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ESTIMATION OF STATE VARIABLES FROM MEASUREMENTS
Henry R. Busby
(Received 18.05.1991)

1. Introduction

The use of a dynamic programming filter to identify systems has been presented
by Distefano and Rath [1] for the continuous case. This was expanded by Simonian
[2-3] who applied the filter to the estimation of wind forces on structures. This
paper presents a discrete version of the dynamic programming filter. The advantage
of the discrete version is to more easily analyze nonlinear systems, both conceptually
and computationally.

Consider a dynamical process described by an n dimensional system of differ-
ence equations

Tig1 = Miz; +q; +¢; (1a)

where z; is an (n x 1) column vector of state variables, M; is an (n x n) transfer
matrix, ¢; is an (n x 1) known forcing term and ¢; is an (n x 1) vector of dynamical
errors. It is assumed that observations on the state vector are obtained at every
step and related to z; by

dy = Hiz; + 1) (1b)

where d; is an (n x 1) column vector of measurements, H; is an (n; x n) matrix
relating the measurements to the state vector and #; is an (n x 1) column vector
of observational errors.

It is desired to optimally estimate z; using a least squares criterion. In addition,
suppose that N measurements have been taken and that all the z; have been
optimally estimated. Now another measurement d , , is taken. We would like to
optimally estimate only z;,, without having to recalculate all the previous optimal
estimates. This is necessary in a real time constraint where only the current state
1s of importance.
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The least squares criterion for N measurcinents is

"
Ey =) (d;— Hiz;,d; - Hz,)+

s 16

i=1

N
+ Z(-‘?f =M, Ty = Gy Bl2p= M2y = 1)) (2)
:

1=2
where (z, y) denotes the inner product of two vectors and K represents an (n x n)
weighting matrix.

To restate the problem we wish to minimize Eq. (2) with respect to all z;, i.e.
(2, 29,...,zx). Then suppose we add another data point dy; which gives

N+1
Eng = Z(d, = Htyd, — Hywy )+
=1
N1
=% y
i=2
We now wish to minimize Ey_; with respect to (z,,z,,... ). It is very im-

portant to note that all of the minimizing z;’s will change by adding the one data
point. Also, we only want the value of x5, so that the computations are kept to a
minimum. Dynamic programming can be used to provide the sequential formulas.

2. Sequential filter equations

First define ¢ (c) as the minimuin of Ey conditioned on z5 = ¢. That is
suppose zp 1s fixed at ¢ and we minimize Ey with respect to z,,z,,... ,z5_;.
The value of Iy 1s Op(¢). Using a dynamic programming argument it follows that

¢nrle) = I?Ln[(dm-l —Hypedyy — Hypo)+
+(c=Myzy - qn, (e = Myzy —qn)) +én(zn)]. (4)

Equation (4) will give the function ¢, ,(c) which is valid for all z,,; = c¢. How-
ever, the optimal estimate of zy, is the one that minimizes ¢, (c). It is easy
to show that all ¢ (c) will be of the form

bx(e) = by — e sn) + (e, Ryve) (5)

where sy is an (n x 1) recursive vector and Ry is an (n x n) Riccati matrix.
Recursive formulas for sy and Ry can be obtained. Substituting Eq. (5) into
Eq. (4) yields

b!\r+1 = 2(’:, Sjvv_i_l) + {(.', RN+IC) = I}}]:’l[(df\r{-l‘ dN+l) ot Q(d f+1,}{N+lc)+
F (Hy 10 Hygr0) + (e Kc) = 2(e, KMyzy) — 2(e, Kap) + (Myzys K Myz )+
+2Myzy, Kon) + (q, Kan) — 2(zn,sy) + (zn, Ryzy) + by) . (6)
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Minimizing Eq. (6) with respect to ry yiclds

l'}\r = Qh{i‘l.":\l‘; ]\‘(C = qN) -+ QNSA' (7)
where
Qn' = MIKMy + Ry. (8)
Substituting Eq. (7) into Eq. (6) and equating like coeflicients in ¢ yield
Ryyy = Hy 1 Hyoy + K = KMyQyMyK . (10)

The optimal estimate of z y is produced by minimizing ¢ (c) which is denoted
by e®. Thus
2Rycy —2sy =0

or
&5 = Ryley. (12)

Equation (12) can serve as the final calculation. However, a more ambitious
calculation is

N1 = Ryiiswar (13)
Using Eq. (8), (9), and (10) we find
- * - i -

N1 = Myey +an + RN1+1HN+1[dN+1 — Hy(Mpen + N )] (14)

which involves only the optimal estimates.

