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1. Introduction

The usual parametric formulation of classical mechanics considers the time ¢ as
an additional generalized coordinate, and instead of time introduces a new indepen-
dent variable r = 7(¢). From physical point of view this formalism was introduced
and developed by P. Dirac [1], starting from parametric form of Hamilton’s varia-
tional principle. Later, several authors used it to formulate either a dynamic theory
in the space of events [2], or so called homogeneous formalism of mechanics [3]. In
this way the appropriate Lagrangian and Hamiltonian (canonical) formalism were
obtained and this was of particular interest for covariant formulation of mechanics
in the theory of relativity.

However, one other approach to the parametric formulation of mechanics is
possible as well, which is formally opposite to Dirac’s one. Such type of an ex-
gested a modification of classical mechanics of rheonomic systems. In his approach
the additional generalized coordinate is suitably chosen function of time go = 7(t),
retaining the time as independent variable, and the constraints as well as the La-
grangian are expressed in therms of this function. On this basis the extended
system of Lagrange’s equations and modified Hamilton’s principle are formulated,
where these equations here are mutually independent. Furthermore, a law of energy
1s obtained in integral form £ = T + U 4+ P = const, which differs from Jacobi-
Painlevé integral and contains an additional term P, the same originating from
the nonstationarity of constraints. Finally, the coresponding system of Hamilton’s
equations is also formulated, although without any proof, where the Hamiltonian
represents mentioned extended energy of system.

In this paper it is given one parametric formulation of the mechanics of systems
of this type. It is based on the family of varied paths and on the transition to a
new parameter depending on the selected path. It is shown that so formulated
theory includes the results obtained from modified analytical formalism of Vuji¢ié
and gives a better understanding and the interdependence of the results.
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2. The varied paths and introduction of a new parameter

Consider a mechanical system of N particles, under the influence of some arbi-
trary forces, and let the motion of system be limited by k nonstationary holonomic
constraints

(T, )=0 (u=1,2,....k). (2.1)

The position of this system can be described by a set of generalized coordinates
(91,92,--.,9n), where n = 3N — k, and the system itself by a Lagrangian

L=Lig, 1) (F=12,...98)% (2.2)

In the case of these rheonomic systems the time ¢ has double role. On one hand,
this is an independent variable, just as in mechanics in general, and on the other it
represents one kind of parameter, whose change causes the change in the form of
constraints and of Lagrangian.

v ’{s = L:T;(f) -ﬁu(\jﬁ&l-ﬁ:n&kq

™
%
%

M (-ﬁ+&?\, T+dT)

Imagine a family of neighbouring possible varied paths of particles of the sys-
temn, drawn from their initial positions (see the graph)

To=1,(,2) (v=12,...,N). (2.3)

Let M,, denotes the position of v-th particle at instant ¢, and M, and M, its
position at instant t+ At on the actual and a varied path respectively. Then, instead
of time ¢ considered as a parameter, introduce a new parameter 7 in dependence
on chosen path of the system

T =1ilA) = = i) (2.4)

and keep the time ¢ as independent variable. This implies that to each varied path,
which corresponds to the value A¢ corresponds some function of time

varted path(A\¢) — 7= 7(t, A¢) = 1e(t) (2.5)
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and the function 7 = 7o(t) for the actual path of the system is of particular interest.
The form of this function in general is arbitrary, but it can be suggested by the
form of constraints (2.1), for example if the time ¢ enters in these equations through
certain function 7(t), we can take it for To(t).

Owing to different functions 7(t) and 7¢(t), on the actual and varied path to
the same instant ¢ + d¢ correspond different values of this parameter. Therefore,
the virtual displacement § 7 ,, as a difference of two possible displacements for same
interval dt, here is given by

—_— e 6“,, — =r
67',, dzf arA (5A = T,,(My)r-{-d'f - ru(My)T-i-dT- (26)

In analogous way, if a family of possible varied paths is expressed in generalized
coordinates

qi = q,-(t,)\), (1 = 1,2, wii .,n) (27)

the variation of the generalized coordinate can be represented by

de 6 i -
6q‘- — =f a—qA(SA = qx'(P)r-i-d"'r - qi(P)T+d"’ (28)

where P and P are corresponding points on the actual and varied path in the
configuration space.

