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Introduction. The Considére criterion for maximum load under uniaxial ten-
sion has been extended to biaxial deformation of a flat sheet. During the period
shortly before maximum load is reached it is assumed that plane stress deformation
occurs homogeneously throughout the sheet. The criterion for reaching the maxi-
mum load under biaxial deformation is derived for the major strain direction. It is
shown that it is not possible for the major and minor direction loads to peak simul-
taneously except under equibiaxial stretching. The sheet material is assumed to be
strain and strain rate dependent, and anisotropic. The results are sumrnarized as
follows. At the point of maximum load the major strain is accurately predicted in
terms of the material strain hardening parameter, strain rate sensitivity parameter
and deformation rates in the major strain direction. The major strain at maximum
load is independent of the strain rate ratio.

A little more than a hundred years ago Considére (1885) published his classic
analysis of the condition of maximum load in a tension test. The crucial importance
of the maximum load point in such a test is that the onset of necking occurs close
to this point, at least for ductile materials. Since necking, or strain localization,
often leads fairly quickly to fracture, it is a highly significant feature of mechanical
behavior. The general problem of strain localization is usually referred to as the
analysis of plastic stability (or instability, depending upon one’s point of view).
In any case, the ideas presented in Considére’s seminal paper have provided the
fundamental basis for most subsequent stability analyses.

About twenty-five years ago this subject began to receive renewed emphasis
when it was realized that material viscosity (strain rate sensitivity) had a substan-
tial stabilizing influence upon plastic deformation. Backofen, Turner and Avery
(1964) were among the first to attempt to quantify this effect. Subsequently, Hart
(1967) developed a more general analysis of the tension test in which he studied the
rate of growth of on initial inhomogeneity. Shortly afterwards, Campbell (1967)
put forward a theory of plastic stability for rate-sensitive materials, in terms of
axial strain gradients in the specimen. Most later analyses of the problem have
used Hart’s analysis, or Campbell’s, or both as starting points. See, for exam-
ple, Jonas and co-workers (1976, 1977), Argon (1973), Hutchinson and coworkers
(1977a, 1977b) and Ghosh (1977).
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About thirty-five years ago attention had focussed upon plastic stability in the
process of forming sheet metals. This represents a problem of immense technological
significance. Swift (1952) was among the first to suggest a Considére type relation
in the two dimensional analysis of sheets.

Associated with this was the work of Hill (1950, 1952) in the theory of plasticity
and in the area of stabillity. To a certain extent, however, sheet analyses have
suffered in comparison with bar analyses because they lack a clearly developed
criterion comparable to Considére’s. It is the aim of this paper to rectify that
situation by generalizing the Consideére criterion to two dimensions.

Background. The Considére analysis (1885) of the prismatic bar under ten-
sion Is so succinct that it can profitably be reviewed here. Let P denote the axial
load on a bar, o the true axial stress and A the current cross-sectional area. Then
P =0Aand P = ¢A + cA where the superposed dots denote derivatives with
respect to time. Dividing through by ¢ A gives

P/P=¢/oc+A/A (1)

and at maximum load P is zero.

In the vicinity of maximum load but prior to reaching it, the deformation of
ductile metals is observed to be homogeneous and isochoric. As a volume element
AL, where L denotes some axial length, remains constant AL + AL = 0. Con-
sequently, A/A in (1) can be replaced by —L/L which is precisely —¢, the axial
(logarithmic) strain rate. Therefore, at maximum load (1) states that

7)o =é. (2)

This is the Considére criterion.

The only connection between (2) and the stability (or instability) of plastic flow
is the aformentioned empirical observation that necking generally begins relatively
soon after the maximum load is reached in a tension test.

Theory. Instead of a cylindrical bar being elongated, consider a flat sheet
being deformed biaxially. Denote the direction of maximum stretching by the 1-
axis and call it the major strain direction. Denote the perpendicular direction
within the plane of the sheet by the 2-axis and call it the minor strain direction.
Obviously, the 3-axis will be in the sheet thickness direction.

Assume that plane stress adequately describes conditions in the sheet. The
sheet can be treated as anisotropic but it is assumed that the principal axes of
material anisotropy and the principal axes of stress and strain coincide. Then, two
stress components, o1 and o7, and the two corresponding strain rate components, ¢;
and €3, suffice to describe the sheet behavior. Because of the assumed alignment of
principal directions, all shear components vanish, and from the previous assumption
of isochoric deformation €3 = —(€; + £3).

