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ON VISCOPLASTICITY OF TRANSVERSELY ISOTROPIC MATERIALS
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Introduction. The objective of this paper is to present a rational thermo-
dynamic approach to the so-called as-received anisotropic materials i.e. materials
which are anisotropic even without anisotropy induced by a previous plastic defor-
mation. The latter is usually referred to as Bauschinger effect.

In this paper like in [1-6] an associativity of flow rule i.e. the normality of
the plastic strain rate tensor onto a yield surface has not been taken as granted
even if such an approach is accepted in the majority of the papers dealing with the
subject (compare with [7-10] and references mentioned in these papers). Such an
approach is seriously questioned not only by the theoretical but by experimental
results as well (see [11] for a comparison between tension and torsion and [12,
13] for experiments dealing with cruciform specimens.). For these reasons the
normality is abandoned and instead of such an assumption evolution equations
are naturally based on the appropriate geometry of deformation and the extended
irreversibile thermodynamics. This geometry is founded on the continuum theory
of dislocations (compare with [14-19]) and is shortly reviewed in the next section.
A very attractive approach to the extended thermodynamics has been proposed
in [20] with a rational analysis of thermodynamic processes leading to the desired
thermodynamic restrictions on general constitutive equations. This approach with
the Liu’s theorem [21] was applied to viscoplastic materials in [1] and to inelastic
composite materials in [2, 3]. However despite of its beauty an inherent coldness
function (which is not quite clear from the experimental point of view) is inevitable.
In this paper an alternative approach [22, 23] (already applied to thermoplasticity
of irradiated materials in [6]) is chosen instead.

In the first two sections geometry of the deformation process is considered and
general constitutive as well as evolution equations are given and analyzed. Based on
such a general background a special ilustrative case of small thermoelastic and finite
plastic strains is presented in the subsequent section in order to make an explicit
distinction between the original and the acquired anisotropy. Such an assumption
is realistic in the case of metal matrix composites for instance.

Geometrical preliminaries. As a prerequisite, a correct geometric descrip-
tion of an inelastic deformation process analyzed is needed. Consider a crystalline
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body in a real configuration (1) with dislocations and an inhomogeneous temper-
ature field 0(X,t) (where t stands for time and X for the considered particle of
the body) subject to surface tractions. Corresponding to (1;) there exists, usually,
an initial reference configuration (ko) with (differently distributed) dislocations at
a homogeneous temperature §y without surface tractions. Due to these defects
such a configuration is not stressfree but contains an equilibrated residual stress
(sometimes named ad “back-stress”). It is generaly accepted that linear mapping
function F(-,¢) : (ko) — (¥¢) is compatible second order total deformation gradient
tensor. Here t as scalar parameter allows for time developing family of deformed
configurations (y;). In the papers dealing with continuum representations of dis-
location distributions (;)-configuration is imagined to be cut into small elements
denoted by (1), these being subsequently brought to (fy) free of neighbors. The
deformation tensor Ag(-,t) : (vt) — (¥:) obtained in such a way is incompatible
and should be called the thermoelastic distortion tensor whereas (v;)-elements are
commonly named as natural state local reference configurations (cf. eg. [14-19]).
Moreover often as a plastic distortion tensor II(-,t) : (k) — (¢¢) is defined where
(k) is a global ideal crystal having the same intrinsic crystalline structure as (v;)-
elements themselves. However, such a distortion is not unique since there are many
indistinguishable configurations (xr;) with various shapes but the same intrinsic
structure. Their indistinguishability is promoted to be a replacement invariance
principle in [24]. The announced difficulty is overcome by the following definition
of the plastic distortion tensor

AP("t) :=AE('rt)-1'F(':t): (1)

where F(-,t) is found by comparison of material fibres in (ko) and (v:) whereas

Ag(-,t)is ‘determined by crystallographic vectors in (v¢) and (¢¢). Multiplying (1)
from the left hand side by Ag(-,t) we reach at Kroner’s decomposition rule which
is often wrongly named as Lee’s decomposmon formula. The above two definitions
of plastic distortion are easily connected by II(-,t) = Ap(-,t) - Ag(-). It is worthy
of note that curl Ag(-,t)~* # O and this incompatibility is commonly connected
to an asymmetric second rank tensor of dislocation density.