The transition from time ¢ to previously introduced parameter 7 in relations
where the former is considered as a parameter can be effectuated in the following
way. If the time ¢ in equations (2.1) is substituted by appropriate expression t =
t(r,A) from (2.4), we shall obtain the corresponding relations in this formalism,
which are valid in general. However, for each particular value A = A¢ they are valid
only along the corresponding path

fulFu iz ) = BT A) = 0,} )

for A= X f;(f)(?,,,‘r) =i

Furthermore, if 7 is taken as additional generalized coordinate denoted by g5 = 7,
then the position vector along particular path can be expressed as

T, =70 tm )] = o) (@=0,1,...,n). (2.10)

In similar manner, the Lagrangian (2.2) for this path transforms into a function of
the form

L= L[q;',(ji,t(f, AE)] = L*(E)(Qm'?a) (211)

Here the dependence of all these functions on gy depends on chosen varied path, in
contrast to the usual forrulation. In further work we shall omit the asterisks, as-
suming that these quantities are expressed in appropriate variables. So introduced
function gqo = 7(t), which represents the relation (2.4) for the actual path of the
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system, corresponds to additional generalized coordinate in modified analytical for-
malism of V. Vujici¢ [5-9]. In this way a definite sense of this function is obtained,
from viewpoint of this parametric formulation of mechanics.

3. Nonstationary constraints and ideal reaction forces

Let us consider the actual and one nearby varied path, whose parameters are
Ao and Ag + 8 respectively, and denote the equations of the constraints along each
of these paths by

FulT o t(r, 20)] = FO(F, 7 h0) =0, } (3.1)

Fulr o t(m Ao + 6] = fIO(F,, 7, A +61) = 0.

If we differentiate the first of these equations along the actual path and the second
one along the varied path, one obtains

(9) _ ) (0) (1) _ (1)
0t dr, + Ofu_ dr = 0, Bf_": -d’r,,.-{»-a,#
ary 37’ aru @T

d'r =0, (3.2)

where the summing is understood over the repeated indices.

The function fﬁl) can be approximated by its Taylor’s polynomial, neglecting
the terms of higher order

_ . df(o)
fil)(?“y,T,/\o-i-(S)\)sz‘u)(ru,f,/\o)-i-éA( EY\ ) . (33)
0

By inserting this expression into (3.2Db), one yields

ofy 9 (3fL ~ [0} & (af“”) oo
[a?,,+a?-',, £ SA| -d'r, + a7 +37‘ £ dA| -dT =0,

which can be written as

(0) (0) (0)
Ofu d'T, + S 6f d'r + d’(af )6,\ =il (3.4)
i oA

If we subtract the equation (3.2a) from (3.4), omiting the index 0, we obtain

af.r—l 7= af# 1(%) _
a‘r‘,,'ér Stbr+d | SL)8A =0, (3.5)

with the usual definitions of 67, and &7, or in the first approximation

0 fu 0 fu
CURY Ry PRy 3.6
=3 B (3.6)
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These are the conditions which the virtual displacements here must satisfy.
In order to introduce the reaction forces in consideration, let us separate them
into ideal and nonideal ones

E,,:Ef,d+?3.ze"d:).p—a-&+§-‘ (o= 12, 5o uqd¥ ) (3.7)

-— v

Ty

where the later are denoted by asterisk. The total work of Ef,d on all the displace-
ments &7 ,, according to (3.6) has the form