3. Application to nonlinear systems

In the previous discussion, the linear equation was used to represent the system
Tiy1 = Mz + g (15)

This can easily represent a nonlinear system in the following manner: Let the
original differential equation be of the form

z+ Kz +n(z) = f(¢t) (16)

where all of the linear terms have been grouped into K z leaving the nonlinear terms
in n(z). Expanding n(z) into a Taylor’s expansion about some state z, gives

n(z) = n(zy) + A(z — z;) (17)
where A represents the Jacobian matrix of n evaluated at z,. This gives
4 (K +A)z = —n(zy) + Az, + f. (18)
Using a difference formula for z and evaluating z at the average gives

I+ (K+ A)h/2z;p =[T-(K+ AYh/2z; — hn(zy) + hAzg + hf (19)
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where A is the time step. Now let x, = z;, then the terms in Eq. (19) become

M; =[I+ (K + A)h/2]7 ' T = (K + A;)h/2)] (20)
0 = =1+ (K + A)h/2)7  [h(n(z;) — A, ~ f;)] (21)

It 1s important that these integration formula remain stable. It should be
noted that as & — 0, Eq. (19) reduces to Eq. (16) and A, is not involved. There is
evidence that A; can be used to stabilize the integration process since it is somewhat
arbitrary. However, here A; will be evaluated as the Jacobian matrix of n(z). With
these definitions of M; and ¢, the previous filter equations can now be used directly
for a nonlinear equation. The Jacobian matrix and the nonlinear term must be
evaluated at the previous state.

4. Illustrative numerical example

The use of the filter to determine unknown constants in a model inv-'"2= an
extension of the dynamic system to include the unknowr ~~- _‘-ats. ‘I'he following
simple example will illustrate th~ use o1 the niter o determine the unknown con-
stants. It will also show lLiow the various terms in Eq. (19) are derived. Consider a
simple spring mass system given by

I+2wi+uwiz=0 (22)

where § and w are considered as constants to be determined from measurements of
either velocity or displacements. For the case considered here, only the displacement
measurement will be used. In order to use the filter equations, the constants must
be considered as variables. Define the following vector

w=lry o oz 2] =l £ £ u]". (23)

The complete dynamic systern is given by
Ty + 22,757, + 2,23 =0 (24)
a2z =10
1:4 = O .
The matrices K and A are now filled in with the appropriate terms. The nonlinear
vector consists of one term which is given as

ng{z) = Qmpmye, w28 (24)

The nonzero entries in the Jacobian matrix A are

A(2,1) = 23, A(2,2) = 224z,
AlZ,3) = Tryn,, A2 4) = Naurs + 2iyd,) .
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An integration time step of 2.5E-5 seconds was used for a total time of 0.01 seconds.
The identification problem now considers the constants as unknowns. These are to
be estimated using only the generated displacement data.

The initial values used were z; = 1.0, z, = 0.0, z3 = .05, £, = 1000., the
original displacement data and the results of the filter are shown in Fig. (1). The
filter had no difficulty in following the data. In addition the velocity has also been
reproduced and compared with the original expression (see Fig. (2)). The progress
of the constants is shown in Figs. (3) and (4). Both of the constants reach the
correct values of 0.1 and 1715z in 0.0040 seconds.
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5. Results and conclusions

Equations have been derived for a sequential least squares estimator using the
technique of dynamic programming. A method was presented so that the filter
could be used for nonlinear systems. Additional work needs to be performed to
determine the overall capability of the sequential filter. The filter worked well
when a simple model of a spring mass system was investigated, however the model
was free of noise.
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Fig. 4
ESTIMATION DES VARIABLES D’ETAT OBTENUES PAR MESURES

Le probleme considéré est une estimation sequentielle des variables d’état sus-
ceptible d’etre appliqué aux systémes nonlineaires. Les équations sont presentées
pour la mise a jour sequentielle de la solution optimale en temps discret (,discrete-
time“) pendant que le processus continue et les observations nouvelles sont

obtenues. La technique de la programmation dynamique est appliquée en vue
d’obtenir les estimations.
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