg
el 1—3w. (4.8)
Finally if ellipses degenerate to the cracks (for a = 0), from (4.7) it is obtained:
By By
T— 1, E = 1 =2, (49)

For the Self-consistent approximation the response, as it was in the Taylor model,
in the case of aligned defects is orthotropic for elliptical voids and cracks while it
1s 1sotropic in the case of circles.

5. Conclusion

In the present study more general approach, from already existing in the lit-
erature, for the determination of the overall elastic parameters for the elastic body
weakned by the voids is presented. Starting from the elliptical void the solution
for the circles and cracks (that is already obtained in the literature) is recovered.
The two aproaches within the mean field theory are considered, the Taylor and Self-
consistent model. It is shown that the Taylor model (neglecting interaction between
voids at all) gives the more stiffer response, then the Self-consistent method, that
introduces the so called weak interaction. It is important to notice, that both ap-
proximations, are good in the case of the dilute concentration of voids. For larger
concentration of defects, the stronger interaction should be taken into account.
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ELASTICNE KONSTANTE TELA OSLABLJENOG SUPLJINAMA
ELIPTICNOG OBLIKA

U ovom radu daje se opstiji pristup odredjivanju elasticnih parametara tela
oslabljenog supljinama elipti¢nog oblika, u odnosu na postojece u literaturi. Po-
kazano je da se postojedi rezultati za kruzne Supljine i prsline mogu dobiti kao
specijalni slucajevi ovde datog resenja. Primenjena su dva postupka: Tejlorov i
samo-konsistentni model. Po Tejlorovom modelu dobija se kruci materijal (jer je po
ovom metodu zanemarena interakcija supljina), za razliku od samo-konsistentnog
modela kod koga se uzima u obzir tzv. "slaba interakcija”. Cbe metode mogu se
uspesno primeniti kod male koncentracije Supljina, (za malo ostecenje materijala),
dok se kod veéih koncentracija oStecenja mora uzeti strozija interakcija defekata.
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YIPYTUE NAPAMETPU TEJIA OCJIABJIEHHOI'O
QJIMIITUYECKUMU OTBEPCTUAMH

B nHacToamen paSore usyyaerca Gosee oOMMA METOA MOMYIEHUA YIPYTHUX Napa-
METPOB IJIA MATePUAJIOB ¢ MAaJbIMU JJIUTITUYECKUMU OTBepcTUAMM. Ha npumepax
KpYyI'oBOro OTBEPCTHUA M TPEMMHH TMOKa3aHHO 9TO M3 BHBeJEHOr'o GoJsee o0mero peil-
CHHA TIOJYHAOTCA 3TH CrielUalibHHeE ciayyau. B paGore npuMMeHAIOTCA OBa METOMA:
Teitnopos u camokoHcHCTeHTHHA. B repBoM MHTEpaKUMA MeXLY OTBEPCTUAMM Ipe-
HeDperaercs, roka &e B BTOPOM WCIIOJb30BAHHA TaK HaduBaemasd “cilaGa MHTepak-

»

uua”’. B 1.')8.60TC MOKa3aHHO 4To ofa MeToga AJId Maslof KOHLLCHTpPAU WK OTBEPCTHUH
AT YyI0BNETBOPAKMMKE PE3yJIbTATH.
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