— 0f; .= af
id 67, = A, —2 87, = =A==,
R =dr pa_r,y r $ 5, T
or concisely .
Ri4.67, = Robr, Ro= -A#Fj;‘i. (3.8)

Consequently, the total work of ideal reaction forces on arbitrary virtual displace-
ments in the case of the nonstationary constraints in this formalism is different
from zero, what represents a characteristic difference in comparison with the usual
formulation. N

The meaning of so introduced quantity Ro can be perceived from (3.6)

a7, or +5 =0 = f “or T Mgy Tar
which, by the definition of R % gives
By= Rid.ITv s g (3.9
§= v B0 = [Rp. 9)

Therefore, Ro is equal to the generalized force which corresponds to the ideal reac-

(4,7].
4. D’ Alembert-Lagrange principle

Let us start from the fundamental equation of dynamics applied to each particle
of the system

ma,= F,+ R4+ R, (v=1,2,...,N). (4.1)

If we multiply it with 67, and sum it over v, one obtains

-

(}—u"f'ﬁ.:—mvzv)'&?u = —Eid‘éru, (4.2)
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and here we can substitute the work of ideal reaction forces by the expression (3.8)

—

(Fu+ R —m,3,) 67, = ~Robr. (4.3)

This is the modified d’Alembert-Lagrange principle in this 7-formulation of the
mechanics. The difference between it and the usual formulation is in the term on
the right-hand side, which explicitly expresses the influence of the nonstationarity
of constraints.

We can present this principle also in the generalized coordinates. By the
differentiation of the relation (2.10) along the actual and varied path and by their
subtraction, one yields

Lo Aty

0y -
09a

8Ga, 0qq = d'qq — dqa, (4.4)

so that d’ Alembert-Lagrange principle (4.3) passes into

"_"""6(10 = "-R(}&qO_ (45)

The second term can be transformed in the usual way, with the difference that the
summing must be here done from (Q to n

- a?,,é _[df = ar, T (T, 5
my,a, aqo Jao = dt m, vy 5% v Uy dt aqa Qo

_ (i?l _ 5_7’)5
= dt aqa aqa th

where T 1s the kinetic energy of the system. Then, this principle gets the form

d oT 0T
(Qa o+ R; = EE%‘ + W’) 5qa = '—RQ(SQO (4.6)

with the corresponding generalized forces

— A
— Jr, g1y

= . ) R; = —é‘: " .
QO‘ F 14 aqa aqa

(4.7)

Starting from this form of d’ Alembert-Lagrange principle one can obtain the
differential equations of motion in generalized coordinates. To this aim, let us write

it concisely in the form .

Qa— 773+ T) 69a = 0, (4.8)
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where R* ¢ .
S DA (49)
Qo+ Ry + Ry fora=0.
Because of the independence of variations 6g, each expression in parenthesis must
be equal to zero, or explicitly

ia—T—’Q’z:Ql'f'R: (i=152:°-°!n)a

dt d¢; Jq; (4.10)
d T 0T

s s S, o+ Ro.

dt aq_o aqo QO +R0 + 0

This extended system of Lagrange’s equations and the modified d’ Alembert-
form and without connecting them with the work of ideal reaction forces. The
quantity Ry was named generalized reaction force of rheonomic constraints and the
easist way to find it is following. If one solves the first n Lagrange’s equations (4.10),
we get the generalized coordinates as functions of time ¢; = ¢;(t) and then insert
themn into the last Lagrange’s equation. In this manner one finds this quantity in
the form Ro(qo, go, §o) and after putting qo = 7(t) it becomes a function only of qo,

i.e. Ro = RE(QQ).
5. Central Lagrange’s equation

This d’ Alembert-Lagrange principle can be transformed so to make it possible
to obtain the corresponding general integral principles as well as the conservation
laws of mechanics. To this aim transforme the third term of (4.3), applying the
commutativity of operations d/dt and é

— — d — —
m‘,a,-éry:ﬁ(myvy-ér.,)-—éT. (5.1)

