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SOME ESTIMATIONS OF THE NOLINEAR OSCILLATOR AMPLITUDE
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Introduction

In engineering practice an important role is played by the equations of the
form:
y+g(Wy+ fly,)y=0
which represent mathematical models of the elastic systems motion with one degree
of freedom or discretization of the dynamic model of an elastic body in the basic
form of the dynamic equilibrium. Concerning these equations the researcher’s
interest is concentrated on exploring the bifurcational behaviour of the solutions
for the sake of exploring possible stable and unstable elastic equilibrium forms of
the system and their possible stochasticity under deterministic conditions; it is
also concentrated upon behaviours of certain solutions at the emergence of random
influences and parameters, that is, of random forces.

Many authors, for instance, Ariartanam, Wei Chan Xie, [1], [2], and others,
have studied various examples in Mechanics using the mathematical models as
special cases of the previously given equation. For example, they have studied the
problems of the elastic systems dynamic stability, of elastic form of beams, plates
and shells under the action of the random axial stresses, that is, compressive loads
in the middle surface of plates and shells or random excitations of elastic beam
ends or plate contours whose behaviour can be described by the previously-given
equation by the discretization of the mathematical model.

Having in view the previously mentioned examples which are important for
the exploration of the elastic systems stability the aim of this paper is to enrich
the known research methods by another one based on the mathematical theory
of the stochastic differential equations. The method itself will be illustrated on
the example of the nonlinear oscillator subjected to the random excitation of the
Gaussian white noise type.

This paper started from the Monograph [7], and the information from reference

[14] in which the influence of some coefficients on the mean square value of the non-
linear oscillator amplitude is considered when subjected to the random excitation of
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the type of the Gaussian white noise, which it is mathematically described as the
Gaussian stationary wideband random process of small intensity and correlation
time with mathematical expectation equal to zero.

In order to carry out a desired analysis we shall describe in short some results
of the quoted references.

Let (2, F,P) be a fixed complete probability space on which the Gaussian

random process f(t,w) is defined, whose correlation function and spectral density
function are, respectively:

K(r) S E{f(t,s), f(t+ 7,0)} = o2(r)
+00
S(w) def K(7)coswr dr.

Note that all the random processes and random variables will be considered
on the given probability space.

The nonlinear oscillator motion is mathematically described as a stochastic
differential equation:

I+ (a+ By )y + [wi+ 7y + f(t,w)]y=0 (1)

in which a, 3, v are positive constants, small comparing to one, of the same intensity
order as the spectral density of the random process f(t,w), and wq is an natural
frequency of the undisturbed (unperturbed) system oscillation.

By introducing new variables y; = y, y» = ¥, the differential equation (1) 1s
transformed into the system of the random differential equations:

o _

dt —7°

dys

—p = —ov2 = Byiva — wiy — 14} — wmf(tw).

By substituting the variables y; (¢) and y,(¢) and by their representation in the
standard form:

yi1(t) = a(t) cos O(t)

ya(t) = —a(t) wosin B(¢) o(t) = wot + 0(2)

in which a(t) is the solution amplitude for elongation, whereas 0(t) is a phase and
®(t) is a phase angle, the previous system is transformed into:

dc;it) = —(a + Ba® cos? ®)asin® ¢ + Cl cos® @sin @ + 2 sin® cos D f(t)
B wo
1
d{}(t) —(a + Ba’ cos <I>)asm<b cosd + -Z-a cos® @ + — cos <I>f( ).
dt wg o

Considering the assumptions about the parameters a, 3, of the dynamic sys-
tem and characteristics of the Gaussian process f(t), the Khasminsky averaging
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method can be applied to the last system (see [12]), the method which is based
upon the idea of the Krilov-Bogoliubov-Mitropolsky [4], [6], [16] averaging method.
Without going into details, as a result of the application of this method, random
differential equations of the 1té (later marked as SDE) with respect to the averaged
amplitude @(¢) and the averaged phase 0(t) in “the first approximation” are given.
SDE will be of interest to us with respect to the averaged amplitude:

ARty = [T% 5(3%@ a(t) — % (a+ %a%t))a(r)] dt + 13&?) dW(t), t>0 (2)

@(0) = 5 with the probability 1, on which W = [(W;, Fy),t 2 0] is the standard
Wiener process defined on the given probability space (Q, F,P) adapted to a filtra-
tion satisfying the usual conditions. The solution of this SDE, if it exists, 1s almost
surely a continuous homogeneous Markovian process measurable with respect to

(Fi,t > 0) (compatible in the sense that for each t a random occurrence w; a(s,w),
s<teF).