There are two loads applied to, or induced in, the sheet. The load in the
major strain direction causes ¢; whilst o results from the load in the minor strain
direction. Throughout the remainder of this paper conditions will be discussed
relating to the load in the major strain direction reaching a maximum. It will be
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shown that generally this will not coincide with the maximum load in the minor
strain direction. Nevertheless, for brevity this condidtion will frequently be referred
to simply as maximum load. During the period shortly before maximum load is
reached it is assumed that deformation occurs homogeneously throughout the sheet.
The criterion for reaching the maximum load in the major strain direction is simply

o1/01 = €1. (3)

The derivation of (3) is precisely equivalent to that of (2).

Although (3) then is not new, there are some new results that can be shown
to follow from it. Suppose the sheet material is described by the Levy-Mises flow
relations. (See, for example, Johnson and Mellor, 1973.) Then an effective stress
and an effective strain rate can be expressed by

o= (o2 - o102 + a2} (@
¢ = {(4/3)(2 + é1é2 + D) }V2. (5)

The corresponding material flow rules are
&, = (201 — 02)¢/20, (6)
€y = (200 — 01)€/20. (7)

Inversion of (6) and (7) results in

o1 = (261 +€2)(20/3¢), (8)
oo = (262 + €1)(20/3¢). (9)

Equations (4)—(9) describe the general behavior of the sheet material. Denote the
strain rate ratio €5/¢; by p. In the vicinity of maximum load assume p to be a
constant. Then from (5)

é = Coél (10)

where Co = {(4/3)(1+p + pz)}ll2 is a constant. Using this result in (8) and (9)
shows that
gy = 010', (11)
o9 = Cho, (12)

where C; = (2+ p){3(1 +p + p*)}~1/? and Ca = (1 + 2p){3(1 + p + p?)} /% are
also constants.

Now (11) can be used in the left hand side of (3). Because ¢ = C10

og1/oy =07/0. (13)
Substituting for the right hand side of (3) from (10) gives
o/o =¢/Co. (14)

This is the criterion for maximum load in the major strain direction expressed in
terms of effective stress, effective stress rate, effective strain rate, the set of isotropic
material constants and the strain rate ratio.
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Because most sheet materials are anisotropic it is worthwile to note the effect
of such behavior on the foregoing analysis. Jones and Gillis (1984) proposed a
plastic description for a generally anisotropic sheet material having a quadratic
flow function. In fact, this description does not even require the strain increment
vector to be normal to the flow surface. However, the analysis follows through in
the same way as for the Levy-Mises material.

The effective stress and effective strain rate become

2
g = {buO’l (612+521)0102+6220’2}1/ (15)

€ = {[b22€? + (b12 + ba1)é162 + 51152]/A}1/2 (16)

Here the b;; are anisotropic material constants and A denotes by1b92 — b12bs;. The
corresponding flow rules are

él = (6110']_ - blgo"_))é/d, (17)
ég = (5220'3 = bm(fl)é/o’. (18)

Those can be inverted to obtain

o = (bggél + bmég)(d’/ﬁé), (19)
= ((}116:2 + 6215:1)(0'/&&:). (20)

Under the previous assumption of a constant strain rate ratio near maximum
load, (16) gives the result expressed by (10) but with Cy = {[b22 + (b12 + ba1)p +
b11p%]/A}? as the operative constant. Using that result in (19) and (20) gives
the results expressed by (11) and (12) with new values for C; and C5. In this case
Oy = (b-m + b12p)/CoA and C> = (by1p + bol)/CoA are the new constants. Of
course, in cases where the material has isotropy in the plane of the sheet the values
of the b,-_,- are such as to reduce this anisotropic case back to the Levy-Mises results.

In any case, with (10) and (10) reestabilished for this generally anisotropic ma-
terial having a quadratic yield function the analysis leading to (14) follows directly.
Therfore, (14) is the criterion for maximum load in the major strain direction for
a wide range of sheet materials.