Then the d’ Alembert-Lagrange principle (4.3), by emphasing the term containing
time derivative, obtains the form

— — —- d - .
0T+ (F,+ R})-ér, + RodT = E-t-(m,,v,,-ér,,) (5.2)
and this is the corresponding central Lagrange’s equation.
To express this equation in the generalized coordinates, let us introduce them
by (4.4) and present the expression m, v, -6, in these coordinates

Mgty - 08 5 25 Ty Ty » 5‘-1;-6% = 3—%6(]&. (5.3)

Besides, we can separate the generalized forces into the potential and nonpotential
ones 8V  d oV

Qa=Q + Qo = —5— 4+ ———+ Q% (5.4)

04e  dt 0qq
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where the later are denoted by asterisk. Then the relation (5.2) transforms into

oV aVv oV
0T = =l + — 8¢o | = =——0da + R%)84a
9ga dt(a fl) 57 0de + (Lo + Ra)be
T
g = | B
Kb = (570
or, by grouping the similar terms
& Gl
6L+ (Q% + R3)8qa + Robgo = -—.—"5%) , (5.5)
dt \ 0qq
where
L(Qon (L:r) =T-V (56)

is the Lagrangian of the system.
Here we can still pass from the synchronic to the total variations of the gener-
alized coordinates and the Lagrangian

Aga = 0gq + GaAt, AL =68L + LAL. (5.7)

{ we substitute ¢, and 6L by corresponding expressions from here, after identical
transformations the previous relation (5.6) can be written in the form

d
AL+Ld(

-+ RQ(AQU - qOAt) =

At) +(Qq + R')féqa alt)

daL
dt 0qa

(5.8)
—(Aqa — 7. AL) + LAt:|.

This relation represents the most general form of central Lagrange’s equation in
generalized coordinates.

6. Transition to the integral principles

In order to enable the transition to the integral principles, let us start from
the central Lagrange’s equation (5.2). If we integrate its both sides with respect to
time over an interval (to,¢;), one yields

ty
to’

ty — CEER e S —
f 6T+ (F,+ R,)-6r,+ Rodr]dt = |m,,vy-6r,,‘

to

From here the corresponding Hamilton’s integral principle follows immediately: if
all 67, =0 fort =ty and t = ¢4, then

i1 i — -
f (6T +(F,+ R2) 67, + Rebr]dt = 0 (6.1)

to



A parametric formulation of the mechanics of rheonomic systems 111

along the actual path of the system. Notice that this principle, like d’ Alembert-
Lagrange one, has an additional term, which arises from the nonstationarity of
constraints. .

Here we can also separate the forces F , into the potential and nonpotential
ones, as in (5.4)

oV d oV —
r, dtov,

= —’ot -—.neot_
Fo,= FI¥ 4 F P = -

Then, the elementary work of these potential forces on the virtual displacements
can be expressed as

o - oV = d oV - BV de
Fgm'éru:___."‘sru'{""'(T‘érv) = el T or,
Ory dt\ gv, ov, dt( )
or, since the operations d/dt and ¢ are comutative
s = - — . . .
FE* by oV + dt(a'{;, 6ry) (6.3)

By inserting this in (6.1), bearting in mind that the second term of (6.2) by inte-
gration disappears, Hamilton’s integral principle (6.1) passes into

ty —_ —
/ 6L+ (F "+ R2)-67, + Robr]dt = 0. (6.4)
tg

To express this principle in the generalized coordinates, we must start from
central Lagrange’s equation in general form (5.8) and integrate it with respect to
time. Since Aqq = 0 and At = 0 for ¢t =ty and ¢t = ¢;, the integrated part will be
equal to zero and in this way one obtains

ty d )
/ [AL + L2 (A8 +(Q + R2)(Ada — dadMl) + Ro(Ago - q'oAt)] dt = 0. (6.5)
to

This is the general Hamilton’s principle in generalized coordinates in this r-for-
mulation of mechanics, which in the case of synchronic variations gets the simpler
form

t
[ L+ @i+ Ru)b0a + Robasl i =0, (6.6)
to
but always with the characteristic term Rgdqo.
7. Hamilton’s variational principle

This Hamilton’s integral principle in general does not have the variational
character, since the expression on the left-hand site cannot always be presented in
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the form of the variation of some integral. However, the same can happen if certain
conditions are satisfied, and then this principle becomes a variational one, which
can be realized in the following manner.