Additionally to the above description essentially already given elsewhere (com-
pare for instance [18] it is supposed that material of the considered body is
anisotropic in (kg )-configuration with a direction of anisotropy given by the unit
vector A. If the cause of anisotropy is a continuous distribution of fibres (aligned
in such a way to form one family of curvilinear lines) then A is the unit tangent
vector of fibre lines. If the corresponding unit tangent vectors in (¢¢) and (v;) are
designated respectively by @ and A, then they are related by means of the following

formulae [3]:

& 1 1 - 1 &

a_/\—EAE A, ,\F A, A,,_X}—J-AP-A, (2)
where by Ag, Ap and X elastic, plastic and total fibre extension ratios are respec-

tively denoted.

General constitutive and evolution equations. Accepting internal vari-
ables approach the following set of state variables is introduced

I:= {EE:O:gradglé‘vAPsA}: I' e ¢r, (3)
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where
Ep = %(Ag - Ag — 1) is the thermoelastic strain tensor,
gradf = AEI - grad,, § — temperature gradient with respect to natural state
(v¢)-configuration,
§=JeAg' - §y — the (11)-defined heat flux vector,
A=A4,04,, Jg=det(l+2Eg)'/?,
while grad,, 6 and gy are defined in (¥,)-configuration. The set (3) might be oth-

erwise termed as temperature-deformation point belonging to the extended defor-
mation space Cr.

To a temperature-deformation configuration point there corresponds reaction
point represented by the response set

E1 = {Sauis,‘g}: e Q:S (4)
whose elements are:

S = JgAg' - Sy - AzT — the symmetric Piola-Kirchhoff stress tensor of the
second kind related to (1),

Sy = T — the Cauchy stress in (3;)-configuration,

5: JEAE;I -c;\;, — the entropy flux vector related to (1¢),
u — the internal energy density, and
s — the entropy density,

whereas €y, is the extended stress space.

At this place the constitutive equations are simply stated by the bijective
mapping:

) = R(T) = () or R:Cr — ¢y, (5)
which is too general so that the thermodynamic analysis presented henceforth is
aimed to introduce restrictions concordant with the second law of thermodynamics.
It should be noted that the proposed constitutive equations are already frame

indifferent i.e. objective with regard to a rigid body motion of an observer of (v,)-
configuration.

The evolution functions compatible with (3-5) are now collected into the set

L, ={Q,L}, (6)

so that (objective) evolution equations simply read:
Di=Q(T), (7)
Lp =L(I')  where Lp:=DAp-Ap} (8)

and the material time derivative is designated by D. The simplicity of left hand
sides of (7-8) due to the absence of corotational (or convective) time derivatives
has the origin in the isoclinicity of crystallographic vectors in all (;)-configurations
during time elapsing [1]. Decomposition of the plastic “veloctiy gradient” tensor
into its symmetric and antisymmetric parts i.e.

2Dp :=Lp+L},  2Wp:=Lp-LT, (9)
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gives respectively plastic stretching and plastic spin tensor.

A thermodynamic process in the considered body is described by the following
balance laws (po and p are mass densities in (ko) and (%¢)-configurations): the
internal energy balance equation

poDu —S : [DEg + (1 +2Eg) - Lp] + div{ = 0, (10)

mass conservation law
po—pJg =0, (11)
and the equation of balance of momentum (7 is the velocity of the particle consid-
ered)
— . -] T . =~
pv —divy (J5'Ap-S-AE) =0, (12)
as well as by the evolution equations. These imply constraints on the elements
of the set {T', DI'} causing breaking of their independence which is the essence of
the Liu’s theorem [21]. In the case of an inelastic deformation process however the
notion of the yield surface becomes essential dividing sharply the two regions of

material behavior. Let us define dynamic and static scalar yield functions in the
following way:

f=£(S,6,Ap) = h(D), (13)
fo = f(S#*,6,Ap) = ho(D), (14)

where S# is static stress corresponding to the dynamic viscoplastic stress S whereas
their difference is usually called the overstress tensor which may be represented by
a function of Lp as follows: .

