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PLASTICITY IN A DISK WITH TAPER
A. Alujevic
(Received 23.03.1991, in revised form 13.03.1992)

1. Introduction

In thin disks (assuming o, = 0) of slightly variable thickness t, neglecting body
forces (gravity, centrifugal, thermal), the equilibrium is given by the following stress
balance between radial o and circumferential ¢, (hoop) components w.r.t. radii
r 1]

d
L—{;(t;--crﬂ) = T (1)
This for hyperbolic shape t = tg(a/r)?, where n > 0, a < r < b, becomes (f
¥ ed Ay
op(l1—n)+rog = o, (2)
In the elastic domain (¢ < r < b, ¢ > a) Hookean constitutive law applies, leading
to the known 2nd order differential equation (2]

3—-n, n(l+v)

og+ TR™ T3 or =10 (3)
with its general solution
op = Cyr? + Cyr? (4)
where p and ¢ are roots of the characteristic polynomial
w+(2-nw-n(l+v)=0 (5)
i.e.
n
w=§—1i\/(%n)2+un+l=(p,q). (6)
Using boundary conditions (og(r = a) = —p,, og(r = b) = —p,) integration
constants become
_ pa? — p, bt
L™ arbe — qibp ' 0
. pbap = pabp

€= ol ot (8)



P Alujevac, AL

Taking into account mternal loading only (p, = 0) the stresses in elastic part are
given as
UFyd — )4yF

T = Pacpr— i (9)
(1=nu+q)"r? — (1 —n+ p)bis?

: : (10)

albd — adir

If the internal pressure increases, plastic zone will develop inside of the disk body.
Yield criterion has to be considered, which is given by Tresca or Mises formulae
respectively [3]

Ty = Py

O == O = 2K | (11)

o

(%)

0} —o,0p+ 05 = 3K? (12)

¢

where I s shear yield, which is 15% higher for Mises than by Tresca.

2. Tresca case

Using eqs. (2) and (11) the following 1st order diflerential eq. is obtained
rog = nog = 2K . (13)
Its homogeneous left haud side may be integrated by separation of variables, giving
T = AT (14)
and by variation of the constant A, the complete solution becomes
cr = Br* —= 2K /n (15)
where B 1s an integration constant to be determined from boundary conditions.

With n = 0 the corresponding solution has to be modified into

op =B+ 2KIn(r). (16)
If boundary conditions are used (ox(a) = —p,, or(b) = 0) for n = 0 if follows that
Op = =P+ 2K In(r/a) (17)

and with (n # 0)

weon () () )= (e D))

On the plastic-elastic interface at r = ¢, using Tresca criterion (11) the pressure is
cPbY — cIbP (19)
(¢ = n)bPe? — (p — n)bicr

so that stresses in the external elastic zone are given by

bPrd — bir?
(g = n)bPc? — (p — n)bicr’

(1-n+q)lPr? — (1 —n+p)bir?

(¢~ n)bPcd — (p — n)bicP '

P, = 2K

Ty = 2l

(21)
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Continuity of o at r = ¢ leads to the result, using eqgs. (18) and (20)

2K bicP—" — gbPet™"
p, = mi(1+a", i L .__) (22)
n (¢ —n)bPct — (p— n)bdcP

and at the first yield (¢ = a) the internal pressure required is
bia? — bPal .,

— ‘ » 2
Pa = 2 (¢ — n)bPad — (p — n)b9a® (23)

while the ultimate pressure, causing the whole disk to be plastic, (¢ = b)

po= 2 (1- (3)) (24)
n b

For n = 0 stresses in the external elastic zone are dependent upon the interface
pressure, which 1n this case is

(i)

—-+(()-(6)
oy =K ((15) % (%)2) . (27)

Continuity of o at 7 = ¢ leads now to the known result [2] for internal pressure

required
2
- c c
=R (l (b) +2ln(a)) (28)

and at the first yield (¢ = a)
- 2
pa:K(l— (3) ) (29)

while the ultimate pressure (¢ = b) is

pa=2nnn(f). (30)

a

so that

3. Mises case

Eq. (12) may be solved for hoop stress

oy =B 4 X2 Jak2 — o} (31)

When this expression is substituted in eq. (2), the differential equation is separable

[3].
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Defining a new variable

T ,
= ——= 32
25 (32)

it foliows
dr —ds

T T V3V =52 + (1/2)s(1 — 2n)

which can be integrated by means of a substitution

5 = sin(0 + &) (34)

1-2n
i = arctan( 7 ) . (35)

(33)

where

So the eq. (33) turns to become

dr 1
T 2(1—n+n?)((1“Qn)tang_\/g) do S

the solution of which is

n(r] =€

1
—2(1—n+n?)

where C is the constant of integration.