Since the SDE (2) cannot be effectively solved, (see 7], [14], [1]) the usual
procedure for determining the stationary probability density p(a) 1s used from the
corresponding Kolmogorov-Fokker-Planck equation for a conditional probability

density, wherefrorn mean square value of the stationary averaged amplitude is
obtained:

S(2wo) — 4wla

+ 00
Ea’ = / a’p(a)da =
0 ( Bug

Main results

The idea of this paper is to estimate the moment of the second order of
the averaged amplitude by means of solving a series of linear random differential
equations of Tto type.

For the sake of simpler writing, we are introducing the following notations:

3 S(2wo) o _ B _ S(2wo) _
6 w2 2 g = o sz - C
Therefore, SDE (2) becomes:
da(t) = [Aa(t) — Ba’(t)] dt + ca(t)dw(t), t>0 (3)

@(0) = n with probability 1.
Obviously, one solution is @(t) = 0, ¥t > 0, with probability 1. Since the mean

square value of the averaged amplitude is to be estimated, that is Ea?(t), we are

introducing the substitution:
9

Y(1) =a"(t) Vi>0 with probability 1.

Therefore,
¥(t) >0 Vi >0 with probabihty 1.
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By applying the It6 formula for stochastic differentiation of the complex func-
tion F(x) = 22 (see, for instance, Gihinan [5]), the SDE with respect to an unknown
random process Y(t) [3] is obtained:

dY(t) = [(2A 4+ C*)Y(t) — BY*(t)] dt + 2CY (1) dW (2), t>0 (4)
Y(0) = »° with probability 1.

The solution of this SDE is also a Markovian homogeneous process compatible
with respected to the same family of the o-algebras (F,, ¢ 20

Since the SDE (4) cannot be effectively solved, we shall compare its solution
with the one of sonie solvable 1té SDE, for instance, of the lincar Ito SDE. In this
sense we shall present one comparison theorem of solutions of two Ité SDE.

COMPARISON THEOREM. If the coefficients of at least one 116 SDE
dXi(t) = fr(t, X, (t)) dt + g(t, X:()) dW (1), t>0
XaA0) =m with probability 1,1 = 1,2,

satisfy the uniform Lipschitz condition and the condition of the restriction of growth
wilh respect to the sccond argument in its own space of definition [0,a0) xR, and if

fult, 2) < f:(0, z) V(t,z) € [0,0) x R,

then
Xi(t) < Xa(t) with probability 1.

Since in the equation (4) the drift coefficient
fi(z) = (24 + C*)z — Bz?®

satisfies the Lipschitz condition and the
condition of the restriction of growth

only for a limited z, we shall perform
section of the random process Y(t) at
the distance n, n € N, from the axis
t, namely, we shall define the stopping

time (see Fig. 1) with respect to the
A family of the o-algebras (F,,t > 0):

o { inf{t : Y(t) > n}

00 YLy € m.

This 1s, therefore, the first time moment in which the random process (1)
achieves value n. Because of the almost sure continuity of the random process
Y(t), 7 is a random variable adapted to the o-algebras (Fy,t > 0).
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Let us look at the SDE

dY . (t) = [(24 + C*)Y,(t) — BY2(t)]dt +2CY, (1) dW(t), t € [0, 7]
Y (0) = 7 with probability 1. (5)
The drift coefficient f(z) = (24 + C?)z — Bz? and the diffusion coefficient
g(z) = z satisfy the Lipschitz condition as well as the one of the limited growth
at [0,n); therefore, according to the basic existence and uniqueness theorem of the
solution of the Ité SDE (see [8], [5], [3]) it follows that the SDE (5) has a unique
solution Y, () defined on the random interval [0, 7,], alinost surely continuous and

measurable with respect to ((F;), ¢ € [0,7,)). According to the local uniqueness
theorem (see [5]), it follows that it is:

Yii=Ysll) t €[0,7,]), with probability 1.

The solution of the SDE (5) can be compared with the one of the linear
homogeneous [to SDE:

dZ(t) = (2A + C*)Z(t)dt + 2CZ(t) dW (1), t >0,
Z(0) = »? with probability 1.
According to the comparison theorem and since (2A+C?)z—Bz? < (2A+C?)z,
it follows that:

Yall) < Z); t € [0,7,], with probability 1.