AS :=8S - S# = I(I') : Lp(T), (15)

with Z(T') being fourth rank tensor of plastic viscosity coefficients. Introducing the
plastic strain rate intensity by

Dp:=(Lp : Lp)? = ||Lp| > 0, (16)

the classification:

f>0, fo =0, Dp > 0 — viscoplastic behavior;

f = fo =0, Dp = 0 — elastoplastic frontier;

f = fo <0, Dp = 0 — elastic behavior;
and the kinematic constraint:

(f)Dfo =0 (17)

may be formulated in a straightforward way. In the above equation the function
(z) = 1 for z positive and (z) = 0 otherwise.

All thermodynamic processes must obey the master law of nature i.e. the
second law of thermodynamics which in our case reads:

poDs+diV5-png >0, (18)

where r/6 is the entropy source. Precisely defined a thermodynamic process is a
solution of evolution and balance equations which must satisfy (18). The analysis
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of (18) by the Liu’s theorem may be described as follows. Replacing the response
functions §(I') and #(T) into the inequality (18) this becomes a differential inequal-
ity linear with respect to the elements of the set {DT, gradT'} namely:

poDs + div g — pog- — A*{poDu—S : [DEg + (1 + 2Eg) - Lp] + div ¢}

— AY - [J5'poDv — divy(J5' - Ap - S - AR)]

— A7 [D7- Q(T)] - A" : [Lp = L(D)] = A/ (f)Dfo 2 0. (19)
By introducing Lagrange multipliers all the elements of the set {DT,gradT'} ex-
cept grad@ (which is already included into I') become independent. Therefore,

in thus extended inequality all the coefficients escorting the elements of the set
{DT, grad T'} must vanish. This gives rise to the following constitutive restrictions

S = pode, F + (f)A Or. fo, (20)
s=0gF + (f)pg ' A 04 fo, (21)
0 = Ograao F + ()05 ' A graa 6 fo, (22)
0=0g,0, 0=0gaasd 0=0a,9, (23)
1=0; (24)

and the residual dissipation inequality
09 - grad 6 + A - Q(I) + A" : L(T) > 0, (25)

where

Fi=u—s(A*)"'=u—0s (26)

is the free energy density. The Lagrange multipliers appearing in (20-24) are ex-
plicitly given by the following formulae:

- -

A? = —0710;F — (po8) " (f)A 07f0,  A* =0,
Al=—971S.(1+2E) - 07 'Ap - (p00arF — (f)A 8ar fo).
Integrating (23-24) we acquire additionally

$=9-1'§'+¢3’1(9): (27)

where 51(6') is some function of temperature.

Small thermoelastic strains. Suppose in the sequel that:

(A1) thermoelastic strain, temperature gradient and heat flux are small but
plastic strain itself is finite;

(A2) stress vanishes when pure elastic strain equals to zero.

Under such assumptions and making use of tensor representations theory (given
in [25-28]) the stress tensor may be represented by the following formula:

S=D:[Eg—al(f—6)]=D:E.= Y aaGa, (28)
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with the generators — symmetric second rank tensors given below:

Gl =11 G2=€ps G3=€f:n G4=A:

Gs=A-eptep A, Ge=A-cl +ek A,

G7=Ee, Gg:Ee-EP-f-SP-Ee, Gg:Ee-A-i-A-Ee,
Guo=E. e, +¢,-E, Gu=E.-A-e,+¢e,-A-E,
G12=A'Ee'€P+€P'Ee'A, G13=A'£P'E3+Ee'€P'A,
GH:E,,-A.sf,Jref,-A-Ee, Gis=A-E. ¢} +¢2 -E,- A,
G16=A-s;-Ee+Ee-e;-A (29)

whereas in terms of the following scalar invariants

h=1:B.=trE,, ia=E. :ep, i3 = E, : €2, is=E,: A,
i5=Au'Ee'5P'Ayr i6=Av‘Ee‘5§,'AU:

o ; — 1.2 —_— v w3 . 1 _ . o2
m=1:g,, 71';_\—1.£P, 1r3_1..sP, 1r4_A.eP, Ts = A e,
I = {71'1,71'2,?1'3, 71'4,7"5,9}; (30)

the scalar coefficients a,, a € {1,16} appearing in (28) may be expressed in the
following way:
6

iy = Zaka(‘h)ia, ke {1,6} and a; = ar(7=), k€ {7,16}. (31)