((1 - 2n)In(cos()) + \/39) (37)

For n = 0 the corresponding result is

In(r) = C — %(ln(cos(ﬂ)) +/30) . (38)
Consider now a fully plastic plane stress solution. In this case internal radial
pressure is p = 2K, so that r = a corresponds to (since g = —p = —2K, and

og=—-K)s=1lorf0=n/2-6 whiler= b gives s = 0 or § = —é. It follows that
b/a is given by

For 0 < n < 1/2 (since § must be positive), the limit value (if n = 1/2) is

a T
In{ - | = —= = 1.8138.
“(b) V3
With n = 0: § = arctan(1/v/3) = 7/6 it follows that

ln(g) - _‘"’_‘/i"_lﬂ.‘i - 1.0857.

b 4
The fully plastic solution is thus possible only if bfa < L9837 (5 = [), and

e < 2450 e 1120

To determine the greatest extent of the plastic domain in the limit as b/a — oo,
let’s again set 0 = 7/2 -6 at r =a, and 0 = 7/6 — & at rr = c since op = —K and
o, = K there, thus obtaining

0(8) = s [0 - (SeG) ) w
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é 2m
hil—] = = 1.2092
(a) 3V3

m(ﬁ) _mV3-02 G s60s.
a 2

For example, with n = 1/4, In(b/a) = 1.2920 and In(c/a) = 0.7307.

For n = 1/2 its value 1s

while with n =0

4. Work hardening

With Tresca yield criterion (11), equilibrium (13) and flow rule

g 41
H & (41)

the following differential equation for the plastic hoop strain in the hyperbolic disk
is obtained at plane stress (¢, = 0)

28 +r ]+£I— deﬂ'-{—l(ch +nog(l-v))=0 (42)
¢ E)dr " EY & o

Bearing in mind the radial stress distribution (15) renders the form
ds’; 1 r

2", + r(l + %) =5k E((l +v)oy + (1 - v)(oy — npa)(;)n) =0 (43)

the solution of which 1s

C 1 o (1= v)(oy — np,)(r/a)”
€6 = AIHHTE) T E ((1 +) G g (i § HIE) ) - )

The integration constant C is to be determined subject to boundary condition
ez(r =c¢) =0, while oy (Ei; = 0) = 2K, producing

2/(14H/E)
sp.—.-l— 1+V(2K(£) —Uy)+ S X
¢ E| 2 r 2+n(l+ H/E)

TN (<) (E)WH/E) — ()) | @

where Poisson’s ratio v = 1/2 applies if noncompressible (isohoric) behaviour 1s
assumed. For n = 0 the last formula reduces to

. 1 ¢ 2/(1+H/E)
g= Lan()" " <o) @

which may also be used for long tubes, just multiplied by (1—2?) in order to switch
from the plane stress to plane strain case (e, == D],

As shown by [3], the equation (46) may also be approximated to

o 1 i . _
Ed):-E(?I\ (;) —Uy). (47)
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i eilr = a) =€}, this meais

2 20y e
= g T . (48)
With boundary conditions
R:
Or(r=a) = ~p,, Gl =)= 1\'(1 - (E) ) (49)
the required pressure 1s given as
, Z P
) c 1 [ E4+H .
= K11 —=1|= — el e D
Pa ( (b) )* 2/0 B+ oy ¥ % {50)

The last two equations (49) and (50) provide the relation between p, and ¢ trough
the parameter 5. Tlie integration has in general to be carried out numerically, but
an explicit relation is easily obtained if the hardening is linear, that is if H modulus
1s invariable.

Attempts to use Mises criterion (12) in place to Tresca (11) while determining
work hardening in considered cylinders, appear infeasible.

5. Conclusion

Plasticity in a hyperbolic disk under internal pressure has been investigated.
Closed form solutions are given subject to Tresca and Mises alternative criteria.

However, if the disk profile is assumed parabolic (f > b, n > 0)

AR Y (7
fr—a O l-(aff]
' oar! " nn- 1)r=2
IS T 1
the solution in a closed form cannot be found, and numerical means have to be

employed in order to sort out given differential equation of elastic and plastic
behaviour respectively.
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PLASTIZITAT IN SCIHEIBEN VEI{ANDERLICHBR DICKE

Im Beitrag sind Spannungen in dinnen Scheiben betrachtet im Falle wo die
Belastung am inneren Rande die Fliessgrenze iibersteigt. Resultate sind mit be-
kannten Werten fiir Schieiben mit kenstanter Dicke (n = 0) verglichen, wobei Tresca
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Fig. 1: Hyperbolic disk plastification

atg H

Fig. 2: Linear hardening
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A = elastic
Bl °8 B = elasto — plastic
Cl G = plastic
a 5 .

Fig. 3: Comparison of stress distributions due to internal pressure variation

oder von Mises Hypothesen und plastische Werkstoffsfliessen mit bzw. ohne Verfe-
stigung angewandt sind.

PLASTIFIKACIJA DISKA SPREMENLIJIVE DEBELINE

V prispevku obravnavamo razmere v hiperboliénem disku, ko zaradi visokega
tlaka na notranjem polmeru pride do plastiénosti. Rezultati predstavljajo razsiritev
znanih obrazcev za nespremenljivo debelino (n = 0}, pri ¢emer upostevamo Tresca
oziroma Misesovo hipotezo in plastiéno utrjevanje snovi.
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