When we find the quantity Ry from the last Lagrange’s equation (4.10) in the
form Rg(qo, do, §o), et us suppose that Rydgq is a total differential of some function
and in this case introduce its negative value

.\ def dP
P(q0, ¢o) = “/RDdQD = Ry=—5—. (7.1)

dgo
Putting qo = 7(¢) and passing from ¢ to g along the actual path, one obtains this
quantity as a function of gg only P = P*(qq), and Ryé7 can be then expressed in

terms of the same Ryér = —d’'P 4+ dP = —6 P. Then Hamulton’s integral principle
(6.4) transforms into

t e s
/ L+ (F+ R:)-é?,]dt:(), (7:2)
to
where
L(q0,q0)=L-P=T-V -P (7.3)

has the role of the Lagrangian in this formulation of mechanics. From (7.2) one
obtains immediately the variational Hamilton’s principle: if all 67, = 0 for t = ¢

and ¢ = ¢;, and if the condition (—E: + _E:) .61, = 0 is satisfied, then
ty [
5W:/ SLdt =0, W:/ L dt (7.4)
ty to

along the actual path. We should point out that the condition under which Hamil-
ton’s integral principle transforms into the corresponding variational one does not
assume that all forces are potential, these could be nonpotential active and nonideal
reaction forces as well, but they all must to be gyroscopic.

In order to pass to the generalized coordinates, we start from (6.5) and trans-
form the last term, introducing the quantity (7.1)

dP
Ro(Aqo — qoAt) = —=AP + "('E"At.

In this manner, the Hamilton’s integral principle gets the form

& d :
/ [AL + LE(N) +(Q% + R (Aga — gaAt) — AP
to

+ %(pm) = P%(At)} dt =0, (7.5)
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which by simple manipulation, grouping the similar terms and keeping in mind that
the term d/dt(PAt) vanishes by integration, transforms into

f M ALAY + (@ + B2 (Ade — duAD] dt = 0. (7.6)

From this relation, if the condition (Q% + R.)(Aga — ¢oAt) = 0 is satisfied, we
obtain the Hamilton’s variational principle in the form

AW = /t' A(Ldt) = 0. (7.7)

The corresponding differential equations of motion in generalized coordinates
can be obtained in the following manner. If we transform the total variation of
action in the usual way ([3], p.13), except to do summing from 0 to n, one yields

1 81 ‘
AW = (-@5 ~ ifﬁ)(aqa — jaAt) dt

8qa  di 94a
:;c q " (iaz 4 {154
+ | —Aqq — —_—.a—ﬁ)ﬂi ;
Y l(aqa" N

Because of the boundary conditions the last two terms are equal to zero and since
the variations Aq, and At are independent, from Hamilton’s variational principle
(7.4) follows

——=-—=0 (a=0,1,...,n). (7.9)

These are the corresponding Lagrange’s equations, which by passing to the initial
Lagrangian and utilizing (7.1), obtain the form

di’t.g_;‘___ % =0 (i=1,2,...,n),
Qob o (7.10)
dt 0q; Jqo .