It can be proved (see, for instance [5], [9]) that it is:

lim 7, = with probability 1,

= 00

as well as

lim Y[t} =Y(2), t € [0,00), with probability 1.

Therefore,
Y(t) < Z(t), t €[0,00), with probability 1.

It is known (sce [3]) that the linear homogeneous Ité6 SDE with the constant
coeflicients

dX(t) = aX(t)dt + pX(t)dW(t), X(0) =+ with probability 1

has a solution
X(t) = yexp[(a — 52/2)t + W (t)]

and the moment of the order k

ELX(1)[F = E|y|* explk(a — B7/2)t + k*B°t/2] .
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In our case:

Z(t) = n%exp[(24 = C)t + 2CW ()], ¢ >0
EIZ(t)* = n®* exp{[k(24 — C?) + 2k2C?|t}, t>0

Therefore,

S(2wo) — dwla S(2uwo)
R 0
Z(t) = cxp( e T we), 2o
5 Y e 2
Elz(t)lk - 7]21: exp(k[s(gwo)(l +2L) 40&-’0]!), ¢ 2 0’
dw;
namely,
a (e} =Yt} < Z(1), t >0, with probability 1
and - 5
Ea’(t) = EY(t) < EZ(t) = n? exp(b( “”Og)w‘; 4“’”“:), t>0.
0

Since Z(t) — 0 when t — oo with probability 1 if and only if it is:

S(2wq) — dwia
4wk

% I

then @*(¢t) — 0 when t — oo with probability 1 if it is:

5(2&)0)
4w

(7)

Analogously, Ea?(t) — 0 when t — 0 if
S(Qwo)

2
2w

(8)

a >

Therefore, the condition (7) represents the sufficient condition for the uniform
asymptotic almost sure stability of the averaged amplitude, whereas (8) is a suf-
ficient condition of the uniform asymptotic mean square stability of the averaged
amplitude.

Remark. In the general case the solution of the SDE (3) can be of arbitrary
sign so the drift coefficient cannot be majorated by the linear function which is
another reason for transfer to the SDE (4).

Conclusions

This relatively simple method of estiination of the averaged amplitude is illus-
trated on the example which allows for the application of others, mostly classical
estimation methods and it can be inspiring while being used in dealing with the
problems which cannot be solved in the traditional way such as, for instance,
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the case when the stationary probability density cannot be determined from the
Kolmogorov-Fokker-Planck equation. 1t should also be noted that the comparison
cannot be necessarily done with the linear 1to6 SDE; it can be done some other
well-chosen effectively solvable Ito SDE.

Since after applying the Khasminsky averaging method many problems of
estimation of amplitudes of various types of nonlinear oscillators subjected to one
or more independent random excitations of the Gaussian white noise type, are
reduced to the estimation of the solution of an autonomous Ité SDE, the authors’
intention is to proceed in their further work with searching for a way an effective
estimation of the mathematical expectation of the different order of solution of the
general autonomous Ité SDE:

dX(t) = f(X(t))dt + g(X(t))dW(t), t € [to, +00)
X{to)=n with probability 1.

One of the ways would be a search for an appropriate substitution by which this
SDE will transform into the SDE with a linear diffusion coefficient which represents
a necessary condition for comparison with liner SDE.

Acknowledgment. This rescarch supported by the Science Foundation of
Republic of Serbia, Yugoslavia (Project No. 1113).

REFERENCES

[1) Ariaratnam, S.T., (1972), Stability of mechanical systems under stochastic paramelric ex-
itation, Proc. IUTAM Symposium on Stability of Stochastic Dynamical Systems, Lecture
Notes in Mathematics 294, Springer-Verlag, 291.

[2) Ariaratnam, S.T. and Wei Ch. Xie, (1989), Lyapunov exponent and rotation number of a
two-dimensional nilpotent stochastic system, in: Dynamic and Stability of Systems, Oxford
University Press.

[3] Arnold, L., (1973), Stochastic Differential Equations, Theory and Applications, John Wiley
& Sons, New York.

[4] Bogoliubov, N.N., and Mitropolsky, Y. A., (1961), Asymptotic Methods in the Theory of
Nonlinear Oscillations, Gordon and Breach, New York.

[5) Gihman, L 1., Skorohod, A.V., (1982), Stochastic Differential Equations and Applications,
Naukova dumka, Kiev, (in Russian).