1

In the above equations the Eulerian plastic strain tensor connected to the vectorial
base in (v¢)-configuration is given by

1 -
5 §(1-,_\;%1). (32)

£

Other equations being of exceptional importance for us are evolution equations
for the plastic stretching tensor and for the plastic spin tensor originating from (8)
under assumptions (A1-A2). It is customary to connect the plastic strain rate with
the stress tensor. If this is accepted then the expression for the plastic stretching
reads:

Dp=) bHs, ee{1,37) (33)

with the inlierent generators — symmetric second rank tensors

Hl =1 H2 = S) H3=5P1 H4 = A-: H5=821 HG =52
H7:S-5P+£P-S, Hg:A-S+S-A, Hg:A-CP-I-EP-A,
Hio=S5%-¢e,+€,-8?, Hii=A S24+8%2.4,

Hiz=S-¢} +¢% -5, Hizs=A el +c2 - A,
Hi4y=S-ep,A+A-e,-S, H15=A-S-5P+EP-S-A,
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His=S-A-e,+€p-A-S,

Hi7=S* A-ep+e,-A-S* Hp=8"¢e,-A+A ¢S
H19=A-52-5P+5P-SQ-A, Hyp=S-¢3-A+A-€} 5,
H,y=A-S. s +£ -S-A, Hgg:S-A-e +£ -A-S,

Hoys =S¢ P-A+A.eP-s2, Hy=A-S*.e +€2-5-A

Hys =S?-A-e} +¢}-A-S%

Hys=S%-¢,-S-A+A-S-e,-S%, Hy=8"c,-A-S+S-A-c,-S?%
Hys=S?-A-e, - S+S-c,-A-S%, Hyp=8"A-S-e,+e,-S-A-S?,

Hgp=¢p-S*-A-S+S-A-S*.¢,, Hyu=S-¢,-S>- A+A.5%.¢,°5,
Hyp=¢)-S-ep-A+A-€,-S-c), Hu=c, -A-c,-S+S-¢,-Avcp,
Hy =€l -S-A-e,+e,-A-S-e}, Ha=c, A-S-c+¢cp-S Ay
H36=S-52P-A-5P+5P-A-€;-S, H37=A-5P-S-£P+:~:P-S eP A.
(34)
Similarly, the plastic spin tersor is written in the following way:
Wa=) balyr)Ha, € {38,72}, (35)
a

with the next antisymmetric second rank tensors as generators

H38=S-A—A'S, H39=S-€P—€P-S, Hqg:EP-A—A'EP,

Hy=S?-A-A.S? Hp=S".e,-¢,-5?%
H43:sf,.A—A-ef;, Hy =€ -S—-S.¢3},

Hy =€ -8 - 8% €2,

Hy=S?-A-S—-S-A-S?, Hyr=8"-¢,-S-S-¢,-5%,
H4g:ef,-A-sP—eP-A-ei, H4g=a:2P‘S-eP—sP-S-s§,,
Hso=S%-¢2-8—5-¢3-5%  Hs =c} 8% .¢cp—¢,-8% €3,

Hs;=S-A-ep—€p A5, Hs3=S-ep,-A—A-€,-5,

Hss=A -S-e,—€,-S-A,

Hss=S>-A-e,—¢cp-A-S§%, Hss=8-¢,-A-A-¢,-5%
Hs7=¢,-S?-A-A-S’.¢,, Hss=¢,-S-A-A-S-&,
Hso=S-A-e2 -2 -A-S, Hep=S-€,-A-A-c}-S,
He1=S?>-A-€,-S—S-€,-A-5?, Ha=S5.A-¢,-S—¢,-S-A-8%
Hes=S?-¢,-A-S—S-A-e,-S?, Hes=5"-¢,-S-A-A.-S-¢,-§?

€p
Hss—si S A "€Ep — -A-S-Si,, Hes—ei S. €p -A—-A-¢ -S.CP,
Hez=e¢2-A-S-ep—c¢ P-S-A-e;, Hes =¢% S A-ep,—€,-A-S-e2,
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Heo =€}, -S*-A-A-8%.¢2, Hpo=¢2-A-S?-8*.A.¢2,
H71=52-ef,-A—A-sf,-S2, Hn:s?-A-e;—sf,.A-s?.