Meanwhile, one might ask what is going on in the minor strain direction.
Manipulating (12) in the same way as (11) leads to

6’2/0’2:6‘/0’. (21)

However, at maximum load o/0 = ¢, = €,/p. Hence when the load maximum is
reached in the major strain direction

O2/02 = €9/p. (22)

Therefore, it is not possible for the major and minor direction loads to peak simul-
taneously except for equibiaxial stretching (p = 1).

Some further interesting representations come from this analysis. Suppose that
the effective stress is some function of effective strain, ¢ and effective strain rate, ¢.

o =o(e,E). (23)
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Let the material strain hardening and strain rate sensitivity parameters, n and m
respectively, be defined in the usual manner.

n=230lng/dlne, (24)
m=30lno/dlnE. (25)

Form the quotient &/o from the constitutive law (23). Using the chain rule of
differentiation

¢ = (0c/0¢)é + (0o /FE)E. (26)
Dividing both sides of (26) by o and taking account of (24) and (25) leads to
7)o = né/e + mé/é. (27)

From equation (10) £/¢ = £1/¢; and, if it is assumed that p remains constant from
the beginning of loading, ¢/ = ¢;/¢;. Furthermore, at maximum load ¢/0 = £,
as shown by (3) and (13). Substituting all of these relations into (27) gives

€1 =néyfer + méy/ér (28)
and this can be solved for the strain at maximum load
1 =n[l-mé /el (29)

Equation (29) is an extremely interesting result. It indicates that the strain at
maximum load depends upon the strain rate and strain rate sensitivity parameters
but not upon the strain rate ratio, providing this last quantity has been always
constant. For a rate insensitive material, the well-known relation, €; = n, is recov-
ered.

Now (29) can be evaluated for the cases of two simple types of deformation.
(1) Constant logarithmic (true) strain rate test. In this test €; is a constant.
Then, €, = 0 and (29) becomes
€1 =n. (30)
This result shows that the longitudinal strain at maximum load is the strain hard-
ening parameter, n, over the entire range of the strain ratio, p.

(2) Constant crosshead speed (constant engineering strain rate) test. In this
test L is a constant, thus L = 0. Then é; = L/L— L?/L* =0—(L/L)? = —¢? and
(29) becomes .

&1 =n/(1+m). (31)
This result shows that £, is somewhat less than in the previous case; the reduction
depends on the strain rate sensitivity parameter, m.

Comparison with one-dimensional case. It is straightforward to compare
these biaxial sheet results with uniaxial results from the analysis of Hart (1967).
He derived as the basic relationship for uniform deformation, the equation

P/P = ~(L/L)[1 = v+ m] + (L/L)m. (32)

Here v is defined as
v =30lnc/de (33)
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which is an alternative strain hardening parameter related to n by

¥ = njE, (34)
As in the previous section, (32) can be applied to describe the two simplest types
of tension test.

For the case of a constant logarithmic strain rate test, ¢ = 0 and L/L = (L/L)?
so that L/L = L/L. Then

P/P=—(L/L)1=5+m-m]=—(L/L)[1-1]. (35)

Therefore, maximum load, characterized by P/P =0, occurs when ¥ = 1. Then
from (34) the effective strain at maximum load is ¢ = n. Keeping in mind that for
the tension test the axial strain is identical to the effective strain, this is exactly
the same result as (30).

For the case of a constant crosshead speed test L = 0 and then

P/P=—(L/L)[1 -7 +m)]. (36)
Therefore, maximum load occurs when ¥ = 1 + m. Then again from (34)
e=n/(1+m). (37)

This corresponds exactly to the biaxial result (31).

Discussion. The main result of the present analysis is given in (3). Equation
(3) is simply a kinetic condition that must be satisfied when the load in the major
strain direction reaches a maximum. It applies to the stress rate, stress and strain
rate in the major strain direction.

Subsidiary results are given in (14), (22) and (29). Equation (14) is an anal-
ogous condition that must be simultaneously satisfied by the effective stress rate,
effective stress and effective strain rate. This condition involves a constant that
is determined in part by the strain rate ratio. Equation (22) is also analogous to
(3) and must be simultaneously satisfied by the stress rate, stress and strain rate
in the minor strain direction. It contains the strain rate ratio; and this generally
prevents the load in the minor strain direction from reaching its maximum value
simultaneously with the major load.