(6] Hedrih, K., (1975), Jzabrana poglavlja teorije nelinearnik oscilacija, Univerzitet u Nisu, Nis.
[7] Ibrahim, A.R., (1985), Parametric Random Vibration, John Wiley & Sons, Inc.

[8] Ikeda, N., and Watanabe, S., (1981), Stochastic Differential Equations and Diffusion Pro-
cesses, North-Holland.

[9] Jankovié, S., (1987), Iterative procedure for solving stochastic differential equations, Mathe-
matica Balcanica, New Series, 1 (2), 64-71.

(10] Jankovié, S., (1987), Neki ileralivai postupci i graniéne teoreme u teoriyi slucajnih diferen-
cijalnih jednaéina, Doktorska disertacija, Prirodno-matematicki fakultet, Beograd.

[11] Khasminski, R.Z., (1966), Predeljnaja teorema dle reieny uravnjeni) so sluéajnoj pravoj
¢astju, Teorija verovatn. i jejo primenjenija, 444-462 (in Russian).

[12] Khasminski, R.Z., (1966), A limit theorem for the solution of differential equations wath
random right-hand sides, Theory Probab. Appl. 11, 390.

[13] Raskovié, D., (1965), Teorija oscilacya, Nauéna knjiga, Beograd.



96 Jarkovié, S., Hedrih, K.

(14] Stohasticki procesi u dinamickim sistemima sa primenama na masinske sisteme, studija
(1989), Scientific project, K. (Stevanovié) Hedrih, supervisor, and P. Kozi¢, H. Pavlovié, Sl
Mitic, V. Nikoli¢ and al., Mechanical Engineering FFaculty, University of Nis.

[15] Stratonovich, R.L., (1976), Topics in the Random Noise, Vol. II, New York, Gordon and
Breacls.

[16] Vujici¢, V., (1967), Teorija oscilacija, Savremena adriunistracija, Beograd

HEROTOPBLIE OUEHKH YCTOWYUBOCTU AMIINTUTY LI
lIEJIIf‘lIIEMI]O]“O OCHWJIJISATOPA 11PU BO3/ALHCTBUK
CIIYYAUHOI'O HAPAMETPUYECKOI'O BO3BYAJIEHUA

B sroii paGore paccmarprnaloTes HEKOTOpLIC CpeaHe KBAAPATUYECKUE WU
[IOYUTHU M3BECTHBLIC YCTOMUMBOCTM HeinilelfHOrO CCUMINATOPA NPU Bo3aeHCTBIN
CRy4aRHoro napaMmerpuyeckoro Bo3byxucnna B dopMe HIMPOKOINONOCHOLO
rayccopckoro Genoro 1yMa MaJoro MHTEHCUMTCTA M KOPP EJSAIMGHOIO BPEMEeHH.
Ussecruo, 4ro npuMenenmen MeToad ycpeaienua XacMUIbCKOIO HA CTOXac-
THYecKoe IM((epenumanbliioe ypanHenue oCUMJIIATOPA MONYUYaeTCA CTOXAC-
TUYeckoe JMpdepeurmanproc ypasueune Mro. Ycepennenuan amMnauty na, xak
pelicie aToro Mg epeHmanbioro y pasHelna, OUCHUBAETCA C MOMOUbIO
MEeTONla CpaBHEHUA C pellicHeM HEKOTOPOIo JUHEHIOro CTOXaCTUUCCKOTO MU d-
depenumanvioro ypanieisa Mro

NEKE OCENE STA BILNOSTI AMPLITUDE NELINEARNOG OSCILATORA
PRI DEJSTVU SLUCAJNE PARAMETARSKE POBUDE

U ovom radu razmatrane su ncke ocene srednje kvadratne i skoro izvesne
stabilnosti nelinearnog oscilatora pri dejstvu sluajne pobude tipa Sirokopojasnog
(wideband random processes) Gauss-ovog belog suma (the white noise-limited white
noise) malog intenzieta i korelacionog vremena (correlation time). Poznato je
da se primenom mectode usrednjenja Khasminskog na stohasti¢ku diferencijalnu
jednacinu oscilatora dobija stohastitka diferencijalna jednaéina Ité-a. Usrednjena
amplituda, kao resenje ove jednacine ocenjuje se metodom uporedivanja sa reenjem
neke linearne slu¢ajne diferencijalne jednacine Ito-a.
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