In the above two formulae the scalar coefficients by, @ € {1,72} depend on the
following invariants:

h=8:2=0x8, j2=S2:1, ja=8%:1, m, m, =3, w4, s,
ja=S:A, js=S8:A, js=S:e, jr=S:¢p, s=8%e,
jo=8*:€%, juo=4,-S-e,-4,, jn=A4,-8 ¢, 4,
J'12=A.u's-€f,-z‘ru. J'13=fi'u-32-€fg-fi-u-

It should be noted that the above two evolution equations maybe simplified if

instead of the stress S the elastic strain E, is adopted as a state variable. In such
a case the equation for the plastic stretching simplifies into:

Dp=) b H;,  a€({1,22}, (33a)

with the new generators — symmetric second rank tensors:
re=1, Hi=e,, Hij=4 Hi=¢
H;=A-ep,+ep A, Hi=A-el +¢ek A,
HE=E,. Hz =E.-¢, +¢, - E,, o=A -E.+E. A,
HID:EC'E;'E'E}?;'E&
HII:EG-EP-A—}-A-EP-EC, HIZ:A-E6-5P+5P-E6-A,
I3=E3'A'€P+€P'A'Ee,
;4=EG'E§J.A+AIE;'EE) ISZA'EQ'E;"}'E?"Ee‘A,
- 2 2
16=E.-A-e, +e, A-E,

b

I7=€;-Ee-EP-A-I-A-EP-EQ-E;,
;825?,-A—eP-Ee—l—Ee-ep-A-sf,,
Igze;-Ee-A-eP+sP-A-Ee-£§,,
H;O:ef,-A-Ee‘sp-i-e:P-Ee-A-s?,,
51=E.-€}-A-ep+ep-A-€2 -E,,
Hj,=A-c-E.-ep+ep Ec.-c-A. (34a)

The corresponding evolution equation for the plastic spin is

Wp=> b H,,  oc{2339}, (35a)
a

whose antisymmetric generators are now

. o -
Hy;=A-e,—€p- A, 24 = A-€p —€p - A,
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25=B.-e,—¢,-E, Hs=A-E;—-E; A,
§7=E,-szp—s§,-Ee,

H;=E. ¢, -A-A-¢; E, H)g=A E,-e,—¢p - E. ‘A,
H3}=E.-A-e,—-¢, A E,,

s=Ec-el-A-A.c} K, Hj, = A-E. -} —¢’,-E. - A,
33=E.-A egp—ezp-A-Ee,

§4=s§,-Ee ep-A—A -, E, ei‘,,

H§5=5;-A ep Ec—E,-e5-A ef,,

Hijs=¢2 -E.-A-ep,—¢€p-A-E. i,
H;-,-:s?P-A-Ee-eP—e:P-Ee-A-st,

§3=Ee-s§,-A-€P sP-A-s?,-Ee,

3%=A-¢} E..ep—¢€p-E.-c} A (36a)

The scalar coefficients in (33a) and (36a) are now the following functions of
the invariants listed in (30)

6
bi =D bia(1e)ia, k€ {1,6}U{23,24} and
1

by = bi(vx), k€ {7,22}U{25,39}. (38)

By similar reasoning the evolution equation for the heat flux vector (7) might
be represented by the following relationship

7Dg = ba(7x)Na-gradd + Y [-1+bs(7x)Ng] - g, (39)
@ B

a€{1,6}, pe{7,11},

where 7, is a heat relaxation time [6] while N, and Ny are the corresponding
symmetric second rank tensors — generators given bellow
N, =1, N2 = N7 =¢p, N3=N8=Efm N4y =Ny = A,
N5=N10=A-€P+€.P-A, N5=N11=A-€§,+€;-A. (40)

The equation (39) represents the Vernotte-Cattaneo relation (cf. [6, 33]) gen-
eralized in such a way to account for finite deformations of an thermoviscoplastic
transversely isotropic body. Since the relaxation properties of a thermal field have
been experimentally observed only at very low temperatures (such as liquid helium
temperatures) putting 7, = 0 this equation allows for a generalized Fourier law

holding under assumptions (A1) and (A2) for all the other temperature ranges in
the following way:

§=-) ka(1s)Na-gradd,  a€{1,6}. (41)



62 Miéunovié¢ M. V.

Consider, finally, the most special case'given by the following assumption:

(A3) Suppose now that the plastic strain itself is small of the same order as
thermoelastic strain.