Equations (3), (14) and (22) are equivalent expressions for the condition of
reaching maximum load in the major strain direction. They merely express this
condition in terms of different sets of variables. In two of these the strain rate ratio
appears and is stated to be a constant. However, the derivation makes it clear that
this ratio need not be held constant along the entire loading path. It only has to
be constant in some neighborhood of maximum load.

The condition expressed by these three equations is that the load in the 1-
direction reaches a maximum value. This condition per se does not relate to the
stability of plastic defermation.

Equation (29) expresses the major strain component at maximum load in terms
of material constitutive properties and rate parameters of the axial deformation.
Under constant strain rate ratio £ = pe; and under monotonic loading € = Cye; so
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that equivalent expressions could be constructed for these strain values as well. For
any constant strain rate ratio, the value of major strain is independent of the strain
rate ratio. This result was confirmed recently by Choi (1987) in the numerical cal-
culation of forming limit diagrams. For a given material the deformation program
for the 1-direction was held constant; the 2-direction deformation was varied over
a set of discrete cases from uniaxial tension through plane strain to equibiaxial
stretching. At maximum load the major strain had the same value in every case
and that value was precisely as predicted by (29). When different material pa-
rameters were used and different deformation programs simulated the results were
always in accord with (29).

Conclusions. The Considére criterion for the occurrence of maximum load
in a tension test has been extended to biaxial tension in a sheet.

The biaxial criterion is identical in form to Considére’s uniaxial criterion but
with the addition of appropriate subscripts. Equation (3).

For a broad class of anisotropic material behavior it has been shown that
maximum load in the minor strain direction cannot concide with maximum load in
the major strain direction except under equibiaxial stretching. Equation (22).

At the point of maximum load the major strain is accurately predicted in terms
of the material strain hardening parameter, strain rate sensitivity parameter and
deformation rates in the major strain direction. Equation (29).

The major strain at maximum load is independent of the (constant) strain rate
ratio. Equation (29).
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UNE GENERALISATION EN DEUX DIMENSIONS
DU CRITERE DE CONSIDERE

La critere de Considére pour atteindre la charge maximale sous tension uniaxi-
ale a été prolongé au cas de la déformation biaxiale d’une surface plate. Peu avante
que la charge maximale soit atteinte, on suppose que la constrainte de déformation
de la surface plane est répartie de maniere homogene sur toute la surface. La critére
pour atteindre la charge maximale sous déformation biaxiale est obtenu pour la di-
rection principale de la tension. On démontre qu’a moins d’opérer avec une force
equi-biaziale, les maxima des charges dans les directions principale et secondaire
ne peuvent apparaitre simultanément. La matiére de la surface est supposée ten-
due. On suppose de plus que c’est une fonction du taux de tension et que’elle est
anisotrope. Le résultats peuvent étre résumés de la maniére principale peut étre
prédite de maniére précise en fonction du parametre de durcissement de la matiére,
du taux de tension et des vitesses de déformation dans la direction principale de la
tension.

DVODIMENZIISKO UOPSTENJE USLOVA CONSIDERE-A

Considere-ov kriterijum koji odreduje najvele opterecenje pri jednoosnom
zatezanju prosiren je na sluc¢aj ravnog stanja napona. Pretpostavljeno je da,
neposredno pre nego sto se dostigne najvece opterecenje, u celoj ploéi imamo ho-
mogeno ravno stanje napona. Kriterijjum za odredivanje maksimalnog opterecenja
povezan je sa glavnim pravcima tenzora deformacija. Pokazano je da nije mogude da
opterecenja u glavnim pravcima tenzora deformacija imaju istovremeno ekstremne
vrednosti, izuzev u sluc¢aju jednakih dilatacija u oba pravca. Usvojeno je da napon
u materijalu od koga je naéinjena ploca zavisi od deformacije i brzine deformacije.
Centralni zakljuéak analize je da za najvede opteredenje, glavna maksimalna di-
latacija se moze precizno predvideti preko karakteristika materijala i to parametra
ojacanja 1 parametra osetljivosti na brzinu deformacije u glavnim pravcima tenzora
deformacije. Glavna maksimalna dilatacija za maksimalno optereéenje ne zavisi od
odnosa brzina deformacije u glavnim pravcima.
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