This Hamilton’s variational principle, as well as the corresponding Lagrange’s
equations were first formulated by V. Vujici¢ [5-6,8-9] and the quantity P was
named rheonomic potential of the systern. In his approach the previous results were
obtained tn another way, either from the invariance of general principles or in an
insufficiently consistent manner, but without connecting this variational principle
with other concepts, especially with d’.Alembert-Lagrange principle via general
Hamilton’s integral principle.
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8. Formulation of the Hamiltonian formalism

On the basis of so developed r-formulation of the mechanics one can formulate
the appropriate Hamiltonian canonical formalism in the case when the general
Hamilton’s principle has the form of a variational one. To this aim, let us define
the generalized momenta in the usual way

def ac
= = (a=0,1,...,n 8.1
pa aqa ( H ) ( )
corresponding to all n+ 1 generalized coordinates q,. For the usual potential forces
this is equivalent to their purely mechanical definition, according to which those

are the sums of the covariant components of momentum vector p, = m, v, (4,8]

= g%,
Pa = DPv aqa

(& = 0, 1pu vt ) (8.2)

In this formulation the velocity of a particle is of the form v, = (a?u/aqa)qa, SO
that the kinetic energy of the system is a homogeneous quadratic function of the
generalized velocities

. :6?” or,
= —-da ’ a =n - = p
‘ C'ﬁQCIQﬂ af v aqa dq{j

> (8.3)

On the other hand, the generalized potential of the system in clasical mechanics
must to be linear with respect to g,

V=baga+U(qe) =V1 + U, (8.4)

what implies that the corresponding Lagrangian (7.3) is

. Lo, . .
L(ges§a) =L —-P= 50apdads = baga— U — P (8.5)

and hence the generalized moments (8.1) are
Pa :aag(jg—ba (a:O,l,...,n). (8.6)

In order to investigate whether this system of equations can be always solved
with respect to the generalized velocities ¢g, let us suppose that it is not true. Then
the corresponding Jacobian would be equal to zero

_ |9pa

A= )
dqp

= Iaaﬂl =0,

and this is equivalent to assuming that system of homogeneous equations

: oT
aaﬁq;j=E=0 (a:O,l,...,n) (8.7)
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has nontrivial solutions ¢g # 0. However, since the kinetic energy is a homogeneous
function of ¢a, according to Euler’s theorem and (8.7)

oT
—g., = 2T =
94a 2 !

and this is possible only if all the generalized velocities gs = 0. This contradicts
the previous conclusion that ¢s # 0 and therefore

8L
04404

N =

\=|aaa|¢rx (8.8)

what proves that the system of equations (8.6) can be always solved with respect
to all the gg.

This points out a characteristic difference between this and the usual para-
metric formulation, called the homogeneous formalism [1], where the time is an
additional generalized coordinate and a new independent variable 7 = 7(t) is intro-
duced instead of time. In this case the corresponding Jacobian is equal to zero, and
therefore the mechanical system formulated in such a way is a degenerate system
in the sense of Dirac [10]. Because of that, the corresponding Lagrange’s equations
are mutually dependent, and there exists an additional relation between canonical
variables.

The transition from the Lagrangian to the Hamiltonian formalism can be ef-
fectuated in analogous manner as in the habitual formulation, except that the
summing is always from 0 to n. Actually, if we start from the variation of the
Lagrangian o o

5L = 5800+ =i
according to the definition of the generalized momenta (8.1) and to the Lagrange’s
equations (7.9), this relation can be written in the form

6(P0q"or - 'C) = _paéqa -+ ‘j’a‘spa- (89)

This shows that the expression on the left-hand side, which represents the corre-
sponding Hamiltonian in this case, must to be considered as a function of variables
o and po. Owing to the property (8.8) the generalized velocities can be always pre-
sented as functions of generalized momenta, and the passage from variables (¢q, ga)

to (¢u, P ) in the cited expression here is always possible. From the above it follows

immediately

; oH . OH
p_—aqa, qa_apa (a_O,l,...,n) (810)

where

H(ga,Pa) = Pada — L (8.11)

and these are the corresponding Hamilton’s canonical equations.