In such a very restricted “small strains” case plastic stretching and plastic spin
dramatically reduce their expressions to become

Dp ~ (f)[b3ep + (b3 + b3yi1 + b3gia + bFimy + b¥yms) A
+ (b3 + 03141 + blais + bF m) + bF,ma)(A €p+ep-A)
+57E, + bJ(E. - A + A -E.)), (42)

Wp x (f)[b33(A e, —ep-A)+b35(E.-A—A-E,)], (43)

where all the scalar coefficients are some functions of the temperature alone. The
limitations tr Dp ~ 0 and Dp & De , valid for the small strains case are taken into
account in (42) whereas it is worthy of note that in the case of initially isotropic
materials Wp = O (cf. also [29]).

Similarily the Fourier law for transversely isotropic materials takes its familiar
form to read
q=—(k11+ k4A) - gradd (44)
and under the same assumption the response function for stress is reduced into
S & (a) +aj,i1 +a},4ia)1+(a + a5, i1 +a3yia) A +aSE. +a3(E.-A+ A -E,), (45)

where the difference between the inherent (i.e. initial) and the induced anisotropy
is also clear. The first is taken into account by the terms containing A and the
second by the terms with €,. This note holds true for all the explicit invariants
and the generators listed in this section (for the initial anisotropy representtions

see [30-31]).

Concluding remarks. The results accomplished by this paper are shortly
stated 1n the following:

(a) the developed theory of anisotropic (e.g. composite) materials is of the non-
associate type even in the case of small total strains as experimentally supported
for cruciform specimens made of isotropic materials;

(b) the geometric picture of deformation and the extended thermodynamics
allow for the theory which careflly recognizes between the inherent and the acquired
— mechanical as well as thermal — anisotropy;

(c) tensorial representations for inelastic evolution equations and Hook’s law
are expressed by minimal sets of tensors generators and the corresponding principal
and mixed invariants for small as well as for plastic strain cases.

(d) the special case of very stiff fibres idealized by their elastic as well as
plastic inextensibility (as assumed in [3]) is easily derived from the general results
presented herein.
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UBER DIE VISKOPLASTIZITAT
DER TRANSVERSALISOTROPISCHEN WERKSTOFFE

In der Arbeit ist die Viskoplastizitat von Composit mit einer Familie der
Fasern, die einem inhomogenen und nichtstazionaren Temperaturfeld ausgelegt
sind, besichtigt worden. Es sind die algemeinen konstitutiven und Entwicklungs-
gleichungen postuliert worden und mit der Hilfe der Erweiterungsthermodynamik
der irreversiblen Prozesses sind die konstitutiven Begrenzungen, vorgeschrieben
durch das zweiten Gesetz der Termodynamik, ausegefiilhrt worden. Das Fliess-
gesetz ist ausgeschlossen (d.h. die Geschwindigkeit der plastischen Verformung ist
nicht senkrecht an die Fliessoberflache).

Besonders ist es den Fall von kleiner Verformungsgeschwindigkeit, Temperatur-
gradient und elastischen Verformungen, dann endlichen plastischen Verformungen
analysiert worden. Neben der mechanischen Anisotropie erhielt man auch ter-
mische Anisotropie, verursacht durch plastische Verformungen.

O VISOKOPLASTICNOSTI TRANSVERZALNO IZOTROPNIH MATERIJALA

U radu se razmatra viskoplasti¢nost kompozita sa jednom porodicom vlakana
1zloZenog nehomogenom nestacionarnom temperaturskom polju. Postuliraju se
opste konstitutivne i evolucione jednaéine pa se pomocu prosirene termodinamike
nepovratnih procesa izvode konstitutivna ograniéenja propisana drugim zakonom
termodinamike. Zakon tecenja je nepridruzen.

Posebno se analizira slu¢aj male brzine deformacije, temperaturskog gradi-
jenta 1 elastiéne deformacije, a kona¢ne plasti¢ne deformacije. Pored mehanicke
anizotropije dobija se i termicka anizotropija izazvana plasticnom deformacijom.
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