116 Musicki D.

The same result can be reached if we start from the variation of the action,
passing from £ to H in the usual way

t ty
W = 6] (Pafa —H)dt = / (Pabqa + Jabpa — 6H) dt
to to

and transforming the first integral by the integration by parts. In this manner, by
utilizing the boundary conditions, the variation of the action passes into

f OH oH
) = sl ) — ] o — . :
o v[o [ (pa * BQQ-)éqa T ((Ia apa)épa:l il (8 12)

From this relation and Hamilton’s variational principle the Hamilton’s equations
(8.10) follow directly, due to independence of the variations 6q, and because of
da = OH/Opq arising from (8.11).

These canonical equations were formulated also by V. Vujici¢ [5,8-9], though
without any proof for them. Also, in these papers he gave the physical meaning
to so introduced Hamiltonian as the complete mechanical energy of the potential
systems, but with the inversion of its definition and quoted property. Namely, by
(8.3), (8.4) and Euler’s theorem

L ; or ovi .
0= — (o — —qa = 2T -V,
8ia """ B4a'"  Bda ‘

and hence the Hamiltonian, according to (7.3), obtains the form
H=T+U+P=E"" (8.13)

From there one can deduce that H is the complete mechanical energy of the system,
extended by the rheonomic potential P. This proof is certain generalization of the
Vujicié’s one to the forces with generalized potential, from where follows that the
same conclusion remains valid even for the most general case.
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UNE FORMULATION PARAMETRIQUE
DE LA MECHANIQUE DES SYSTEMES RHEONOMES

Clet article contient une formulation paramétrique de la méchanique des syste-
ines rhéonomes. Son but est de comprendre et exprimer explicitement I’ influence
du nonstationairité des liaisosns sur le mouvement du systeme. C’est basé sur la
famille des possibles trajectoires variées, tirées a partir de leur initiale position et
sur la transition a un nouvel parametre, qui dépend de la trajectoire choisie.

En partant de ’équation fundamentale de la dynamique, on a montré com-
ment de cette facon on peut obtenir le principe d” Alembert-Lagrange correspondant
et passer de celui-ci au principe général d’Hamilton, qui devient variationel sous
certaines conditions. Sur cette base on a montré comment on peut formuler le
formalisme d’ Hamilton convenable, avec une hamiltonienne étendue, ce qui est ici
toujours possible.

Les résultats obtenus sont dans 1’accordance avec le formalisme analitique
modifié par V. Vujici¢ (1980), dans lequel une fonction de temps est choisie comme
une coordonée généralisée additionnelle, et un potentiel appellé rhéonomique est
introduit aux relations d’énergie.

JEDNA PARAMETARSKA FORMULACIJA
MEHANIKE REONOMNIH SISTEMA

Ovaj rad sadrZi jednu parametarsku formulaciju mehanike reonomnih sistema.
Njegov cilj je da se obuhvati i eksplicitno izrazi uticaj nestacionarnosti veza na kre-
tanje sistema. To je zasnovano na familiji moguénih variranth putanja, povudenih
iz njihovog pocetnog poloZaja i na prelazu na jedan novi parametar, koji zavisi od
izabrane putanje.

Polazeéi od osnovne jednacine dinamike, pokazano je kako se na ovaj nacin
moze dobiti odgovarajuéi d’ Alambert-Lagrange-ev princip i potom preci sa ovoga
na opiti Hamilton-ov princip, koji pod izvesnim uslovima postaje varijacioni. Na
toj osnovi pokazano je kako se moze formulisati svojstven Hamilton-ov formalizam
sa prosirenim Hamiltonijanom, sto je ovde uvek moguce.

Dobijeni rezultati su u saglasnosti sa modifikovanim analitickim formalizmom
koji je dao V. Vujiéi
izabrana izvesna funkcija vremena, i takozvani reonomni potencijal je uveden u
energijske odnose.
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